
AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500
Rev. 1 — 7 September 2023 Application note

Document Information
Information Content

Keywords LPC5500, PowerQuad, FFT, DSP

Abstract FFT is widely used to extract the features in voice recognition, signal detection, and other
machine learning application with the analysis of timing sampling signals.

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

1 Introduction

Fast Fourier Transform (FFT) is almost the most popular computation in Digital Signal Processing (DSP)
application. It can make the transform between timing field to frequency field. When the sample array of signals
is transformed from timing field to frequency field, some useful and interesting attributes appear. They can be
easily used to find out the pattern of signals. With this feature, FFT is widely used to extract the features in
voice recognition, signal detection, and other machine learning applications with the analysis of timing sampling
signals.

The Arm CMSIS-DSP Software Library provided a group of APIs to fulfill the requirement of computing FFT on
Cortex-M MCUs. However, the functions in CMSIS-DSP are purely implemented by the software, even if it is
well optimized. It means that the computing time depends on the optimization conditions of the compiler and the
performance of the CPU. Also, the computing time of the complex process, like FFT purely by the software, is
usually not short, which should be considered carefully in the real-time application.

The PowerQuad hardware module is designed to accelerate some general DSP computing tasks, including
the math functions, matrix functions, filter functions, and the transform functions (including FFT). As the
computing is executed by the specific hardware other than the Arm core, it runs faster and saves CPU time.
The PowerQuad can be considered as a simplified DSP hardware but with less power consumption and well
integrated inside the Arm ecosystem. Therefore, the development based on it is friendly.

About the usage of the fixed-point FFT and the floating-point FFT, they have their specific implementations and
applications in different fields. The fixed-point FFT is used to process the audio, video, and other data captured
from hardware sensor modules like ADC, while the original direct sample value for these conditions is a fixed
point. For the floating-point FFT, it is commonly used to process the longitude and latitude with high accuracy
and high resolution in a navigation system. So, both the fixed-point FFT and the floating-point FFT would be
discussed together in the paper.

2 PowerQuad hardware FFT engine

The PowerQuad provides Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT). It is
implemented with a Radix-8 butterfly structure FFT engine using the fixed-point arithmetic at a resolution of 24
bits.

Figure 1 shows the Radix-8 butterfly structure of the engine. This implementation reduces memory access and
makes full use of the four multipliers available in PowerQuad.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
2 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 1. Radix-8 butterfly structure of PowerQuad FFT engine

2.1 Computing equations
DFT transforms a sequence of N complex numbers:

x0, x1, x2, ..., xN-1

Into another sequence of N complex numbers:

X0, X1, X2, ..., XN-1

which is defined by:

(1)

The inverse transform is given by:

(2)

In most practical applications, the x0, x1, x2, ..., xN-1 are the pure real numbers, then the DFT obeys the
symmetry:

(3)

It follows that X0 and XN/2 are read values, and the remainder of the DFT is completely specified by just N/2 -1
complex numbers.
AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
3 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Note: Although the FFT computing engine of the PowerQuad can support the DCT by hardware as well, it is
not so popular as the FFT. It can be computed by the matrix way in a simpler way, which is also supported by
the PowerQuad matrix computing engine. Using the matrix computing engine to compute the DCT is easier and
more flexible than FFT computing engine. So, this application note does not describe the DCT in details, as its
usage is almost the same with the FFT.

2.2 Input and output details

2.2.1 Fixed-point numbers only for FFT engine

The PowerQuad FFT engine can only use fixed-point numbers as input and output, even to keep the temporary
data in the TEMP region.

Note: The FFT engine only looks at the bottom 27 bits of the input word, so any prescaling must not exceed
this to avoid saturation.

If the FFT of the floating-point numbers is required in the application, the user must convert the floating-point
input numbers to the fixed-point numbers, launching the computing and converting the output fixed-point
numbers to the floating-point ones. Fortunately, the matrix engine of the PowerQuad provides a function of
matrix scale, which would accelerate the conversion by mixed format computing.

2.2.2 Input and output sequences in memory

The purely real (prefixed by r) and the complex flavors of the functions (prefixed by c) expect the input data
sequences to be arranged in memory as follows.

• If the input sequence, x0, x1 ... xN-1 are complex numbers of the form, while the N is the length of the array.
(x0_real + I * x0_im), (x1_real + I * x1_im), ... (xN-1_real + I * xN-1_im)
then the input array in memory must be organized as:
{ x0_real, x0_im, x1_real, x1_im, ..., xN-1_real, xN-1_im }

• If the input sequence, x0, x1 ... xN-1 are real numbers, then the input array in memory must be organized as:
{x0, x1, ... xN-1}

The output sequence is always stored in memory organized as an array of complex numbers where the
imaginary parts are zero for real-valued output data.

The supported lengths for PowerQuad FFTs/DCTs are N = 16, 32, 64, 128, 256, and 512 points.

2.2.3 Default hardware prescaler

The PowerQuad FFT engine scales the value of input data by 1/N (divide N) before computing the FFT by
hardware default, so that the values are not overflowed during the computing of both DFT and inverse DFT.
If an unscaled result is necessary, the input data before being placed in the INPUT A region must first be
multiplied by N, or set up the hardware prescaler for the INPUT A region.

The inverse FFT is also scaled by 1/N. It is correct as per the inverse DFT formula, so no scaling treatment is
needed.

When the application is willing to replace the FFT API of CMSIS-DSP used in the existing project, to keep the
input and output data to be aligned, manually add the prescaler. However, if the application is newly designed,
this step can be omitted, as the proportional relation among the outputs is still the same, which is the most
important information of the FFT computing.

The following shows the different results with and without the manual prescaler.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
4 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

2.3 Using private RAM
The private RAM is an area of memory specifically for PowerQuad. PowerQuad can access this part of the
memory exclusively without any arbitration delay, so that to accelerate the whole process of computing as
fast as possible. As the PowerQuad accesses the four banks of memory with 32-bit bus simultaneously in an
interleave way, it can achieve an equivalent 128-bit bus band wide. Using private RAM is encouraged. It means
that PowerQuad can access the data quicker and improve the performance by accessing one operand from
RAM and one from the system at the same time.

The space for private RAM on LPC5500 is 16 kB with the address between 0xE000_0000 and 0xE000_3FFF.
The private RAM supports only 32-bit addressing, because it was meant for floating point data (which is the
native form of PowerQuad). Generally, all the address space in the private RAM can be used for the four
memory handlers, INPUT A, INPUT B, TEMP, and OUTPUT. And choosing the format of a memory, the handler
has no effect when data is traveling in and out of the private RAM.

However, the FFT is a special case because its engine is a fixed-point engine, while all the other functions are
natively floating point. The FFT engine is designed to operate with AHB as input (INPUT A) and final output
(OUTPUT), whose memory is at general memory space. Private memory is used as temporary storage for the
TEMP memory handler. When launching the FFT engine, the private RAM is allowed intermediate (TEMP)
storage. Since the FFT is operating in fixed point, it also deposits its temporary data in fixed point and gets it
back in fixed point.

Actually, the TEMP area is only used for the FFT (for intermediate calculations) and Matrix inversion. For the
other functions, the only useful memory handlers are the INPUT A, INPUT B, and OUTPUT.

Another important notice is the alignment of memory address for memory handlers. Since the PowerQuad
reads the input and writes the output with 4 words (128-bit) once a time, the allocated memory address for the
PowerQuad memory handler is 4-word (or 16 bytes) aligned. The FFT is a special case here as well. For the
TEMP memory handler, it needs the alignment to its space size. For example, 512 points mean 512 complex
pairs, and it must align 1024 words.

As the FFT is the only big operation that uses private RAM, it is the only one that has such large alignment
requirements. So, it is recommended to always use 0xE000_0000 for its TEMP memory handler, allowing the
hardware FFT engine to consume the space needed for FFT.

3 Measuring time in a demo project

Considering the functions are usually running fast, the interrupt-based timing method is not suitable in the demo
case. However, a tip here is that in some test projects special for measuring, interrupt-based timing method is
still available by measuring plenty times of the target function, then to get the average time for one execution.

In the demo code for this paper, the SysTick timer is chosen as the hardware timer, so that the code here could
be portable for the other Arm Cortex-M MCUs. Then use the 24-bit counter value directly for timing. For the
LPC5500, which is running at 96 MHz for the clock source of the SysTick timer, the max timing period could be
174 ms.

 /* Systick Start */
 #define TimerCount_Start() do { \
 SysTick->LOAD = 0xFFFFFF ; /* Set reload register */\
 SysTick->VAL = 0 ; /* Clear Counter */ \
 SysTick->CTRL = 0x5 ; /* Enable Counting*/ \
 } while(0)

 /* Systick Stop and retrieve CPU Clocks count */
 #define TimerCount_Stop(Value) do { \
 SysTick->CTRL =0; /* Disable Counting */ \
 Value = SysTick->VAL;/* Load the SysTick Counter Value */ \

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
5 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 Value = 0xFFFFFF - Value;/* Capture Counts in CPU Cycles*/\
 } while(0)

The usage would be:

 uint32_t cycles;

 TimerCount_Start();
 arm_cfft_q31(&instance, inputF32, 0, 1); /* Computing Complex FFT. */
 TimerCount_Stop(cycles);

 printf("timing cycles: %d", cycles);

The running time of each functional case in this paper would be measured in different conditions. The
measuring time is summarized to show the computing performance.

4 Computing cases in a demo project

This document uses a general computing process for all the demo computing cases. It runs the 512-point FFT
transform from a given array to the expected output array.

4.1 [INPUT]
The input array includes pure real numbers {1, 2, 1, 2, 1, 2, …, 1, 2} with the length of 512.

• For the real fixed-point numbers, they are the integer number 1 or 2.
• For the real floating-point numbers, they are the floating number 1.0 f or 2.0 f.
• For the complex fixed-point numbers, they are the complex numbers (1, 0) or (2, 0).
• For the complex floating-point numbers, they are the complex number (1.0 f, 0.0 f) or (2.0 f, 0.0 f). All in all,

the values of inputs are the same for different computing cases.

4.2 [OUTPUT]
The output array of values is all zero except for:

• The 0th number is 765.
• The 256th number is -256.

This output makes sense. As shown in the original input array, the average value of the input number is 1.5 and
the amplitude of the simple switching waveform is 0.5. It means that the original input can be represented as
1.5-0.5, 1.5+0.5, 1.5-0.5, 1.5+0.5, …. The switching period is 2, with the frequency of 1/2, and the phase would
be negative. No other frequency factors.

In the frequency field, the step for the 512-point FFT transform is 1/512. Then only the first item and the position
for 1/2 (the 256th) are nonzero. The first item is for the DC factor and the 256th is for the simple switching
waveform. The value for the nonzero position is the amplitude: result [0] = 1.5, result [256] = -0.5.

However, using the general mathematic calculator (like Matlab) simplifies the step of 1/N when outputting the
result. That means, the direct output multiples N from the final result. In the case for this paper, the actual result
is: result [0] = 768, result [256] = -256.

The result can also be proved by the calculation with FreeMat software (an opensource version of MabLab-like
mathematics calculator, http://freemat.sourceforge.net/) using the following script.

--> for (i = 1:512); x(i) = mod(i-1,2) + 1; end % create the input array in
 x.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
6 / 41

http://freemat.sourceforge.net/

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

--> y = fft(x) % run the fft and keep
 result in y
--> plot([1:1:512], y) % display the diagram of fft
 result

The result is shown in the terminal.

y =
 1.0e+002 *
 Columns 1 to 6
 7.6800 + 0.0000i 0 0 0
 0 0
 Columns 7 to 12
 0 0 0 0
 0 0
 …
 Columns 253 to 258
 0 0 0 0
 -2.5600 + 0.0000i 0
 Columns 259 to 264
 0 0 0 0
 0 0
 …
 Columns 505 to 510
 0 0 0 0
 0 0
 Columns 511 to 512
 0 0

Figure 2. FFT calculation by FreeMat

5 Computing FFT with CMSIS-DSP software

Before showing the usage of PowerQuad FFT engine, here tells the usage of CMSIS-DSP FFT APIs, which
are already well known by the MCU-based DSP developers. The CMSIS-DSP FFT APIs are implemented by
optimized software.

The FFT is an efficient algorithm for computing the DFT. The FFT can be orders of magnitude faster than the
DFT, especially for long lengths. There are separate algorithms for handling floating-point, Q15, and Q31 data
types.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
7 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

The FFT functions operate in-place. That is, the array holding the input data is also used to hold the
corresponding result. The input data is complex and contains 2 * fftLen interleaved values as shown below.

{real[0], imag[0], real[1], imag[1]...}

The FFT results are contained in the same array and the frequency domain values have the same interleaving.
CMSIS-DSP provides a group of APIs for computing FFT:

• arm_cfft_f32()
• arm_cfft_q31()
• arm_cfft_q15()
• arm_rfft_fast_f32_init() and arm_rff_fast_f32() (arm_rfft_f32() is not used any more)
• arm_rfft_q31()
• arm_rfft_q15()

For detailed information about these functions, refer to http://www.keil.com/pack/doc/CMSIS/DSP/ html/group
groupTransforms.html.

The following describes the usage of APIs for various formats. All the cases are runnable on the LPC5500
platform with Arm Cortex-M33 core, FPU, and DSP instructions enabled.

5.1 Complex FFT transforms

5.1.1 Computing FFT with complex F32 numbers

The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 stages are performed along with
a single radix-2 or radix-4 stage, as needed. The algorithm supports lengths of [16, 32, 64, ..., 4096] and each
length uses a different twiddle factor table.

The function uses the standard FFT definition and output values grow by a factor of fftLen when computing
the forward transform. The inverse transform includes a scale of 1/fftLen as part of the calculation and this
matches the textbook definition of the inverse FFT.

Pre-initialized data structures containing twiddle factors and bit reversal tables are provided and defined in
the source file, arm_const_structs.h. Include this header in your function and then pass one of the constant
structures as an argument to arm_cfft_f32. For example:

arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)

The code for the task is:

/* app_cmsisdsp_cfft_f32.c */

#include "app.h"

extern uint32_t timerCounter;
extern float32_t inputF32[APP_FFT_LEN_512*2];
extern float32_t outputF32[APP_FFT_LEN_512*2];

void App_CmsisDsp_CFFT_F32_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
8 / 41

http://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupTransforms.html
http://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupTransforms.html
http://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupTransforms.html

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 inputF32[2*i] = (1.0f + i%2); /* real part. */
 inputF32[2*i+1] = 0; /* complex part. */
 }

 TimerCount_Start();
 arm_cfft_f32(&arm_cfft_sR_f32_len512, inputF32, 0, 1);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %f, %f\r\n", i, inputF32[2*i], inputF32[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 3 shows the result.

Figure 3. Terminal log for App_CmsisDsp_CFFT_F32_Example

Per the code and terminal log in this case, we can see:

• It is proven that the computing function modifies the memory of inputF32[] and the output numbers cover
the input numbers. The output number is using two items as the real part and the complex part for a complex
value.

• It is proven that the CMSIS-DSP function ignores the 1/fftLen scale for the result. All the following cases use
the result without 1/fftLen scale as the common target.

• The running time goes with no compiling optimization. Table 5 summarizes all the computing time in different
optimal condition.

5.1.2 Computing FFT with complex Q31 numbers

The version FFT of Q31 is implemented differently from the floating-point one. Also, the range of fixed-point
number is confusing, because the Q31 number is in the range of (-1, 1). However, in the application level of this
case, they are used as the pure 32-bit integers, or can be seen as a Q0 in fixed-point format. This consideration

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
9 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

makes sense, since the output of FFT would be mostly used as normal values to feed the following procedure,
unless the whole application is designed with all special formatted fixed-point numbers in memory.

The code for the task is:

/* app_cmsisdsp_cfft_q31.c */
#include "app.h"

extern uint32_t timerCounter;
extern q31_t inputQ31[APP_FFT_LEN_512*2];
extern q31_t outputQ31[APP_FFT_LEN_512*2];

void App_CmsisDsp_CFFT_Q31_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 inputQ31[2*i] = APP_FFT_LEN_512 * (1 + i%2); /* real part. */
 inputQ31[2*i+1] = 0; /* complex part. */
 }

 TimerCount_Start();
 arm_cfft_q31(&arm_cfft_sR_q31_len512, inputQ31, 0, 1);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, inputQ31[2*i], inputQ31[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 4 shows the result.

Figure 4. Terminal log for App_CmsisDsp_CFFT_Q31_Example

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
10 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Per the code and terminal log shown for this case, we can see:

• The FFT of the fixed-point version does the scale of 1/fftLen inside the function. This way can save more
significant figures and prevent the overflow during computing. However, as we must achieve the common
target as the floating-point one in the code, a prescaler is used manually by software.

Actually, the fixed-point FFT functions would shift the input automatically according to the computing length.
Internally, the input is downscaled by 2 for every stage to avoid saturations inside the CFFT/CIFFT process.
Therefore, the output format is different with FFT size. Table 1 and Table 2 describe the input and output formats
for different FFT sizes and number of bits to upscale.

CFFT size Input format Output format Number of bits to upscale

16 1.31 5.27 4

64 1.31 7.25 6

256 1.31 9.23 8

1024 1.31 11.21 10

Table 1. Input/Output format of Q31 CFFT in CMSIS-DSP

CFFT size Input format Output format Number of bits to upscale

16 1.31 5.27 0

64 1.31 7.25 0

256 1.31 9.23 0

1024 1.31 11.21 0

Table 2. Input/Output format of Q31 CIFFT in CMSIS-DSP

5.1.3 Computing FFT with complex Q15 numbers

The FFT of Q15 version in CMSIS-DSP is expected to cost less memory and time, but with less significant
figures. It is also suitable to process the data, whose original format is 16-bit. Its usage is the same as the Q31
version. Also, we can still use the pure 16-bit integer numbers with suitable shift as we did in the case of the
Q31 version before.

The code for the task is:

/* app_cmsisdsp_cfft_q15.c */
#include "app.h"

extern uint32_t timerCounter;
extern q15_t inputQ15[APP_FFT_LEN_512*2];
extern q15_t outputQ15[APP_FFT_LEN_512*2];

void App_CmsisDsp_CFFT_Q15_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 inputQ15[2*i] = APP_FFT_LEN_512 * (1 + i%2); /* real part. */
 inputQ15[2*i+1] = 0; /* complex part. */

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
11 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 }

 TimerCount_Start();
 arm_cfft_q15(&arm_cfft_sR_q15_len512, inputQ15, 0, 1);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, inputQ15[2*i], inputQ15[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 5 shows the result.

Figure 5. Terminal log for App_CmsisDsp_CFFT_Q15_Example

Per the code and terminal log shown for this case, we can see:

• The FFT of the Q15 version does the scale of 1/fftLen inside the function like the Q31 version. To achieve the
common target in the code, a prescaler is used manually by software.

Table 3 and Table 4 describe the input and output format for the Q15 FFT.

CFFT size Input format Output format Number of bits to upscale

16 1.15 5.11 4

64 1.15 7.9 6

256 1.15 9.7 8

1024 1.151 11.5 10

Table 3. Input/Output format of Q15 CFFT in CMSIS-DSP

CFFT size Input format Output format Number of bits to upscale

16 1.15 5.11 0

Table 4. Input/Output format of Q15 CIFFT in CMSIS-DSP

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
12 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

CFFT size Input format Output format Number of bits to upscale

64 1.15 7.9 0

256 1.15 9.8 0

1024 1.15 11.5 0

Table 4. Input/Output format of Q15 CIFFT in CMSIS-DSP...continued

5.2 Real FFT transforms
The FFT of a real N-point sequence has even symmetry in the frequency domain. The second half of the data
equals the conjugate of the first half flipped in frequency. So, the result can be uniquely represented using only
N/2 complex numbers. These are packed into the output array in alternating real and imaginary components.

X = {real[0], imag[0], real[1], imag[1], real[2], img[2], ... real[(N/2) - 1], imag[(N/2) - 1}

It happens that the first complex number (real[0], imag[0]) is pure real, while the real[0] represents the
DC offset and imag[0] are 0. So, the position of imag[0] can be used to restore the real[N/2], which is
another pure real number. (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is the first
harmonic and so on.

The real FFT functions pack the frequency domain data in this fashion. The forward transform outputs the data
in this form and the inverse transform expects input data in this form. The function always performs the needed
bit-reversal so that the input and output data is always in normal order. The functions support lengths of [32,
64, 128, ..., 4096] samples.

The CMSIS DSP library includes specialized algorithms for computing the FFT of real data sequences. The FFT
is defined over complex data but in many applications that the input numbers are real. Real FFT algorithms take
advantage of the symmetry properties of the FFT and have a speed advantage over complex algorithms of the
same length.

The Fast RFFT algorithm relays on the mixed radix CFFT that save processor usage. Figure 6 shows the steps
of computing the real length N forward FFT of a sequence.

Figure 6. Real Fast Fourier Transform

The real sequence is initially treated as if it were complex to perform a CFFT. Later, a processing stage
reshapes the data to obtain half of the frequency spectrum in complex format. Except for the first complex
number that contains the two real numbers X[0] and X[N/2], all the data is complex. In other words, the first
complex sample contains two real values packed.

The input for the inverse RFFT must keep the same format as the output of the forward RFFT. A first processing
stage pre-processes the data to later perform an inverse CFFT.

Figure 7. Real inverse Fast Fourier Transform

As a summary for using the N point real FFT:

• The length of the input array is N, with N real numbers.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
13 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

• The length of the output array is also N, with N/2 complex number, for the first half of the frequency spectrum,
since the second half of the data equals the conjugate of the first half flipped in frequency.

• The first complex number of the output array is packed with the two real numbers, real[0] and real[N/2].

5.2.1 Computing FFT with real F32 numbers

CMSIS-DSP provides a new API with fast to replace the old one for computing the real floating-point FFT.
Now, the APIs of arm_rfft_fast_init_f32()/arm_rfft_fast_f32 are the only recommended way for
computing. Also, the input and output memory would not be in-place as the complex FFT functions. The input
memory and memory are separated in user code. And the way of outputting numbers is a little different, which
needs more attention.

The code for the task is:

/* app_cmsisdsp_rfft_fast_f32.c */
#include "app.h"

extern uint32_t timerCounter;
extern float32_t inputF32[APP_FFT_LEN_512*2];
extern float32_t outputF32[APP_FFT_LEN_512*2];

void App_CmsisDsp_RFFT_Fast_F32_Example(void)
{
 uint32_t i;
 arm_rfft_fast_instance_f32 rfft_fast_instance;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 inputF32[i] = (1.0f + i%2); /* only real part. */
 }

 arm_rfft_fast_init_f32(&rfft_fast_instance, APP_FFT_LEN_512);

 TimerCount_Start();
 arm_rfft_fast_f32(&rfft_fast_instance, inputF32, outputF32, 0);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512/2; i++)
 {
 PRINTF("%4d: %f, %f\r\n", i, outputF32[2*i], outputF32[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 8 shows the result.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
14 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 8. Terminal log for App_CmsisDsp_RFFT_Fast_F32_Example

Per the code and terminal log shown for this case, we can see:

• About the output numbers. The items are still for the complex numbers, but with the half the length of the input
items (the input is with 512 real numbers in 512 memory items, the output is with 256 complex numbers in 512
memory items). The first item of the output array is different from others. The first complex number (real[0],
imag[0]) is actually all real. real[0] represents the DC offset, and imag[0] is 0. (real[1], imag[1]) is
the fundamental frequency, (real[2], imag[2]) is the first harmonic, and so on.

5.2.2 Computing FFT with real Q31 numbers

The real FFT of Q31 is different from the floating-point version using a fast way. It uses the old format like in
the complex FFT function. The input array is packed with all the real numbers, and the output array is for the
complex numbers without length reduced. That means the memory for the output array would be twice the size
of the memory for the input array.

The code for the task is:

/* app_cmsisdsp_rfft_q31.c */
#include "app.h"

extern uint32_t timerCounter;
extern q31_t inputQ31[APP_FFT_LEN_512*2];
extern q31_t outputQ31[APP_FFT_LEN_512*2];

void App_CmsisDsp_RFFT_Q31_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 inputQ31[i] = APP_FFT_LEN_512 * (1 + i%2); /* only real part. */
 }

 TimerCount_Start();
 arm_rfft_q31(&arm_rfft_sR_q31_len512, inputQ31, outputQ31);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
15 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 {
 PRINTF("%4d: %d, %d\r\n", i, outputQ31[2*i], outputQ31[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 9 shows the result.

Figure 9. Terminal log for App_CmsisDsp_RFFT_Q31_Example

Per the code and terminal log shown for this case, we can see:

• The prescaler is used to achieve the common target.
• The length of the available input array is 512 for the 512 real numbers. The length of the available output

array is 1024 for the 512 complex numbers.
• The output array is with the same format as for the traditional complex functions. The first number is not

special as the fast floating-point real FFT did.

5.2.3 Computing FFT with real Q15 numbers

The version real FFT of Q15 inherits the version characters of Q31.

The code for the task is:

/* app_cmsisdsp_rfft_q15.c */
#include "app.h"

extern uint32_t timerCounter;
extern q15_t inputQ15[APP_FFT_LEN_512*2];
extern q15_t outputQ15[APP_FFT_LEN_512*2];

void App_CmsisDsp_RFFT_Q15_Example(void)
{
 uint32_t i;
 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 inputQ15[i] = APP_FFT_LEN_512 * (1 + i%2); /* only real part. */
 }

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
16 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 TimerCount_Start();
 arm_rfft_q15(&arm_rfft_sR_q15_len512, inputQ15, outputQ15);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, outputQ15[2*i], outputQ15[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 10 shows the result.

Figure 10. Terminal log for App_CmsisDsp_RFFT_Q15_Example

Per the code and terminal log shown for this case, we can see:

• It looks like the same as the Q31 version.
• It runs a little faster than the Q31 version.

6 Computing FFT with PowerQuad hardware

However, the pure software implementation of CMSIS-DSP APIs is still limited by the architecture of the Arm
core (the narrow memory bus) and the performance of the compiler (the optimizing condition of different level).
But on the other side, the hardware implements and optimizes the computing engines (including the FFT
engine) of PowerQuad. Comparing the usage of CMSIS-DSP, it saves a lot of CPU load and code size with
significant performance improvement. Also, as integrated as a coprocessor, the PowerQuad can also run with
the Arm core parallel if necessary, to meet the requirements in the real-time system.

The MCUXpresso SDK software library of NXP already supports the PowerQuad module. Within the
PowerQuad driver, there are a group of APIs for computing FFT:

• PQ_TransformCFFT()
• PQ_TransformRFFT()
• PQ_SetConfig () is used to set the format of various fixed points.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
17 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

The floating-point FFT is not originally support by PowerQuad hardware. However, a software solution based on
existing PowerQuad hardware is created to unlock this feature. So, it can cover the same field applying for the
CMSIS-DSP FFT APIs.

The following discusses the usage of APIs.

6.1 Fixed-point complex FFT transforms
PowerQuad FFT engine hardware supports only fixed-point FFT transform, so the PowerQuad hardware can
directly process the fixed-point FFT task.

6.1.1 Computing FFT with complex Q31 numbers

In the previous CMSIS-DSP cases, to achieve the common target output, a software prescaler is applied
to the input numbers. For the PowerQuad, the hardware provides a new option, which can be done by
hardware prescaler setting. Both input number and output number have their owner hardware prescaler
setting. In this case, for the 512-point FFT, the prescaler number is 512. The responding setting value for
pq_cfg.inputAPrescale is 9, as the input value would left shift 9 bits as the multiplication with 512.

About configuring the input and output format for PowerQuad hardware. As the Input A, Temp and Output
memory handlers are used for the FFT engine while the hardware only supports fixed-point FFT, the
format settings for these memory handlers, in pq_cfg.inputAFormat, pq_cfg.tmpFormat, and
pq_cfg.outputFormat, are for the fixed-point, such as, kPQ_32Bit or kPQ_16Bit. In this case, they are
kPQ_32Bit. The setting for the output memory handler is ignored for the FFT engine. Also, the input and
output array must be the 32-bit words.

The numbers input array for the FFT of complex number is assembled with the real part and the imaginary part,
while each part takes one 32-bit word in memory. The output numbers are always the complex numbers.

To keep the intermediate data during computing, the Temp memory handler uses the private RAM starting from
0xE000_0000. For the 512-point FFT, to keep the 512 complex numbers with 1 K 32-bit word, reserve 4 kB
memory in the private RAM.

The critical function in this case is the PQ_TransformRFFT() but with the Q31 numbers as input and output,
while the input numbers are complex ones.

The code for the task is:

/* app_powerquad_cfft_q31.c */
#include "app.h"

extern uint32_t timerCounter;
extern q31_t inputQ31[APP_FFT_LEN_512*2];
extern q31_t outputQ31[APP_FFT_LEN_512*2];

void App_PowerQuad_CFFT_Q31_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {

#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 inputQ31[2*i] = (1 + i%2); /* real part. */

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
18 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

#else
 inputQ31[2*i] = APP_FFT_LEN_512 * (1 + i%2); /* real part. */
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 inputQ31[2*i+1] = 0; /* complex part. */
 }
 memset(outputQ31, 0, sizeof(outputQ31)); /* clear output. */

 /* computing by PowerQuad hardware. */
 {
 pq_config_t pq_cfg;

 PQ_Init(POWERQUAD); /* initialize the PowerQuad hardware. */

 pq_cfg.inputAFormat = kPQ_32Bit;
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 pq_cfg.inputAPrescale = 9; /* 2 ^9 for 512 len of input. */
#else
 pq_cfg.inputAPrescale = 0;
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 pq_cfg.inputBFormat = kPQ_32Bit;
 pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_32Bit;
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_32Bit;
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_32Bit;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 TimerCount_Start();
 PQ_TransformCFFT(POWERQUAD, APP_FFT_LEN_512, inputQ31, outputQ31);
 PQ_WaitDone(POWERQUAD);
 TimerCount_Stop(timerCounter);
}

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, outputQ31[2*i], outputQ31[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 11 shows the result.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
19 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 11. Terminal log for App_PowerQuad_CFFT_Q31_Example

Per the code and terminal log shown for this case, we can see:

• The hardware prescaler takes effect just like the software scaler.
• The expected result (common target) is created by PowerQuad hardware.
• It is faster than the CMSIS-DSP complex Q31 fixed-point FFT function.

Actually, about the usage of the prescaler for output fixed-point numbers here can reuse the table for the output
of CMSIS-DSP fixed-point FFT.

6.1.2 Computing FFT with complex Q15 numbers

With the PowerQuad FFT engine, the complex Q15 task is almost the same with the complex Q31 task while
the difference is:

• The data format settings for pq_cfg.inputAFormat, pq_cfg.tmpFormat, and pq_cfg.outputFormat
are kPQ_16Bit.

The code for the task is:

/* app_powerquad_cfft_q15.c */
#include "app.h"

extern uint32_t timerCounter;
extern q15_t inputQ15[APP_FFT_LEN_512*2];
extern q15_t outputQ15[APP_FFT_LEN_512*2];

void App_PowerQuad_CFFT_Q15_Example(void)
{
 uint16_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {

#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 inputQ15[2*i] = (1 + i%2); /* real part. */
#else
 inputQ15[2*i] = APP_FFT_LEN_512 * (1 + i%2); /* real part. */
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 inputQ15[2*i+1] = 0; /* complex part. */

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
20 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 }
 memset(outputQ15, 0, sizeof(outputQ15)); /* clear output. */

 /* computing by PowerQuad hardware. */
 {
 pq_config_t pq_cfg;

 PQ_Init(POWERQUAD); /* initialize the PowerQuad hardware.

 / pq_cfg.inputAFormat = kPQ_16Bit; / for q15_t. */
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 pq_cfg.inputAPrescale = 9; /* 2 ^9 for 512 len of input. */
#else
 pq_cfg.inputAPrescale = 0;
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 pq_cfg.inputBFormat = kPQ_16Bit; /* no use. for q15_t. */
 pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_16Bit; /* for q15_t. */
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_16Bit; /* for q15_t. */
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_32Bit; /* even q15_t, they are used as 32-bit
 internally. */
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 TimerCount_Start();
 PQ_TransformCFFT(POWERQUAD, APP_FFT_LEN_512, inputQ15, outputQ15);
 PQ_WaitDone(POWERQUAD);
 TimerCount_Stop(timerCounter);

 }

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, outputQ15[2*i], outputQ15[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 12 shows the result.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
21 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 12. Terminal log for App_PowerQuad_CFFT_Q15_Example

Per the code and terminal log shown for this case, we can see:

• The hardware prescaler takes effect as well.
• The expected result (common target) is created by PowerQuad hardware.
• It is not faster than the complex Q31 FFT, even a little slower in the actual run. Therefore, the lesser bits in the

number do not reduce the workload of PowerQuad hardware.

6.2 Fixed-point real FFT transforms
The FFT by PowerQuad hardware of the pure real number packs the imaginary part and only keeps the real
part of numbers in the input array. It saves half the length of the memory than the FFT of the complex number.
The PowerQuad hardware can also recognize this way. However, the PowerQuad always keeps the output as
complex numbers (the CMSIS-DSP APIs are using the same way).

6.2.1 Computing FFT with real Q31 numbers

The critical function is the PQ_TransformRFFT() but with the Q31 numbers as input and output, while the
input numbers are pure real ones.

The code for the task is:

/* app_powerquad_rfft_q31.c */
#include "app.h"

extern uint32_t timerCounter;
extern q31_t inputQ31[APP_FFT_LEN_512*2];
extern q31_t outputQ31[APP_FFT_LEN_512*2];

void App_PowerQuad_RFFT_Q31_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {

#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 inputQ31[i] = APP_FFT_LEN_512 * (1 + i%2); /* real part. */
#else
 inputQ31[i] = APP_FFT_LEN_512 * (1 + i%2); /* real part. */

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
22 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 }
 memset(outputQ31, 0, sizeof(outputQ31)); /* clear output. */

 /* computing by PowerQuad hardware. */
 {
 pq_config_t pq_cfg;

 PQ_Init(POWERQUAD); /* initialize the PowerQuad hardware. */

 pq_cfg.inputAFormat = kPQ_32Bit;
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 pq_cfg.inputAPrescale = 9; /* 2 ^9 for 512 len of input. */
#else
 pq_cfg.inputAPrescale = 0;
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 //pq_cfg.inputBFormat = kPQ_32Bit; // no use.
 //pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_32Bit;
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_32Bit;
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_32Bit;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 TimerCount_Start();
 PQ_TransformRFFT(POWERQUAD, APP_FFT_LEN_512, inputQ31, outputQ31);
 PQ_WaitDone(POWERQUAD);
 TimerCount_Stop(timerCounter);
 }

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, outputQ31[2*i], outputQ31[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 13 shows the result.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
23 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 13. Terminal log for App_PowerQuad_RFFT_Q31_Example

Per the code and terminal log shown for this case, we can see:

• The hardware prescaler takes effect as well.
• The expected result (common target) is created by PowerQuad hardware.
• It is a little faster than the complex Q31 FFT, caused by the reduced memory operations.
• The length of output numbers does not reduce to half like CMSIS-DSP functions. It is simpler for users so that

no special format is used against the complex FFT computing.

6.2.2 Computing FFT with real Q15 numbers

With the PowerQuad FFT engine, the read Q15 task is almost the same with the real Q31 task while the
difference is:

• The data format settings for pq_cfg.inputAFormat, pq_cfg.tmpFormat, and pq_cfg.outputFormat
are kPQ_16Bit.

The code for the task is:

/* app_powerquad_rfft_q15.c */
#include "app.h"

extern uint32_t timerCounter;
extern q15_t inputQ15[APP_FFT_LEN_512*2];
extern q15_t outputQ15[APP_FFT_LEN_512*2];

void App_PowerQuad_RFFT_Q15_Example(void)
{
 uint16_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {

#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 inputQ15[i] = (1 + i%2); /* only real part. */
#else
 inputQ15[i] = APP_FFT_LEN_512 * (1 + i%2); /* only real part. */
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 }

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
24 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 memset(outputQ15, 0, sizeof(outputQ15)); /* clear output. */

 /* computing by PowerQuad hardware. */
 {
 pq_config_t pq_cfg;

 PQ_Init(POWERQUAD); /* initialize the PowerQuad hardware. */

 pq_cfg.inputAFormat = kPQ_16Bit; /* for q15_t. */
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 pq_cfg.inputAPrescale = 9; /* 2 ^9 for 512 len of input. */
#else
 pq_cfg.inputAPrescale = 0;
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 pq_cfg.inputBFormat = kPQ_16Bit; /* no use, for q15_t. */
 pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_16Bit; /* for q15_t. */
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_16Bit; /* for q15_t. */
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_32Bit; /* even q15_t, they are used as 32-bit
 internally. */
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 TimerCount_Start();
 PQ_TransformRFFT(POWERQUAD, APP_FFT_LEN_512, inputQ15, outputQ15);
 PQ_WaitDone(POWERQUAD);
 TimerCount_Stop(timerCounter);
 }

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %d, %d\r\n", i, outputQ15[2*i], outputQ15[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 14 shows the result.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
25 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 14. Terminal log for App_PowerQuad_RFFT_Q15_Example

Per the code and terminal log shown for this case, we can see:

• The hardware prescaler takes effect as well.
• The expected result (common target) is created by PowerQuad hardware.
• It is a little faster than the complex Q31 FFT, caused by the reduced memory operations.
• The length of output numbers does not reduce to half like CMSIS-DSP functions. It is simpler for users so that

no special format is used against the complex FFT computing.

6.3 Float-point FFT transform
PowerQuad hardware does not support the floating-point FFT directly. But in some applications, to get the
advantage from the powerful acceleration of PowerQuad hardware computing engine but with little code
change, users might want to update their project simply by replacing the existing CMSIS-DSP APIs for floating-
point FFT with the PowerQuad’s implementation. Then a data format conversion between floating-point and
fixed-point would be necessary.

Fortunately, the matrix scale function of the PowerQuad can help to deal with the format conversion by
hardware. It runs faster than the ARM-CMSIS DSP APIs of arm_float_to_q31()/arm_q31_to_float().
So, just to connect the operations of converting floating-point input numbers to fixed-point one, fixed-point FFT,
and converting fixed-pointed output to floating-point one. Then, we can create a floating-point FFT function all
based on the PowerQuad hardware.

6.3.1 Format conversion using PowerQuad matrix scale function

In the CMSIS-DSP, there are APIs about converting the floating-point numbers to fixed-point numbers, for
example: arm_float_to_q31() and arm_q31_to_float(). In the PowerQuad module, when setting up
the input and output with different value format and executing the matrix scale with the scaler is 1.0 f, which
means the value is not changed from input and output, then the conversion can be done automatically during
moving value from input buffer to output buffer.

The example code of format conversion between floating-point value and fixed-point value is:

/* app_powerquad_format_switch.c */
#include "app.h"

extern uint32_t timerCounter;

extern float inputF32[APP_FFT_LEN_512*2];

extern float outputF32[APP_FFT_LEN_512*2];
extern q31_t inputQ31[APP_FFT_LEN_512*2];

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
26 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

extern q31_t outputQ31[APP_FFT_LEN_512*2];

/* input */
void App_PowerQuad_float_to_q31_Example(void)
{
 uint32_t i;
 pq_config_t pq_cfg;

 PRINTF("%s\r\n", func);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 inputF32[i*2] = (1.0f + i%2); /* real part. */
 inputF32[i*2+1] = 0.0f; /* imaginary part. */
 inputQ31[i*2] = 0; /* clear output. */
 inputQ31[i*2+1] = 0;
 }

 /* convert the data. */
 PQ_Init(POWERQUAD);
 pq_cfg.inputAFormat = kPQ_32Bit; /* input. */
 pq_cfg.inputAPrescale = 0;
 pq_cfg.outputFormat = kPQ_Float; /* output */
 pq_cfg.outputPrescale = 0;
 pq_cfg.machineFormat = kPQ_Float;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 TimerCount_Start();
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32 , inputQ31); /*
 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32+256,
 inputQ31+256); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32+512,
 inputQ31+512); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32+768,
 inputQ31+768); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: 0x%x, 0x%x\r\n", i, inputQ31[2*i], inputQ31[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
 }

/* output */
void App_PowerQuad_q31_to_float_Example(void)
{
 uint32_t i;

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
27 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 pq_config_t pq_cfg;

 PRINTF("%s\r\n", func);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 outputQ31[2*i] = (1 + i%2); /* real part. */
 outputQ31[2*i+1] = 0; /* imaginary part. */
 outputF32[2*i] = 0.0f; /* clear output. */
 outputF32[2*i+1] = 0.0f;
 }

 /* convert the data. */
 PQ_Init(POWERQUAD);
 pq_cfg.inputAFormat = kPQ_32Bit;
 pq_cfg.inputAPrescale = 0;
 pq_cfg.outputFormat = kPQ_Float;
 pq_cfg.outputPrescale = 0;
 pq_cfg.machineFormat = kPQ_Float;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 TimerCount_Start();
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31 ,
 outputF32); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+256,
 outputF32+256); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+512,
 outputF32+512); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+768,
 outputF32+768); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %f, %f\r\n", i, outputF32[2*i], outputF32[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 15 shows the result.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
28 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 15. Terminal log for format switch function

Actually, the same test cases were run with ARM-CMSIS DSP APIs as well. Without the compiling optimization,
the arm_float_to_q31() and arm_q31_to_float() are slower than the conversion functions of
PowerQuad. However, there are some limitations when using the conversion function:

• For CMSIS-DSP APIs, the fixed-point numbers cannot be out of the range (-1, 1) to follow the standard q31
format.

• For PowerQuad APIs, the max length for the array is 256. If a longer array must be processed, the matrix
scale function is called more times.

6.3.2 Computing FFT with complex F32 numbers

In this case, the 512-floating-point input complex numbers (1024 numbers in the array) are converted to fixed-
point input numbers by calling the 256-point matrix scale function for four times. After running the hardware FFT
to get the output fixed-point numbers, the 256-point matrix scale functions of another four times are called to get
the floating-point output number.

The code for the task is:

/* app_powerquad_cfft_f32.c */
#include "app.h"

extern uint32_t timerCounter;

extern float32_t inputF32[APP_FFT_LEN_512*2];
extern float32_t outputF32[APP_FFT_LEN_512*2];
extern q31_t inputQ31[APP_FFT_LEN_512*2];
extern q31_t outputQ31[APP_FFT_LEN_512*2];

void App_PowerQuad_CFFT_F32_Example(void)
{
 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
29 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 inputF32[2*i] = (1.0f + i%2); /* real part. */
#else
 inputF32[2*i] = APP_FFT_LEN_512 * (1.0f + i%2); /* real part. */
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 inputF32[2*i+1] = 0; /* imaginary part. */
 }
 memset(inputQ31 , 0, sizeof(inputQ31)); /* clear input. */
 memset(outputQ31, 0, sizeof(outputQ31)); /* clear output. */
 memset(outputF32, 0, sizeof(outputF32)); /* clear output. */

 /* initialize the PowerQuad hardware. */
 PQ_Init(POWERQUAD);

 TimerCount_Start();

 /* convert the floating numbers into q31 numbers with PowerQuad. */
 {
 pq_config_t pq_cfg;

 pq_cfg.inputAFormat = kPQ_Float; /* input. */
 pq_cfg.inputAPrescale = 0;
 pq_cfg.inputBFormat = kPQ_32Bit; /* no use. */
 pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_32Bit; /* no use. */
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_32Bit; /* output. */
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_Float;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 /* total 1024 items for 512-point CFFT. */
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32 ,
 inputQ31); /* 256 items.
*/
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32+256,
 inputQ31+256); /* 256 items.
*/
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32+512,
 inputQ31+512); /* 256 items.
*/
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, inputF32+768,
 inputQ31+768); /* 256 items.
*/
 PQ_WaitDone(POWERQUAD);
 }

 /* computing by PowerQuad hardware. */
 {
 pq_config_t pq_cfg;

 pq_cfg.inputAFormat = kPQ_32Bit;
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 pq_cfg.inputAPrescale = 9; /* 2 ^9 for 512 len of input. */
#else
 pq_cfg.inputAPrescale = 0;

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
30 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 //pq_cfg.inputBFormat = kPQ_32Bit;
 //pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_32Bit;
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_32Bit;
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_32Bit;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 PQ_TransformCFFT(POWERQUAD, APP_FFT_LEN_512, inputQ31, outputQ31);
 PQ_WaitDone(POWERQUAD);
 }

 /* convert the q31 numbers into floating numbers. */
 {
 pq_config_t pq_cfg;

 pq_cfg.inputAFormat = kPQ_32Bit;
 pq_cfg.inputAPrescale = 0;
 pq_cfg.inputBFormat = kPQ_32Bit; /* no use. */
 pq_cfg.inputBPrescale = 0;
 pq_cfg.tmpFormat = kPQ_Float; /* no use. */
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_Float;
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_Float;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31 ,
 outputF32); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+256,
 outputF32+256); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+512,
 outputF32+512); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+768,
 outputF32+768); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 }

 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %f, %f\r\n", i, outputF32[2*i], outputF32[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}
/* EOF. */

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
31 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Figure 16 shows the result.

Figure 16. Terminal log for App_PowerQuad_CFFT_F32_Example

Per the code and terminal log shown for this case, we can see:

• The result is correct, the same with the floating complex FFT result of CMSIS-DSP.
• The hardware conversion functions are working well.
• The time it runs almost equals to the time for the 2 x PowerQuad Matrix Scale + 1 x PowerQuad CFFT. It

looks faster than the arm_cfft_f32() function in CMSIS-DSP.

6.3.3 Computing FFT with real F32 numbers

In this case, the input array of packed real floating numbers is converted to the Q31 numbers, then computed
by the FFT engine of PowerQuad with the PQ_TransformRFFT() function to get the output of Q31 numbers,
finally converted to the floating-point format with the matrix scale function of PowerQuad by the hardware as
well.

The code for the task is:

/* app_powerquad_rfft_f32.c */
#include "app.h"

extern uint32_t timerCounter;

extern float32_t inputF32[APP_FFT_LEN_512*2];
extern float32_t outputF32[APP_FFT_LEN_512*2];
extern q31_t inputQ31[APP_FFT_LEN_512*2];
extern q31_t outputQ31[APP_FFT_LEN_512*2];

void App_PowerQuad_RFFT_F32_Example(void)
{

 uint32_t i;

 PRINTF("%s\r\n", __func__);

 /* input. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 inputF32[i] = (1.0f + i%2); /* only real part. */
#else
 inputF32[i] = APP_FFT_LEN_512 * (1.0f + i%2); /* real part. */
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
32 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 }
 memset(inputQ31 , 0, sizeof(inputQ31)); /* clear input. */
 memset(outputQ31, 0, sizeof(outputQ31)); /* clear output. */
 memset(outputF32, 0, sizeof(outputF32)); /* clear output. */

 /* initialize the PowerQuad hardware. */
 PQ_Init(POWERQUAD);

 /* convert the floating numbers into q31 numbers. */
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {

 inputF32[i] = inputF32[i] / 512 / 8 / 512 / 1024; /* make all the
 input is in (-1, 1). */
 //PRINTF("[%4d]: %f\r\n", i, inputF32[i]);
 }
 //PRINTF("\r\n");

 TimerCount_Start();
 arm_float_to_q31(inputF32, inputQ31, APP_FFT_LEN_512); /* use arm converter
 function here. */

 /* computing by PowerQuad hardware. */
 {
 pq_config_t pq_cfg;
 pq_cfg.inputAFormat = kPQ_32Bit;
#if defined(APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER) &&
 (APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER==1)
 pq_cfg.inputAPrescale = 9; /* 2 ^9 for 512 len of input. */
#else
 pq_cfg.inputAPrescale = 0;
#endif /* APP_CFG_POWERQUAD_ENABLE_HW_PRESCALER */
 pq_cfg.tmpFormat = kPQ_32Bit;
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_32Bit;
 pq_cfg.outputPrescale = 0; /* restore the effect of pre-divider. */
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_32Bit;
 PQ_SetConfig(POWERQUAD, &pq_cfg);
 PQ_TransformRFFT(POWERQUAD, APP_FFT_LEN_512, inputQ31, outputQ31);
 PQ_WaitDone(POWERQUAD);
 }

 /* convert the q31 numbers into floating numbers. */
 {
 pq_config_t pq_cfg;

 pq_cfg.inputAFormat = kPQ_32Bit;
 pq_cfg.inputAPrescale = 0;
 pq_cfg.tmpFormat = kPQ_Float;
 pq_cfg.tmpPrescale = 0;
 pq_cfg.outputFormat = kPQ_Float;
 pq_cfg.outputPrescale = 0;
 pq_cfg.tmpBase = (uint32_t *)0xE0000000; /* private ram. */
 pq_cfg.machineFormat = kPQ_Float;
 PQ_SetConfig(POWERQUAD, &pq_cfg);

 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31 ,
 outputF32); /* 256 items. */
 PQ_WaitDone(POWERQUAD);

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
33 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+256,
 outputF32+256); /* 256 items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+512,
 outputF32+512); /* 256
items. */
 PQ_WaitDone(POWERQUAD);
 PQ_MatrixScale(POWERQUAD, (16u << 8u) | 16u, 1.0f, outputQ31+768,
 outputF32+768); /* 256
items. */
 PQ_WaitDone(POWERQUAD);
 }
 TimerCount_Stop(timerCounter);

 /* output. */
#if defined(APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS) &&
 (APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS==1)
 PRINTF("Output :\r\n");
 for (i = 0u; i < APP_FFT_LEN_512; i++)
 {
 PRINTF("%4d: %f, %f\r\n", i, outputF32[2*i], outputF32[2*i+1]);
 }
#endif /* APP_CFG_ENABLE_SHOW_OUTPUT_NUMBERS */
 PRINTF("Cycles : %6d | us : %d\r\n", timerCounter, timerCounter/96u);
 PRINTF("\r\n");
}

/* EOF. */

Figure 17 shows the result.

Figure 17. Terminal log for computing FFT with real F32 numbers

Per the code and terminal log shown for this case, we can see:

• Per the conversion number usage of Arm CMSIS-DSP, zoom down the input numbers to the range (-1, 1).
Another point, the output of the conversion number is the strict q31 number, while we actually used the
integer-like fixed-point number (with q0 format). So, an additional zoom down to the input floating numbers
were done. Then we can get the common target like other demo cases.

• Due to the workaround, the arm_flaot_to_q31() function consumes the most time of the whole process.
Even though, it still runs faster than the implementation of the pure software. The time comparison is
discussed in Section 7.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
34 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

7 Summary and conclusion

Until now, this paper tells the usage of computing FFT with CMSIS-DSP software and PowerQuad hardware
for a same computing case. So, the PowerQuad hardware can be used to replace the CMSIS-DSP software
when computing the FFT for the same format of input and output. Nevertheless, the demo cases showed that
the PowerQuad runs faster than the CMSIS-DSP.

Table 5 summarizes the timing characters for the demo cases, to show the accumulation capability of
PowerQuad. The different compiling optimization conditions are set in the Project Option dialog box in the IAR
IDE, as shown in Figure 18.

Figure 18. Optimal option of the compiler in IAR project

Table 5 summarizes the measuring time.

None Low Medium High (speed) None (FPU
disabled)Demo cases

Cycles μs Cycles μs Cycles μs Cycles μs Cycles μs

App_CmsisDsp_CFFT_Q31_
Example

545274 5679 392081 4084 310262 3231 291130 3032 3382749 35236

App_CmsisDsp_CFFT_Q31_
Example

616859 6425 420576 4381 324477 3379 298884 3113 610091 6355

App_CmsisDsp_CFFT_Q15_
Example

375995 3916 180156 1876 189941 1978 145103 1511 371291 3867

Table 5. Measuring time in optimal conditions

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
35 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

None Low Medium High (speed) None (FPU
disabled)Demo cases

Cycles μs Cycles μs Cycles μs Cycles μs Cycles μs

App_CmsisDsp_RFFT_Fast_
F32_Example

331456 3452 232862 2425 165032 1719 155098 1615 2293419 23889

App_CmsisDsp_RFFT_Q31_
Example

428229 4460 330874 3446 263057 2740 246746 2570 418553 4359

App_CmsisDsp_RFFT_Q15_
Example

228254 2377 132360 1378 135290 1409 89941 936 240691 2507

App_PowerQuad_CFFT_Q31_
Example

3469 36 3465 36 3465 36 3455 35 3468 36

App_PowerQuad_RFFT_Q31_
Example

3308 34 3276 34 3174 33 3201 33 3338 34

App_PowerQuad_CFFT_Q15_
Example

3500 36 3465 36 3464 36 3455 35 3500 36

App_PowerQuad_RFFT_Q15_
Example

3307 34 3277 34 3205 33 3200 33 3338 34

App_PowerQuad_CFFT_F32_
Example

10459 108 10698 111 10748 111 10626 110 10758 112

App_PowerQuad_RFFT_F32_
Example

61641 642 58216 606 65702 684 35064 365 191849 1998

App_CmsisDsp_float_to_q31_
Example

114621 1193 114988 1197 155050 1615 91759 955 417532 4349

App_CmsisDsp_q31_to_float_
Example

39062 406 23400 243 10525 109 19175 199 333258 3471

App_PowerQuad_float_to_q31_
Example

3005 31 3083 32 3060 31 2983 31 3051 31

App_PowerQuad_q31_to_float_
Example

3002 31 3051 31 3028 31 3012 31 3019 31

Table 5. Measuring time in optimal conditions...continued

As shown in Table 5:

• The PowerQuad computes faster than the CMSIS-DSP. About x100 times faster in measuring values.
• The timing performance of PowerQuad is stable for FFT computing with different format numbers,

with different compiling optimization conditions. But the performance of CMSIS-DSP software varies
a lot depending on the compiling optimization condition. For the implementation of the CMSIS-
DSP software, the higher-level optimization is not always making the code run faster (in the case of
App_CmsisDsp_CFFT_Q15_Example. The low-level optimization runs 1876 μs, while the medium level runs
1978 μs.

• The fixed point does not always compute faster than the floating-point. When the hardware FPU is disabled,
the computing of the floating point needs more CPU cycles with the general fixed-point instructions. On this
condition, the fixed-point algorithm would run more smoothly. However, if the FPU is enabled for the compiler,
the floating-point computing instruments can save more time and calculate the floating-point number directly
in one instrument, while the fixed-point one need more instruments to convert the calculation of big numbers
into several steps and cost more time. This is the reason that the App_CmsisDsp_CFFT_F32_Example
demo case runs faster than App_CmsisDsp_CFFT_Q31_Example when the FPU is enabled for the compiler,
but slower when the FPU is disabled.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
36 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

• The format conversion between floating-point numbers and fixed-point numbers costs a lot of time, almost the
same level, for both the CMSIS-DSP software and the PowerQuad hardware.

• For the App_PowerQuad_RFFT_F32_Example demo case, even with the software workaround about the
format conversion issue, and replaced with part of the implementation from Arm CMSIS-DSP, it is still about
x3 times faster than the pure software way. However, the complex floating-point FFT is more recommended,
because it runs faster but with more memory. Or, modify the original data format to a fixed-point number in the
application, and then it can achieve the best performance.

When running on a 150 MHz core clock, the record is as shown in Table 6.

None Low Medium High (speed) None (FPU
disabled)Demo cases

Cycles μs Cycles μs Cycles μs Cycles μs Cycles μs

App_CmsisDsp_q31_to_float_
Example

28315 188 28288 188 10033 66 9577 63 38817 258

App_PowerQuad_float_to_q31_
Example

2505 16 2512 16 2521 16 2477 16 2422 16

App_PowerQuad_q31_to_float_
Example

2502 16 2525 16 2520 16 2470 16 2423 16

App_CmsisDsp_CFFT_F32_
Example

239309 1595 169895 1132 136581 910 130355 869 434728 2898

App_CmsisDsp_CFFT_Q31_
Example

279582 1863 161018 1307 160515 1070 140809 938 279516 1863

App_CmsisDsp_CFFT_Q15_
Example

184759 1231 95802 638 96057 640 74689 497 74839 498

App_CmsisDsp_RFFT_Fast_
F32_Example

146585 977 106645 710 78675 524 73689 491 272143 1814

App_CmsisDsp_RFFT_Q31_
Example

174190 1161 135846 905 111712 744 108408 722 106262 708

App_CmsisDsp_RFFT_Q15_
Example

110248 734 67754 451 64548 430 50829 338 50920 339

App_PowerQuad_CFFT_Q31_
Example

3349 22 3356 22 3341 22 3335 22 3344 22

App_PowerQuad_RFFT_Q31_
Example

3088 20 3072 20 3046 20 3039 20 3039 20

App_PowerQuad_CFFT_Q15_
Example

3372 22 3345 22 3352 22 3334 22 3333 22

App_PowerQuad_RFFT_Q15_
Example

3088 20 3073 20 3045 20 3039 20 3039 20

App_PowerQuad_CFFT_F32_
Example

8819 58 8794 58 8910 59 8802 58 8677 57

App_PowerQuad_RFFT_F32_
Example

36332 242 39369 262 36163 241 24399 162 33885 225

App_CmsisDsp_float_to_q31_
Example

73151 487 72612 484 72870 485 42636 284 56703 378

Table 6. Measuring time in various conditions with a 150 MHz core clock

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
37 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9 Revision history

Table 7 summarizes the revisions to this document.

Revision number Release date Description

1 07 September 2023 Updated

0 November 2019 Initial public release

Table 7. Revision history

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
38 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

10 Legal information

10.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

10.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
39 / 41

mailto:PSIRT@nxp.com

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

MATLAB — is a registered trademark of The MathWorks, Inc.

AN12383 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 7 September 2023
40 / 41

NXP Semiconductors AN12383
Computing FFT with PowerQuad and CMSIS-DSP on LPC5500

Contents
1 Introduction ... 2
2 PowerQuad hardware FFT engine 2
2.1 Computing equations ...3
2.2 Input and output details4
2.2.1 Fixed-point numbers only for FFT engine 4
2.2.2 Input and output sequences in memory4
2.2.3 Default hardware prescaler 4
2.3 Using private RAM .. 5
3 Measuring time in a demo project5
4 Computing cases in a demo project 6
4.1 [INPUT] .. 6
4.2 [OUTPUT] .. 6
5 Computing FFT with CMSIS-DSP software 7
5.1 Complex FFT transforms8
5.1.1 Computing FFT with complex F32 numbers 8
5.1.2 Computing FFT with complex Q31 numbers9
5.1.3 Computing FFT with complex Q15 numbers11
5.2 Real FFT transforms ..13
5.2.1 Computing FFT with real F32 numbers 14
5.2.2 Computing FFT with real Q31 numbers15
5.2.3 Computing FFT with real Q15 numbers16
6 Computing FFT with PowerQuad hardware17
6.1 Fixed-point complex FFT transforms 18
6.1.1 Computing FFT with complex Q31 numbers18
6.1.2 Computing FFT with complex Q15 numbers20
6.2 Fixed-point real FFT transforms 22
6.2.1 Computing FFT with real Q31 numbers22
6.2.2 Computing FFT with real Q15 numbers24
6.3 Float-point FFT transform26
6.3.1 Format conversion using PowerQuad

matrix scale function ..26
6.3.2 Computing FFT with complex F32 numbers 29
6.3.3 Computing FFT with real F32 numbers 32
7 Summary and conclusion 35
8 Note about the source code in the

document ... 38
9 Revision history .. 38
10 Legal information ..39

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 7 September 2023
Document identifier: AN12383

	1 Introduction
	2 PowerQuad hardware FFT engine
	2.1 Computing equations
	2.2 Input and output details
	2.2.1 Fixed-point numbers only for FFT engine
	2.2.2 Input and output sequences in memory
	2.2.3 Default hardware prescaler

	2.3 Using private RAM

	3 Measuring time in a demo project
	4 Computing cases in a demo project
	4.1 [INPUT]
	4.2 [OUTPUT]

	5 Computing FFT with CMSIS-DSP software
	5.1 Complex FFT transforms
	5.1.1 Computing FFT with complex F32 numbers
	5.1.2 Computing FFT with complex Q31 numbers
	5.1.3 Computing FFT with complex Q15 numbers

	5.2 Real FFT transforms
	5.2.1 Computing FFT with real F32 numbers
	5.2.2 Computing FFT with real Q31 numbers
	5.2.3 Computing FFT with real Q15 numbers

	6 Computing FFT with PowerQuad hardware
	6.1 Fixed-point complex FFT transforms
	6.1.1 Computing FFT with complex Q31 numbers
	6.1.2 Computing FFT with complex Q15 numbers

	6.2 Fixed-point real FFT transforms
	6.2.1 Computing FFT with real Q31 numbers
	6.2.2 Computing FFT with real Q15 numbers

	6.3 Float-point FFT transform
	6.3.1 Format conversion using PowerQuad matrix scale function
	6.3.2 Computing FFT with complex F32 numbers
	6.3.3 Computing FFT with real F32 numbers

	7 Summary and conclusion
	8 Note about the source code in the document
	9 Revision history
	10 Legal information
	Contents

