Document information

<table>
<thead>
<tr>
<th>Information</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>EdgeLock SE050, EdgeLock Plug &amp; Trust middleware, i.MX6UltraLite</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document explains how to get started with the OM-SE050ARD board and i.MX6UltraLite board. This guide provides detailed instructions for connecting the boards, installing the software, running the EdgeLock SE050 Plug &amp; Trust project examples and executing the pySSSCLI tool.</td>
</tr>
</tbody>
</table>
## Revision history

<table>
<thead>
<tr>
<th>Revision number</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2019-06-08</td>
<td>First document release.</td>
</tr>
<tr>
<td>1.1</td>
<td>2019-06-20</td>
<td>Update board figures</td>
</tr>
<tr>
<td>1.2</td>
<td>2019-12-17</td>
<td>Corrected OM-SE050ARD J14 jumper setting.</td>
</tr>
</tbody>
</table>
1 Read this first

The hardware used in this document is the following:

1.1 Required hardware

1. OM-SE050ARD development kit:

<table>
<thead>
<tr>
<th>Part number</th>
<th>12NC</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM-SE050ARD</td>
<td>935383282598</td>
<td>EdgeLock SE050 development board</td>
</tr>
</tbody>
</table>

2. i.MX6UltraLite board

<table>
<thead>
<tr>
<th>Part number</th>
<th>12NC</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCIMX6UL-EVKB</td>
<td>935328353598</td>
<td>i.MX6UltraLite evaluation kit</td>
</tr>
</tbody>
</table>
2 Hardware setup

The hardware setup consists of two steps:

1. Mounting the boards, as described in Section 2.1
2. Configuring OM-SE050ARD jumpers, as described in Section 2.2

2.1 Mounting the boards

1. Connect the OM-SE050ARD board on top of the i.MX6UltraLite board using the Arduino connectors as shown in Figure 1.

![Diagram of Arduino connectors of OM-SE050ARD and i.MX6UltraLite boards]

Note: In case the i.MX6UltraLite board does not come with the Arduino headers assembled by default, they can be easily soldered in the dedicated mounting holes.

2.2 Jumper configuration

1. Make sure the jumper settings in your OM-SE050ARD board are configured as shown in Figure 2.

![Diagram of jumper configuration for i.MX6UltraLite board]
For more information about the OM-SE050ARD jumper settings, refer to AN12395 OM-SE050ARD hardware overview document.
3 Software setup

The software setup consists of:
1. Preparing a micro-SD card with the pre-compiled Linux image for i.MX6UltraLite board, as described in Section 3.1.
2. Installing the USB to UART Bridge VCOM driver in your laptop, as described in Section 3.2.
3. Installing TeraTerm terminal application, as described in Section 3.3.
4. Booting the i.MX6UltraLite board, as described in Section 3.4.

3.1 Micro-SD card preparation

To prepare the micro-sd card with the pre-compiled Linux image that includes the EdgeLock SE050 Plug & Trust middleware, you need to:
1. Download from www.nxp.com/se050 the EdgeLock SE050 Plug & Trust middleware SD Card Image. This image contains the EdgeLock SE050 Plug & Trust middleware pre-installed on a bootable IMX6UL-EVK SD Card Image.
2. Download and install Win32 Disk Imager software. Win32 Disk Imager is a Windows open source program to format SD card images. Instead of Win 32 Disk Imager, you could also use any other software for this operation.
3. Plug your micro-SD card in your laptop.
4. Open Win 32 Disk Imager, (1) select from your file system the pre-compiled Linux image you downloaded from the website and (2) click the Write button as shown in Figure 3.

Figure 3. Micro-SD card preparation with Win32 Disk Imager software

3.2 Drivers

To install the i.MX6UltraLite drivers, follow these steps:
1. Plug the power supply and connect the USB cable to your laptop as shown in Figure 4.
2. Download the **USB to UART Bridge VCOM driver** for your processor (either 32 or 64 bits). Install the driver by following the setup wizard until it is finished.

3. Unplug and plug your board.

4. Go to your Device Manager, and check that your board is recognized and assigned to a port number (COMxx). Write down the assigned port number (COMxx) as it is needed in the next steps. Your Device Manager should look like Figure 5.
3.3 Terminal setup

We need to install a terminal application, for instance TeraTerm, to communicate and view the serial output of the i.MX6UltraLite board from our laptop. To setup TeraTerm application:

1. Download TeraTerm and run the installer.
2. Launch TeraTerm, click Serial option and select from the drop down list the COM port number assigned to your i.MX6UltraLite board as shown in Figure 6. If the serial option is not enabled for you, your i.MX6UltraLite board might not be recognized. In that case, please repeat the driver installation described in Section 3.2.
3. Go to Setup > Serial Port and configure the terminal to 115200 baud rate, 8 data bits, no parity and 1 stop bit and click OK as shown in Figure 7.

![Figure 6. Open a TeraTerm serial connection](image)

![Figure 7. Configure TeraTerm serial port connection](image)

### 3.4 Booting the i.MX6UltraLite

To boot the i.MX6UltraLite, please do the following:

1. Insert the micro-SD card with the pre-compiled Linux image into the card slot as shown in Figure 8.

![Figure 8](image)
2. Configure the board switches as follows
   • SW601 (Boot Device Select Switch): OFF, ON, OFF, OFF (from 4-1 bit)
   • SW602 (Boot Mode Select Switch): ON, OFF (from 1-2 bit)

3. Make sure the i.MX6UltraLite switches are set as shown in Figure 9

4. Make sure your board is connected to the power supply and to your laptop using a USB cable and TeraTerm serial port configured (see Section 3.3).

5. Turn on the power supply switch to boot up the board. The power supply button is shown in Figure 10.
6. During the boot process, the operating system status information will be prompted on the TeraTerm as shown in Figure 11. When the process is complete, the user can login with the following credentials
   • Account name: root
   • Password: not required
Figure 11. Sign in in the OS
4 Run EdgeLock SE050 Plug & Trust middleware test examples

The EdgeLock SE050 Plug & Trust middleware comes with several test examples used to verify atomic EdgeLock SE050 security IC features. This section explains how to run the EdgeLock SE050 Plug & Trust middleware test example called se05x_minimal.

1. Go to se050_mw_vXX.XX.XX_build/imx_native_se050_t1oi2c/bin directory as shown in Figure 12, where vXX.XX.XX corresponds to the EdgeLock SE050 Plug & Trust middleware version number. At the moment of writing, the latest version was v02.09.00_20190605_115623.

   Send > cd se050_mw_vvXX.XX.XX_build/imx_native_se050_t1oi2c/bin.

   ![Figure 12. Go to the EdgeLock SE050 Plug & Trust middleware test example directory](image)

2. Execute the se05x_minimal test example. This test example outputs the memory left in EdgeLock SE050 security IC.

   Send > ./se05x_minimal.

   The TeraTerm logs should indicate the available memory in EdgeLock SE050 security IC as can be seen in Figure 13 (in this case, 592).

   ![Figure 13. Run se05x_minimal test example](image)

The execution of the se05x_minimal project is shown as an example. The steps detailed in this section can be replicated to run any other test example included as part of the EdgeLock SE050 Plug & Trust middleware. To get the list of test examples:

1. Send the `ls` command as shown in Figure 14.
Send `ls -l`

Figure 14. List EdgeLock SE050 Plug & Trust middleware test examples
5 Using SE050 ssscli tool

In Section 2 and Section 3 we have prepared the hardware setup and the software setup respectively. To validate that the whole process was done correctly and that your setup is fully operational, we are going to run the ssscli tool. To start the ssscli tool, send the commands shown in Figure 15:

1. Open the connection:
   Send: > ssscli connect se050 t1oi2c none
2. Send the reset command:
   Send: > ssscli se05x reset

Figure 15. Start the ssscli tool

Note: If you see the following message: WARNING:sss.connect:Session already open, close current session first message as shown in Figure 16, it means that you have a session open. To close it, send: (1) > ssscli disconnect and then send once again (2) > ssscli connect se050 vcom <COM_NUMBER> and later (3) > ssscli se05x reset.
3. The SE050 ssscli tool supports several operations. To check which commands support the SE050 ssscli tool:
(Figure 17) Send: > ssscli

4. Once you are done using the ssscli tool, close the session with SE050 security IC:
(Figure 18) Send: > ssscli disconnect
If you have reached this point, the ssscli tool is working as expected in your machine.
6 Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out of the use or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer’s applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

6.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Tables

Tab. 1. OM-SE050ARD development kit details ..........3  Tab. 2. i.MX6Ultralite ..................................................... 3
Figures

Fig. 1. Arduino connectors of OM-SE050ARD and i.MX6UltraLite boards ........................................4
Fig. 2. Jumper configuration for i.MX6UltraLite board ................................................................. 4
Fig. 3. Micro-SD card preparation with Win32 Disk Imager software ............................................. 6
Fig. 4. Plug the power supply and connect the USB cable to your laptop ........................................ 7
Fig. 5. Check i.MX6UltraLite board is recognized in Device Manager ..........................................8
Fig. 6. Open a TeraTerm serial connection .........................9
Fig. 7. Configure TeraTerm serial port connection ......9
Fig. 8. Insert the Micro-SD card ........................................10
Fig. 9. Configure i.MX6UltraLite board switches ............10
Fig. 10. Turn on the board .............................................. 11
Fig. 11. Sign in in the OS .............................................. 12
Fig. 12. Go to the EdgeLock SE050 Plug & Trust middleware test example directory ..................13
Fig. 13. Run se05x_minimal test example .................13
Fig. 14. List EdgeLock SE050 Plug & Trust middleware test examples ..................................14
Fig. 15. Start the ssscli tool ........................................15
Fig. 16. Close an already opened session .....................16
Fig. 17. ssscli info ................................................16
Fig. 18. ssscli disconnect ........................................17
## Contents

1  Read this first ......................................................3  
1.1  Required hardware ............................................3 
2  Hardware setup ...................................................4  
2.1  Mounting the boards ..........................................4  
2.2  Jumper configuration .........................................4 
3  Software setup ....................................................6  
3.1  Micro-SD card preparation ..................................6  
3.2  Drivers ..........................................................6  
3.3  Terminal setup ..................................................8  
3.4  Booting the i.MX6UltraLite ..................................9  
4  Run EdgeLock SE050 Plug & Trust middleware test examples .........................13  
5  Using SE050 ssscli tool .......................................15  
6  Legal information ...............................................18