
AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting
guidelines
Rev. 1.1 — 7 December 2020 Application note
546711

Document information
Information Content

Keywords EdgeLock SE05x, secure element, middleware, porting

Abstract This document provides guidelines to port the EdgeLock SE05x Plug &
Trust Middleware to your host MCU/MPU. It details the layers and software
components that must be adapted to use the EdgeLock SE05x Plug & Trust
Middleware in your host platform and host operating system.

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

Revision history

Revision
number

Date Description

1.0 2019-07-17 First release

1.1 2020-01-20 Updated product name and other minor corrections.

1.2 2020-12-04 Updated template and product name

Revision history

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 2 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

1 EdgeLock SE05x Plug & Trust Middleware architecture

The EdgeLock SE05x Plug & Trust Middleware translates function calls into APDUs
that are transferred through T=1 protocol over an I2C interface to the EdgeLock SE05x
security IC. The EdgeLock SE05x executes the different APDUs and gives back the
results to the EdgeLock SE05x Plug & Trust Middleware through the same interface.
The complete set of EdgeLock SE05x Plug & Trust Middleware functions can be called
from communication stacks like TLS or an application running on the host. Therefore,
the EdgeLock SE05x Plug & Trust Middleware behaves as the interface between a host
application and the EdgeLock SE05x security IC. Figure 1 gives a simplified view of the
generic architecture of a system using EdgeLock SE05x Plug & Trust Middleware.

Figure 1.  Simplified EdgeLock SE05x Plug & Trust Middleware architecture

1.1 Platform drivers
The <i2c_platform> layer depicted in Figure 1 acts as a link between the T=1
protocol and I2C platform infrastructure. It is platform specific and must be adapted
to your host platform. The EdgeLock SE05x Plug & Trust Middleware provides the
<i2c_platform> layer adapted for various NXP MCU / MPU platforms and can be
ported to multiple host platforms and host operating systems if these files are modified
accordingly:

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 3 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

• i2c_<platform>.c: Platform specific I2C code. The file i2c_a7.c is in the /
hostLib/platform/imx/ directory and the file i2c_<platform>.c is in the /
hostLib/platform/ksdk/ directory. As of MW v02.09.01, the following platforms
are supported and have standalone files for I2C implementation:
– frdm: i2c_frdm.c
– imxrt10xx: i2c_imxrt10xx.c
– lpc55sxx: i2c_lpc55sxx.c

• sm_timer.c: This file defines the sleep functionality. It must be implemented
according to the timers of the target platform. Located in the folder /hostLib/
platform/generic/.

• timer_kinetis_<platform>.c: These files define the implementation of the sleep
functions for different platforms. Located in the /hostLib/platform/ksdk directory.

There are other files that, if needed, can be optionally modified:

• ax_reset.c: This file defines low level reset functionality and DEEP Power-Down
mode. If ENA pin is permanently pulled up, this file does not need to be implemented. If
ENA pin is connected to the host, this file can be either kept as it is or re-implemented
to match the user’s needs. It is located in the /hostLib/platform/ksdk directory.

• se05x_reset.c: This file is the high level reset functionality to SE05x variants. Just
like ax_reset.c, this is also an optional file depending on ENA pin. This file is located
in directory /hostLib/platform/ksdk in case of Kinetis target, and /hostLib/
platform/imx in case of Linux.

• sm_printf.c: Printf implementation. This is usually platform independent but in
case the target platform does not support standard libraries or has special conditions, it
needs to be adapted. It is located in the /hostLib/platform/generic directory.

Figure 2 shows the distribution of the files mentioned above. In the following sections,
information about implementing and adapting these files is given.

Figure 2.  Folder structure and location of each of the files.

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 4 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

2 EdgeLock SE05x Plug & Trust Middleware porting

The main module to port in the EdgeLock SE05x Plug & Trust Middleware is I2C. The
host platform may either feature an I2C-dedicated hardware or needs to implement a
bit-banging mechanism. The I2C driver does not need to support specific features, as
communication with the secure element is based in T=1 protocol. Its implementation is
written in pure ‘C’ code and should compile on any system with or without OS as it is
platform independent. More details about T=1 over I2C can be found in UM11225 - NXP
SE05x T=1 Over I2C Specification.

However, as mentioned in Section 1, the user must adapt:

• The I²C platform specific code.
• The timers.
• The reset (Optional: The reset default implementation is functional, but some targets

may need extra work performed during the reset).
• sm_printf (Optional: The sm_printf is usually platform independent but there may be

special target platforms that don’t support it and need to be adapted).

2.1 Adapting EdgeLock SE05x Plug & Trust Middleware to your Linux
platform
This section describes how to port the EdgeLock SE05x Plug & Trust Middleware to your
Linux environment. The EdgeLock SE05x Plug & Trust Middleware Linux integration in
i.MX6UltraLite platform is used as a reference for this section.

2.1.1 Required header files to import

The location of the header to implement the I2C driver is inside platform/inc folder of
the EdgeLock SE05x Plug & Trust Middleware. The name of that file is i2c_a7.h. The
contents of the file are depicted here.

Note: Always read the documentation in this header file in case it is updated in the
future. The different functions that must be implemented depen on the target platform.
For your convenience, important sections in this header file have been highlighted in
bold.

1 /**
2 * @file i2c_a7.h
3 * @author NXP Semiconductors
4 * @version 1.0
5 * @par License
6 * Copyright 2017 NXP
7 *
8 * This software is owned or controlled by NXP and may only
 be used
9 * strictly in accordance with the applicable license terms.
 By expressly
10 * accepting such terms or by downloading, installing,
 activating and/or
11 * otherwise using the software, you are agreeing that you
 have read, and
12 * that you agree to comply with and are bound by, such
 license terms. If
13 * you do not agree to be bound by the applicable license
 terms, then you

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 5 / 22

https://www.nxp.com/webapp/Download?colCode=UM11225
https://www.nxp.com/webapp/Download?colCode=UM11225

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

14 * may not retain, install, activate or otherwise use the
 software.
15 *
16 * @par Description
17 *
18 * I2C API used by SCI2C & T=1 over I2C protocol
 implementation.
19 *
20 * - SCIIC / SCI2C is the protocol used by A71CH / A71CL
 family of secure elements.
21 *
22 * - T=1 over I2C is the protocol used by SE050 family of
 secure elements.
23 *
24 * These APIs are to be implemented when porting the
 Middleware stack to a new
25 * host platform.
26 *
27 * @note Few APIs are only required for the SCI2C protocol
 and few are only
28 * needed for T=1 over I2C Protocol. They are marked
 by the defines
29 * ``I2C`` and ``T1oI2C``
30 *
31 * # Convention of the APIs.
32 *
33 *
34 * APIs for which a buffer is input. e.g.::
35 *
36 * i2c_error_t axI2CWrite(unsigned char bus, unsigned char
 addr,
37 * unsigned char * pTx, unsigned short txLen);
38 *
39 *
40 * In the above case :samp:`pTx` is a buffer input. It is
 assumed that
41 * the lengh as set in :samp:`txLen` is same as that pointed
 to by
42 * :samp:`pTx`. This parameter is used as is and any
 mistake by the
43 * calling/implemented API will have unpredictable errors.
44 *
45 *
46 * APIs for which a buffer is output. e.g.::
47 *
48 * i2c_error_t axI2CWriteRead(unsigned char bus,
49 * unsigned char addr,
50 * unsigned char *pTx,
51 * unsigned short txLen,
52 * unsigned char *pRx,
53 * unsigned short *pRxLen);
54 *
55 *
56 * In the above case :samp:`pRx` is a buffer output
 and :samp:`pRxLen`
57 * is both input and output. It is assumed that the lengh as
 set in
58 * :samp:`pRxLen` is set to the maximum as available to the
 pointer

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 6 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

59 * pointed by :samp:`pRx`. This parameter is used as is and
 any mistake
60 * by the calling/implemented API will have unpredictable
 errors.
61 *
62 * @par History
63 *
64 **/
65
66 #ifndef _I2C_A7_H
67 #define _I2C_A7_H
68
69 #include "sm_types.h"
70
71 #define SCI2C_T_CMDG 180 //!< Minimum delay between stop of
 Wakeup command and start of subsequent command (Value in micro
 seconds)
72
73 #define I2C_IDLE 0
74 #define I2C_STARTED 1
75 #define I2C_RESTARTED 2
76 #define I2C_REPEATED_START 3
77 #define DATA_ACK 4
78 #define DATA_NACK 5
79 #define I2C_BUSY 6
80 #define I2C_NO_DATA 7
81 #define I2C_NACK_ON_ADDRESS 8
82 #define I2C_NACK_ON_DATA 9
83 #define I2C_ARBITRATION_LOST 10
84 #define I2C_TIME_OUT 11
85 #define I2C_OK 12
86 #define I2C_FAILED 13
87
88 typedef unsigned int i2c_error_t;
89 #define I2C_BUS_0 (0)
90
91 /** Initialize the I2C platform HW/Driver*/
92
93 i2c_error_t axI2CInit(void);
94
95 /** Terminate / de-initialize the I2C platform HW/Driver
96 *
97 *
98 * @param[in] mode Can be either 0 or 1.
99 *
100 * Where applicable, and implemented a value of
 0 corresponds
101 * to a 'light-weight' terminate.
102 *
103 * In genral, this is not used for most of the
 porting
104 * platforms and use cases.
105 *
106 *
107 */
108 void axI2CTerm(int mode);
109
110 #if AX_EMBEDDED
111 /** Smarter handling of back off logic
112 *

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 7 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

113 * When we get a NAK from SE, we back off and keep on
 increasing the delay for next I2C Read/Write.
114 *
115 * When we get an ACK from SE, we reset this back off
 delay.
116 */
117 void axI2CResetBackoffDelay(void);
118 #endif /* FREEDOM */
119
120 #if defined(I2C) /* Means SCI2C SCIIC */ || defined(T1oI2C)
121 /** Write a frame.
122 *
123 * Needed for SCI2C and T=1 over I2C */
124 i2c_error_t axI2CWrite(unsigned char bus, unsigned char
 addr, unsigned char * pTx, unsigned short txLen);
125 #endif
126
127 #ifdef T1oI2C
128 /** Read a byte.
129 *
130 * Needed only for T=1 over I2C */
131 i2c_error_t axI2CRead(unsigned char bus, unsigned char
 addr, unsigned char * pRx, unsigned short rxLen);
132 #endif /* T1oI2C */
133
134 #endif // _I2C_A7_H

The I2C driver implementation in Linux is layered. The top-level layer is contained in a file
called i2c-dev.c and is referred to as I2C device driver. The bottom layer deals with
the specific hardware of the I2C controller, thus being specific for the target platform. It is
called I2C bus driver.

The I2C device driver is defined in i2c-dev.c and i2c.c files. These files represent an
I2C adapter implementing IOCTL functions (system call for device specific input/output
operations and other operations which cannot be expressed by regular system calls).
Therefore, it is required to include them in the implementation of the i2c_a7.c driver. As
can be observed here, both i2c_dev.h and i2c.h header files have been included
in i2c_a7.c.

1 #include "i2c_a7.h"
2 #include <stdio.h>
3 #include <string.h>
4
5 #include <fcntl.h>
6 #include <sys/ioctl.h>
7 #include <unistd.h>
8 #include <sys/stat.h>
9 #include <linux/i2c-dev.h>
10 #include <linux/i2c.h>
11 #include <time.h>

As a summary, the header i2c_a7.h provides the definitions of the I2C driver functions
(in bold), while i2c_dev.h and i2c.h header files provide the definitions and
implementation of the Linux native I2C device driver (in italics). It is not necessary to
implement the functions of the I2C device driver as they are implemented natively by the
Linux system.

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 8 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

The last part to be specified in i2c_a7.c is a reference to the specific I2C master
(device node) the EdgeLock SE05x is connected to. To do this, assign the correct device
node to the variable “devName” as depicted here. In this case (iMX6UltraLite and OM-
SE050ARD), the I2C interface used is i2c-1 but, depending on the manufacturer and
the system specifications, the direction may be different (default values usually are
“i2c-0” or “i2c-1”).

1 static int axSmDevice;
2 static int axSmDevice_addr = 0x48; // 7-bit address
3 static char devName[] = "/dev/i2c-1"; // Change this when
 connecting to another host i2c master port

2.1.2 Adapting timers

The timers are defined by the system and are used to manage interrupts. The timers
are usually natively implemented in Linux or RTOS platforms and defined by the
manufacturer in bare metal systems. Figure 3 depicts the timers implementation
architecture. For Linux, sm_timer.h defines three different functions to implement
interruptions:

• sm_initSleep function to initialize the system tick counter.
• sm_sleep function to block the calling thread for a number of milliseconds.
• sm_usleep function to block the calling thread for microsec microseconds.

1 /* function used for delay loops */
2 uint32_t sm_initSleep(void);
3 void sm_sleep(uint32_t msec);
4 void sm_usleep(uint32_t microsec);

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 9 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

Figure 3.  Sm_timer.c implementation in each target platform

2.2 Adapting EdgeLock SE05x Plug & Trust Middleware to your RTOS or
bare metal platform
This section describes how to port the EdgeLock SE05x Plug & Trust Middleware to your
RTOS or bare metal environment. The EdgeLock SE05x Plug & Trust Middleware RTOS
integration in FRDM-K64F platform is used as a reference for this section.

2.2.1 Required header files to import

The location of the header to implement the I2C driver is inside platform/inc folder
of the EdgeLock SE05x Plug & Trust Middleware. The name of that file is i2c_a7.h.
The contents of the file and the different functions that must be implemented are depicted
here.

Note: Always read the documentation in this header file in case it is updated in the
future. The different functions that must be implemented depen on the target platform.
For your convenience, important sections in this header file have been highlighted in
bold.

5 /**
6 * @file i2c_a7.h
7 * @author NXP Semiconductors
8 * @version 1.0
9 * @par License
10 * Copyright 2017 NXP

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 10 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

11 *
12 * This software is owned or controlled by NXP and may only
 be used
13 * strictly in accordance with the applicable license terms.
 By expressly
14 * accepting such terms or by downloading, installing,
 activating and/or
15 * otherwise using the software, you are agreeing that you
 have read, and
16 * that you agree to comply with and are bound by, such
 license terms. If
17 * you do not agree to be bound by the applicable license
 terms, then you
18 * may not retain, install, activate or otherwise use the
 software.
19 *
20 * @par Description
21 *
22 * I2C API used by SCI2C & T=1 over I2C protocol
 implementation.
23 *
24 * - SCIIC / SCI2C is the protocol used by A71CH / A71CL
 family of secure elements.
25 *
26 * - T=1 over I2C is the protocol used by SE050 family of
 secure elements.
27 *
28 * These APIs are to be implemented when porting the
 Middleware stack to a new
29 * host platform.
30 *
31 * @note Few APIs are only required for the SCI2C protocol
 and few are only
32 * needed for T=1 over I2C Protocol. They are marked
 by the defines
33 * ``I2C`` and ``T1oI2C``
34 *
35 * # Convention of the APIs.
36 *
37 *
38 * APIs for which a buffer is input. e.g.::
39 *
40 * i2c_error_t axI2CWrite(unsigned char bus, unsigned char
 addr,
41 * unsigned char * pTx, unsigned short txLen);
42 *
43 *
44 * In the above case :samp:`pTx` is a buffer input. It is
 assumed that
45 * the lengh as set in :samp:`txLen` is same as that pointed
 to by
46 * :samp:`pTx`. This parameter is used as is and any
 mistake by the
47 * calling/implemented API will have unpredictable errors.
48 *
49 *
50 * APIs for which a buffer is output. e.g.::
51 *
52 * i2c_error_t axI2CWriteRead(unsigned char bus,
53 * unsigned char addr,

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 11 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

54 * unsigned char *pTx,
55 * unsigned short txLen,
56 * unsigned char *pRx,
57 * unsigned short *pRxLen);
58 *
59 *
60 * In the above case :samp:`pRx` is a buffer output
 and :samp:`pRxLen`
61 * is both input and output. It is assumed that the lengh as
 set in
62 * :samp:`pRxLen` is set to the maximum as available to the
 pointer
63 * pointed by :samp:`pRx`. This parameter is used as is and
 any mistake
64 * by the calling/implemented API will have unpredictable
 errors.
65 *
66 * @par History
67 *
68 **/
69
70 #ifndef _I2C_A7_H
71 #define _I2C_A7_H
72
73 #include "sm_types.h"
74
75 #define SCI2C_T_CMDG 180 //!< Minimum delay between stop of
 Wakeup command and start of subsequent command (Value in micro
 seconds)
76
77 #define I2C_IDLE 0
78 #define I2C_STARTED 1
79 #define I2C_RESTARTED 2
80 #define I2C_REPEATED_START 3
81 #define DATA_ACK 4
82 #define DATA_NACK 5
83 #define I2C_BUSY 6
84 #define I2C_NO_DATA 7
85 #define I2C_NACK_ON_ADDRESS 8
86 #define I2C_NACK_ON_DATA 9
87 #define I2C_ARBITRATION_LOST 10
88 #define I2C_TIME_OUT 11
89 #define I2C_OK 12
90 #define I2C_FAILED 13
91
92 typedef unsigned int i2c_error_t;
93 #define I2C_BUS_0 (0)
94
95 /** Initialize the I2C platform HW/Driver*/
96
97 i2c_error_t axI2CInit(void);
98
99 /** Terminate / de-initialize the I2C platform HW/Driver
100 *
101 *
102 * @param[in] mode Can be either 0 or 1.
103 *
104 * Where applicable, and implemented a value of
 0 corresponds
105 * to a 'light-weight' terminate.

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 12 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

106 *
107 * In genral, this is not used for most of the
 porting
108 * platforms and use cases.
109 *
110 *
111 */
112 void axI2CTerm(int mode);
113
114 #if AX_EMBEDDED
115 /** Smarter handling of back off logic
116 *
117 * When we get a NAK from SE, we back off and keep on
 increasing the delay for next I2C Read/Write.
118 *
119 * When we get an ACK from SE, we reset this back off
 delay.
120 */
121 void axI2CResetBackoffDelay(void);
122 #endif /* FREEDOM */
123
124 #if defined(I2C) /* Means SCI2C SCIIC */ || defined(T1oI2C)
125 /** Write a frame.
126 *
127 * Needed for SCI2C and T=1 over I2C */
128 i2c_error_t axI2CWrite(unsigned char bus, unsigned char
 addr, unsigned char * pTx, unsigned short txLen);
129 #endif
130
131 #ifdef T1oI2C
132 /** Read a byte.
133 *
134 * Needed only for T=1 over I2C */
135 i2c_error_t axI2CRead(unsigned char bus, unsigned char
 addr, unsigned char * pRx, unsigned short rxLen);
136 #endif /* T1oI2C */
137
138 #endif // _I2C_A7_H

An RTOS operative system can manage and schedule events and manage interruptions
(e.g. FreeRTOS). The necessary files to include in the implementation of the i2c_a7.c
are shown here.

The header file i2c_a7.h provides the definitions of the functions to be implemented to
port the EdgeLock SE05x Plug & Trust Middleware (in bold). In addition, the following
files should be provided by the manufacturer (in italics):

• If the system is compiled as a bare metal platform, fsl_i2c.h file is used.
• If the system is compiled using FreeRTOS, fsl_i2c_freertos.h file is used.

1 #include "i2c_a7.h"
2 #include "fsl_clock.h"
3 #include "fsl_i2c.h"
4 #if defined(SDK_OS_FREE_RTOS) && SDK_OS_FREE_RTOS == 1
5 #include "fsl_i2c_freertos.h"
6 #endif
7 #include "fsl_port.h"
8 #include "sm_timer.h"
9 #include <stdio.h>

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 13 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

10 #include "fsl_gpio.h"
11 #include "sci2c_cfg.h"

2.2.2 Adapting timers

The timers are defined by the system and are used to manage interrupts. Figure 4
illustrates the example in this guide, using as target platform Linux, RTOS or bare metal.
It is more straightforward to implement “sm_timer.c” in Linux or RTOS versions as those
timers are usually implemented natively. In a bare metal system, the timers are defined
by the MCU manufacturer.

The timers are defined by the system and are used to manage interrupts. The timers
are usually natively implemented in Linux or RTOS platforms and defined by the
manufacturer in bare metal systems. Figure 4 depicts the timers implementation
architecture. For RTOS or bare metal, the EdgeLock SE05x Plug & Trust Middleware
provides several files already adapted for the Kinetis family: timer_kinetis.c
with common implementation, timer_kinetis_freertos.c for FreeRTOS and
timer_kinetis_bm.c for bare metal.

Figure 4.  Sm_timer.c implementation in each target platform

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 14 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

The implementation of the sm_unsleep() function is shown here. As can be observed,
the sleep time is defined by the macro CORRECTION_TOLERENCE. This macro depends
on the compiler used and the core clock frequency of the MCU used.

1 void sm_usleep(uint32_t microsec) {
2 gusleep_delay = microsec * CORRECTION_TOLERENCE;
3 while (gusleep_delay--) {
4 __NOP();
5 }6 }

The current code uses microsecond level delays using software loop (in bold).
Depending on the clock and compiler, a very fast host MCU could violate the protocol
and result in a non-responsive system. If available, it is recommended to use hardware
timers. However, a hardware clock may lead to resource conflicts for system integration
and, hence, they are not used in this implementation. In addition, there are two possible
sub-scenarios:

• RTOS: RTOS has its own timers defined. In FreeRTOS, these libraries are included
in sm_timer.c . This time is defined by a number of ‘systicks’ (system ticks). In the
current integration, one ‘systick’ is configured to last 1 millisecond. The FreeRTOS
function “vTaskDelay” is employed to handle the interruption. As an example, the
sm_timer.c implementation in a Kinetis board with FreeRTOS as shown here.

7 /* initializes the system tick counter
8 * return 0 on succes, 1 on failure */
9 uint32_t sm_initSleep() {
10 return 0;
11 }
12
13 /**
14 * Implement a blocking (for the calling thread) wait for a
 number of milliseconds.
15 */
16 void sm_sleep(uint32_t msec) {
17 vTaskDelay(msec);
18 }
19
20 void vApplicationTickHook() {
21 gtimer_kinetis_msticks++;22 }

• Bare metal: A bare metal system is not controlled by any operating system (no OS).
The timers should be manually implemented according to the specifications of the MCU
and the manufacturer. As an example, the implementation of the function sm_sleep
in a Kinetis board (FRDM-K64F) without OS is shown here. The function highlighted
in bold is implemented according to the board specifications of the target platform to
implement the sleep functionality. In bare metal systems, the systick timer is used to be
triggered every millisecond, and that is how the system keeps track of the delay.

1 static void systick_delay(const uint32_t delayTicks) {
2 uint32_t currentTicks;
3 assert(delayTicks < 0x7FFFFFFFu);
4
5 __disable_irq();
6
7 if ((gtimer_kinetis_msticks) & 0x80000000u)
8 {

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 15 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

9 /* gtimer_kinetis_msticks has increased drastically
 (MSB is set),
10 * So, reset gtimer_kinetis_msticks before it's too
 late to detect an
11 * overflow. */
12 gtimer_kinetis_msticks = 0;
13 }
14
15 currentTicks = gtimer_kinetis_msticks; // read current
 tick counter
16
17 __DSB();
18 __enable_irq();
19
20 // Now loop until required number of ticks passes
21 while ((gtimer_kinetis_msticks - currentTicks) <=
 delayTicks) {
22 #ifdef __WFI
23 __WFI();
24 #endif
25 }
26 }
27
28 /* interrupt handler for system ticks */
29 void SysTick_Handler(void) {
30 gtimer_kinetis_msticks++;
31 }
32
33
34 /* initializes the system tick counter
35 * return 0 on succes, 1 on failure */
36 uint32_t sm_initSleep() {
37 gtimer_kinetis_msticks = 0;
38 SysTick_Config(SystemCoreClock / 1000);
39 __enable_irq();
40 return 0;
41 }
42
43 /**
44 * Implement a blocking (for the calling thread) wait for a
 number of milliseconds.
45 */
46 void sm_sleep(uint32_t msec) {
47 systick_delay(msec);48 }

2.3 Adapting EdgeLock SE05x Plug & Trust Middleware printing layer
(sm_printf.h)
This module is used to print messages in a console in a debug mode. Usually, the
printing layer is platform independent as it only needs two standard libraries. The
implementation of “sm_printf” platform is shown here.

1 #include <stdio.h>
2 #include <stdarg.h>
3
4 #include "sm_printf.h"
5

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 16 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

6 #ifdef FREEDOM
7 # include "fsl_device_registers.h"
8 # include "fsl_debug_console.h"
9 # include "board.h"
10 #else
11 # define PRINTF printf
12 #endif
13
14 #define MAX_SER_BUF_SIZE (1024)
15
16 void sm_printf(uint8_t dev, const char * format, ...)
17 {
18 uint8_t buffer[MAX_SER_BUF_SIZE + 1];
19 va_list vArgs;
20
21 dev = dev; // avoids warning; dev can be used to
 determine output channel
22
23 va_start(vArgs, format);
24 #ifdef _WIN32
25 vsnprintf_s((char *)buffer, MAX_SER_BUF_SIZE,
 MAX_SER_BUF_SIZE, (char const *)format, vArgs);
26 #else
27 vsnprintf((char *)buffer, MAX_SER_BUF_SIZE, (char const
 *)format, vArgs);
28 #endif
29 va_end(vArgs);
30
31 PRINTF("%s", buffer);32 }

The stdarg.h library provides the functions needed to use a varArg list. Note that
Windows has its own implementation of vsnprintf_s.

The stdio.h library provides the printf function needed to print output data in
a console. If the target platform does not support the stdio.h or starg.h, the
developer should implement the sm_printf function according to the target platform
specifications.

2.4 Adapting EdgeLock SE05x Plug & Trust Middleware reset module
(ax_reset.c)
The EdgeLock SE05x Plug & Trust Middleware reset module handles resets on the
EdgeLock SE05x. The reference implementation is already platform dependent, as
can be seen here. If needed, the developer can extend the implementation with extra
functionality for its host platform.

1 #include <board.h>
2 #include "ax_reset.h"
3
4 #include "fsl_gpio.h"
5 #include "sm_timer.h"
6 #include "sm_types.h"
7 #include "fsl_common.h"
8 #include "se05x_apis.h"
9 #include "se_reset_config.h"
10
11 /*
12 * Where applicable, Configure the PINs on the Host

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 17 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

13 *
14 */
15 void axReset_HostConfigure()
16 {
17 #if defined(CPU_MIMXRT1052DVL6B)
18 gpio_pin_config_t reset_pin_cfg = {kGPIO_DigitalOutput,
 0, SE_RESET_LOGIC};
19 #else
20 gpio_pin_config_t reset_pin_cfg = {kGPIO_DigitalOutput,
 SE_RESET_LOGIC};
21 #endif
22 #if defined(CPU_LPC55S69JBD100)
23 GPIO_PortInit(GPIO, (uint32_t)SE05X_ENA_HOST_PORT);
24 GPIO_PinInit(GPIO, (uint32_t)SE05X_ENA_HOST_PORT,
 SE05X_ENA_HOST_PIN, &reset_pin_cfg);
25 #else
26 GPIO_PinInit(SE05X_ENA_HOST_PORT, SE05X_ENA_HOST_PIN,
 &reset_pin_cfg);
27 #endif
28 return;
29 }
30
31 /*
32 * Where applicable, PowerCycle the SE
33 *
34 * Pre-Requistie: @ref axReset_Configure has been called
35 */
36 void axReset_ResetPluseDUT()
37 {
38 axReset_PowerDown();
39 sm_usleep(2000);
40 axReset_PowerUp();
41 return;
42 }
43
44 /*
45 * Where applicable, put SE in low power/standby mode
46 *
47 * Pre-Requistie: @ref axReset_Configure has been called
48 */
49 void axReset_PowerDown()
50 {
51 #if defined(CPU_LPC55S69JBD100)
52 GPIO_PinWrite(GPIO, (uint32_t)SE05X_ENA_HOST_PORT,
 SE05X_ENA_HOST_PIN, !SE_RESET_LOGIC);
53 #else
54 GPIO_PinWrite(SE05X_ENA_HOST_PORT, SE05X_ENA_HOST_PIN, !
SE_RESET_LOGIC);
55 #endif
56 return;
57 }
58
59 /*
60 * Where applicable, put SE in powered/active mode
61 *
62 * Pre-Requistie: @ref axReset_Configure has been called
63 */
64 void axReset_PowerUp()
65 {
66 #if defined(CPU_LPC55S69JBD100)

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 18 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

67 GPIO_PinWrite(GPIO, (uint32_t)SE05X_ENA_HOST_PORT,
 SE05X_ENA_HOST_PIN, SE_RESET_LOGIC);
68 #else
69 GPIO_PinWrite(SE05X_ENA_HOST_PORT, SE05X_ENA_HOST_PIN,
 SE_RESET_LOGIC);
70 #endif
71 return;72 }

The developer should extend the implementation of ax_reset.c function according to
the target platform specifications.

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 19 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

3 Legal information

3.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

3.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not
give any representations or warranties, expressed or implied, as to the
accuracy or completeness of such information and shall have no liability
for the consequences of use of such information. NXP Semiconductors
takes no responsibility for the content in this document if provided by an
information source outside of NXP Semiconductors. In no event shall NXP
Semiconductors be liable for any indirect, incidental, punitive, special or
consequential damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal or replacement
of any products or rework charges) whether or not such damages are based
on tort (including negligence), warranty, breach of contract or any other
legal theory. Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative
liability towards customer for the products described herein shall be limited
in accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes
no representation or warranty that such applications will be suitable
for the specified use without further testing or modification. Customers
are responsible for the design and operation of their applications and
products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications
and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with
their applications and products. NXP Semiconductors does not accept any
liability related to any default, damage, costs or problem which is based

on any weakness or default in the customer’s applications or products, or
the application or use by customer’s third party customer(s). Customer is
responsible for doing all necessary testing for the customer’s applications
and products using NXP Semiconductors products in order to avoid a
default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this
respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of
non-infringement, merchantability and fitness for a particular purpose. The
entire risk as to the quality, or arising out of the use or performance, of this
product remains with customer. In no event shall NXP Semiconductors, its
affiliates or their suppliers be liable to customer for any special, indirect,
consequential, punitive or incidental damages (including without limitation
damages for loss of business, business interruption, loss of use, loss of
data or information, and the like) arising out the use of or inability to use
the product, whether or not based on tort (including negligence), strict
liability, breach of contract, breach of warranty or any other theory, even if
advised of the possibility of such damages. Notwithstanding any damages
that customer might incur for any reason whatsoever (including without
limitation, all damages referenced above and all direct or general damages),
the entire liability of NXP Semiconductors, its affiliates and their suppliers
and customer’s exclusive remedy for all of the foregoing shall be limited to
actual damages incurred by customer based on reasonable reliance up to
the greater of the amount actually paid by customer for the product or five
dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall
apply to the maximum extent permitted by applicable law, even if any remedy
fails of its essential purpose.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — Customer understands that all NXP products may be subject
to unidentified or documented vulnerabilities. Customer is responsible
for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s
applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use
in customer’s applications. NXP accepts no liability for any vulnerability.
Customer should regularly check security updates from NXP and follow up
appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make
the ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may
be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

3.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 20 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

Figures
Fig. 1. Simplified EdgeLock SE05x Plug & Trust

Middleware architecture 3
Fig. 2. Folder structure and location of each of the

files. ... 4

Fig. 3. Sm_timer.c implementation in each target
platform ..10

Fig. 4. Sm_timer.c implementation in each target
platform ..14

AN12448 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2020. All rights reserved.

Application note Rev. 1.1 — 7 December 2020
546711 21 / 22

NXP Semiconductors AN12448
EdgeLockTM SE05x Plug & Trust Middleware porting guidelines

Contents
1 EdgeLock SE05x Plug & Trust Middleware

architecture ..3
1.1 Platform drivers ... 3
2 EdgeLock SE05x Plug & Trust Middleware

porting ..5
2.1 Adapting EdgeLock SE05x Plug & Trust

Middleware to your Linux platform5
2.1.1 Required header files to import 5
2.1.2 Adapting timers ..9
2.2 Adapting EdgeLock SE05x Plug & Trust

Middleware to your RTOS or bare metal
platform ..10

2.2.1 Required header files to import 10
2.2.2 Adapting timers ..14
2.3 Adapting EdgeLock SE05x Plug & Trust

Middleware printing layer (sm_printf.h)16
2.4 Adapting EdgeLock SE05x Plug & Trust

Middleware reset module (ax_reset.c)17
3 Legal information ..20

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 December 2020
Document identifier: AN12448

Document number: 546711

	1 EdgeLock SE05x Plug & Trust Middleware architecture
	1.1 Platform drivers

	2 EdgeLock SE05x Plug & Trust Middleware porting
	2.1 Adapting EdgeLock SE05x Plug & Trust Middleware to your Linux platform
	2.1.1 Required header files to import
	2.1.2 Adapting timers

	2.2 Adapting EdgeLock SE05x Plug & Trust Middleware to your RTOS or bare metal platform
	2.2.1 Required header files to import
	2.2.2 Adapting timers

	2.3 Adapting EdgeLock SE05x Plug & Trust Middleware printing layer (sm_printf.h)
	2.4 Adapting EdgeLock SE05x Plug & Trust Middleware reset module (ax_reset.c)

	3 Legal information
	Figures
	Contents

