
AN12523
Firmware versus Library model applications
Rev. 2 — 10 December 2019 Application note

1 Introduction

This document explains the difference between Firmware Model Applications and Library
Model Applications and how to migrate from the firmware model to the library model.

2 Memory map of the FXTH87/87E and NTM88 devices shipped by NXP

NXP programs the FXTH87/87E devices at production with an embedded firmware
containing:

• Firmware functions;1

• A jump table used by the user application to call the firmware functions in the
application code;

• Firmware interrupt vectors;
• Trim section containing trim coefficients and constant bytes like the Unique ID.

In FXTH devices, the firmware version flashed by NXP at production is stored in byte
CODE 0. Use the function TPMS_READ_ID to return the value2.

NTM88 devices are programmed by NXP at production only with trim coefficients. After
an application is programmed in the NTM88, the firmware library version is stored in byte
CODE F. Use the function TPMS_READ_ID to return the value. NXP does not program
this byte at production so CODE F is empty when NTM88 devices are shipped.

Devices shipped by NXP have the following memory map:

1 Refer to the Firmware User Guide for the list and description of the functions.
2 Refer to the Firmware User Guide.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
2 / 19

aaa-034423

FXTH87/87E as
shipped by NXP

Empty Empty

PTM88xx5 and NTM88
samples as shipped by NXP

Jump table

Firmware versionE0A0-E0A3

E000-E092/E08F*

C000-DFFF

FD40-FDFF

FFB0-FFBF

FFE0-FFFF

Protection and security

Firmware functions

Firmware interrupt vectors

Trim section
FD40-FDFF

FFB0-FFBF

FFDC-FFDF

C000-FD3F

Protection and security

Note: this memory map is applicable to the PTM88xxx5
engineering samples and NTM88 production samples.

The alpha engineering samples with part number
PTM88xxxS have been shipped with an embedded
firmware; this embedded firmware should be erased

before the application is programmed.

Reserved*

* E092 for FXTH87xx1x,
E08F for FXTH87xx02

* Reserved indicates that the location
may not be empty when the samples are
shipped. The location can be erased and
overwritten by the user application.

Trim section

Figure 1. Memory map of the FXTH87/87E and NTM88 devices as shipped by NXP

With FXTH87/87E, the user may keep or erase the embedded firmware. Applications
using the embedded firmware are named “firmware-based” applications. Applications
erasing the embedded firmware are named “library-based” applications.

With NTM88, NXP does not program firmware functions, therefore, "firmware-based"
applications cannot be used. NTM88 requires library-based applications.

3 Firmware-based applications for FXTH87/87E

3.1 CodeWarrior target
Selecting the target MCU is required when creating a project or configuring a debug
session. When installing the latest CodeWarrior versions, FXTH87/87E firmware-based
applications use the default CodeWarrior target “FXTH870000” shown here:

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
3 / 19

In an FXTH87/87E application using the FXTH870000 target, the files FXTH870000.c
and FXTH870000.h contain register descriptions. These files are automatically copied to
the Lib and Project_Headers folders shown here:

The CodeWarrior target "FXTH870000" provides access only to user flash from C000h
to DFFFh. The firmware flash from E000h to FFFFh contains protected, embedded
firmware which cannot be erased or overwritten by CodeWarrior.

3.2 Memory map
FXTH87/87E firmware-based applications are programmed in the user application flash
from C000h to DFFFh. In that situation, the application does not have access to the
firmware flash from E000h to FFFFh.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
4 / 19

aaa-034424

FXTH87/87E using a
firmware-based application

Application code

Jump table

Firmware version

Protection and security

Firmware functions

Firmware interrupt vectors

Application interrupt vectors

Trim section

E0A0-E0A3

DFE0-DFFF

E000-E092/E08F(1)

C000-DFDF

FD40-FDFF

FFB0-FFBF

FFE0-FFFF

(1) E092 for FXTH87xx1x,
E08F for FXTH87xx02

Figure 2. Memory map of the FXTH87/87E using a firmware-based application

3.3 Calling the firmware functions
The application code calls the firmware functions via the jump table. All of the firmware
functions reside in the firmware flash. During execution, when a firmware function is
called, the program jumps in the firmware flash to execute the firmware function. Upon
completion of the function, the program returns to the application flash.

Calling a firmware function from the jump table is demonstrated in the demo projects
provided by NXP.

3.4 Interrupt vectors
When an interrupt occurs, the program

1. Enters the firmware interrupt vector programmed by NXP,
2. Updates the TPMS_INTERRUPT_FLAG when applicable3 and
3. Jumps into the user interrupt vector.4

3 Refer to the Firmware User Guide.
4 Under certain conditions for the LF interrupt vector. See Note on LF interrupt vector in this section for an

explanation.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
5 / 19

aaa-034426

Firmware interrupt vector entered:

TPMS_INTERRUPT_FLAG is
updated when applicable;

Interrupt
triggered

User interrupt vector entered:

User code is executed;

Return
from

interrupt

Figure 3. Program flow when an interrupt is triggered

The array of user interrupt vectors must be defined in the application project. Refer to the
Reference Manual for information on the addresses for user interrupt vectors.

 void(* const USER_INTERRUPT_TABLE[]) () @ 0xDFE0 =
 {
  USER_l5_INTERRUPT,
  USER_l4_INTERRUPT,
  USER_l3_INTERRUPT,
  USER_l2_INTERRUPT,
  USER_ll_INTERRUPT,
  USER_l0_INTERRUPT,
  USER_9_INTERRUPT,
  USER_8_INTERRUPT,
  USER_7_INTERRUPT,
  USER_6_INTERRUPT,
  USER_5_INTERRUPT,
  USER_4_INTERRUPT,
  USER_3_INTERRUPT,
  USER_2_INTERRUPT,
  USER_l_INTERRUPT,
  main
 };

Note on LF interrupt vector

In the LF firmware interrupt vector a different sequence is executed: the program jumps
in the user interrupt vector only if user application code was being executed when the
LF interrupt occurred. If a firmware function was under execution when the interrupt
occurred, then the LF user interrupt vector is not accessed.

A different sequence is executed to ensure the correct reception of all data bytes
for LF working in data mode. In data mode, when the first data ready interrupt5 is
triggered, the user application must call the firmware function TPMS_LF_READ_DATA6.
TPMS_LF_READ_DATA waits and stores all data bytes received. As the baud rate of

5 Refer to the Reference Manual.
6 Refer to the Firmware User Guide.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
6 / 19

the LF data is 3906 bit/s, one new byte is received every 256 µs. At each new data byte
received, a data ready interrupt is triggered so the interrupt vector is accessed. This
situation implies that, if the LF interrupt vector code takes more than 256 µs to execute,
LF data bytes are missed. The LF interrupt will remain under execution at the arrival of
the next data byte and the function TPMS_LF_READ_DATA will not store all the data
bytes.

To prevent this problem, when TPMS_LF_READ_DATA is under execution, the program
does not jump in the LF user interrupt vector when the user code takes longer to execute.

aaa-034427

Firmware interrupt vector entered:

TPMS_INTERRUPT_FLAG is updated.

LF
interrupt
triggered

User interrupt vector entered:

User code is executed;

When the LF
interrupt occurred,

was a firmware function
under execution?

Yes

No

Return
from

interrupt

Figure 4. Program flow when an LF interrupt is triggered

Note on the reset vector

Upon reset, the reset vector in the firmware flash area is accessed. The following actions
are performed in this interrupt vector:

• LF registers LFCTRLB to LFCTRLE are configured with NXP recommended values;
• The stack pointer is set to address 28Fh (last address of the RAM);
• Jump to user interrupt vector at address DFFEh (it should point to main).

3.5 Protection and security registers
Registers configuring MCU protection and security are not directly accessible.
The registers are located at addresses FFBDh to FFBFh within the firmware
flash7. To configure the protection, use the use the firmware function
TPMS_FLASH_PROTECTION8, provided by NXP.

Security configuration is not supported.

7 Refer to the Reference Manual.
8 Refer to the Firmware User Guide.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
7 / 19

3.6 TPMS_FLASH functions
Firmware functions TPMS_FLASH_WRITE9 and TPMS_FLASH_ERASE10 write and
erase flash bytes. However, write and erase operations are permitted only in the user
flash section from C000h to DFFFh. These firmware functions do not operate in the
firmware flash section from E000h to FFFFh.

The firmware function TPMS_FLASH_CHECK11 checks the integrity of the embedded
firmware. This function calculates the CRC16 checksum for the NXP firmware area from
E000h to FFADh. The function compares the checksum with a pre-calculated, stored
value and reports whether the two values match or not.

4 Library-based applications for FXTH87/87E and NTM88

4.1 Compatible part numbers
Only three FXTH87/87E part numbers, originally programmed by NXP with an embedded
firmware versions 2Ah or 24h, can use library-model applications. They include
FXTH87xx02 (2Ah), FXTH87xx11 (24h), and FXTH87xx12 (24h).

FXTH devices with part number FXTH87xx22 cannot use library-model applications
because the trim is flashed in a section not protected by the FXTH870000_LIB target.
Refer to Section 4.2.

All NTM88 part numbers can use library-model applications.

4.2 CodeWarrior target
FXTH87/87E library-based application projects use the CodeWarrior target
“FXTH870000_LIB,” available after installing the FXTH870000_LIB CodeWarrior patch.
NTM88 library-based application projects use the CodeWarrior target “NTM88_LIB,”
available after installing the NTM88_LIB CodeWarrior patch. These targets are not
available as defaults in CodeWarrior. When creating projects or configuring debug
sessions, the target MCU must be selected.

In projects using the FXTH870000_LIB target, the files FXTH870000_LIB.c and
FXTH870000_LIB.h are automatically copied in the Lib and Project_Headers folders.
In projects using the NTM88_LIB target, the files NTM88_LIB.c and NTM88_LIB.h are
automatically copied in the Lib and Project_Headers folders. These files contain the
register descriptions.

9 Refer to the Firmware User Guide.
10 Refer to the Firmware User Guide.
11 Refer to the Firmware User Guide.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
8 / 19

These targets give access to the whole flash except for the trim page from FC00h
to FDFFh which is protected from write and erase operations. There is no distinction
between user and firmware flash, the application has access to the whole flash except
the trim section as mentioned.

When a library-based project is programmed, the embedded firmware programmed by
NXP at production is erased.

After the embedded firmware has been erased in a device, firmware-based applications
cannot be programmed in that device since the embedded firmware is no longer present.

In the FXTH, NXP programs byte CODE 0 with the embedded firmware version. With
library-based applications, the embedded firmware version at CODE 0 is erased and
overwritten with the firmware library version. Before programming a library-based project,
use TPMS_READ_ID to return the version number from byte CODE 0.

In the NTM88, CODE F stores the firmware library version after the library-based
application has been programmed. This byte is originally empty when the devices are
shipped by NXP.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
9 / 19

4.3 Memory map
Library-based applications are programmed in flash from C000h to FBFFh and from
FE00h to FFFFh.

aaa-034425

Application code
+

Firmware functions
used by the application

(added from the
firmware library)

FXTH87/87E using a
library-based application

NTM88 using a
library-based application

Library versionE0A0-E0A3
E0A4-FBFF

C000-E09F

FC00-FD3F

FD40-FDFF

FFB0-FFBF

FFE0-FFFF

C000-FBFF

FC00-FD3F

FFAC-FFAF
FFB0-FFBF

FFE0-FFFF
FFDC-FFDF

Protection and security

Firmware not erasable

Interrupt vectors

Trim section
FD40-FDFF

Trim section

Portions of FLASH programmed by NXP
at production that can be erased and

overwritten by the application

Application code
+

Firmware functions
used by the application

(added from the
firmware library)

Library version
Protection and security

One-time programmable

Interrupt vectors

Figure 5. Memory map of the FXTH87/87E and NTM88 using a library-based application

In the FXTH87/87E, a section in the trim page, originally programmed with firmware, is
named “Firmware not erasable”. The section contains embedded firmware programmed
by NXP at production that cannot be erased. The section of firmware cannot be erased
because flash can only be erased 512 bytes by 512 bytes. Erasing the FC00h to FD3F
section would also erase the trim coefficients section from FD40 to FDFFh. Erasing the
trim coefficients section renders the sensors non-functional.

With NTM88, the section from FC00h to FD3Fh, named “one-time programmable,”
is empty when the devices are shipped. Customers may store data in the one-time
programmable section, however, it cannot be erased. As previously mentioned, flash
can only be erased 512 bytes by 512 bytes. Erasing the one-time programmable section
would also erase the trim coefficients from FD40h to FDFFh, rendering the sensors non-
functional.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
10 / 19

4.4 Calling the firmware functions
In library-based applications, firmware functions are added from a firmware library
provided by NXP. The library is included in the project and the application calls the library
functions via the library header file. The firmware library functions used by the application
are copied in the application flash.

There is a key difference between the firmware and library models. In the library model,
only the firmware functions used by the application are placed in memory. However, in
the firmware model, all firmware functions are programmed in the embedded firmware
flash.

The library model optimizes the flash memory size.

In the CodeWarior project, the library file is added in the Lib folder and the library header
file is added in the Project_Headers folder. The library file and library header file are
different for one- and two-axis devices.

4.5 Interrupt vectors
In library-based applications, there is no distinction between firmware and user interrupt
vectors. The interrupt vectors are found in a single array, defined by the user in the
application.

The interrupt vectors must be placed at the addresses defined in the MCU, starting at
FFE0h. From an application point of view, the interrupt vectors fall into three categories:

• Interrupt vectors not containing user application code. This is to ensure correct
operation of the firmware functions. In that case, a function defined in the firmware
library is used as interrupt vector, so the application should not define the function.

• Interrupt vectors in which the TPMS_INTERRUPT_FLAG must be updated. The
interrupt vectors must include code to update the flag in addition to the user code.
In the firmware library for the FXTH87/87E, handler functions updating the
TPMS_INTERRUPT_FLAG are provided. The user must call these handler functions in
the interrupt vector and add user code.
For NTM88, no handler function is provided. The user must add the code to update the
TPMS_INTERRUPT_FLAG. The demo projects provide examples.
User code must address the interrupt acknowledge to clear the register flag.

• Interrupt vectors containing user code only. The user code must address the interrupt
acknowledge to clear the register flag.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
11 / 19

Table 1 summarizes how each interrupt vector should be defined.

Table 1. Interrupt vector definition
Block generating
the interrupt

Vector address Will the application
define the function?

Content of the function

87/87E: Call to vfnTPMSKBIFslIntHandler() + user codeKBI FFE0h:FFE1h Yes

88: Update TPMS_INTERRUPT_FLAG + user code

87/87E: Reserved 87/87E: No[1] 87/87E: N/A

88: FRC

FFE2h:FFE3h

88: Yes 88: user code only

87/87E: No[1] 87/87E: N/AReserved FFE4h:FFE5h

88: Yes 88: Define an empty function (this interrupt vector will
never be accessed)

87/87E: Call to vfnTPMSRTIFslIntHandler() + user codeRTI FFE6h:FFE7h Yes

88: Update TPMS_INTERRUPT_FLAG + user code

87/87E: Call to vfnTPMSLFRFslIntHandler() + user codeLFR FFE8h:FFE9h Yes

88: Update TPMS_INTERRUPT_FLAG + user code

87/87E: No[2] 87/87E: N/AADC FFEAh:FFEBh

88: Yes 88: Update TPMS_INTERRUPT_FLAG + user code

RFM FFECh:FFEDh Yes User code only

SMI FFEEh:FFEFh No[3] N/A

87/87E: Call to vfnTPMSTPMFslIntHandler() + user codeTPM1 overflow FFF0h:FFF1h Yes

88: Update TPMS_INTERRUPT_FLAG + user code

TPM1 channel 1 FFF2h:FFF3h Yes User code only

TPM1 channel 0 FFF4h:FFF5h Yes User code only

87/87E: Call to vfnTPMSPWUFslIntHandler() + user
code

PWU FFF6h:FFF7h Yes

88: Update TPMS_INTERRUPT_FLAG + user code

87/87E: Call to vfnTPMSLVDFslIntHandler() + user codeLVD FFF8h:FFF9h Yes

88: Update TPMS_INTERRUPT_FLAG + user code

87/87E: Reserved 87/87E: No[1] 87/87E: N/A

88: Irq

FFFAh:FFFBh

88: Yes 88: user code only

SWI FFFCh:FFFDh Yes User code only

87/87E: No[1]Reset FFFEh:FFFFh

88: No[4]

N/A

[1] Use _FXTH87x6LibStartup defined in the library.
[2] Use vfnTPMSADCIsr defined in the library.
[3] Use vfnTPMSSMIIsr defined in the library.
[4] Use _Startup defined in the CodeWarrior file start08.c.

In the application project, the array can be defined as shown, with FFE0h as the start
address.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
12 / 19

For FXTH87/87E:

volatile void (* const IsrVector []) (void) @
 INTERRUPT_VECTORS_START_ADDRESS =
 {
  vfnKBIIsrUser, /* Defined by the user */
  _FXTH87x6LibStartup, /* Defined in the library */
  _FXTH87x6LibStartup, /* Defined in the library */
  vfnRTIIsrUser, /* Defined by the user */
  vfnLFRIsrUser, /* Defined by the user */
  vfnTPMSADCIsr, /* Defined by the library */
  vfnRFMIsrUser, /* Defined by the user */
  vfnTPMSSMIIsr, /* Defined by the library */
  vfnTPMIsrUser, /* Defined by the user */
  vfnTPMCH1IsrUser, /* Defined by the user */
  vfnTPMCH0IsrUser, /* Defined by the user */
  vfnPWUIsrUser, /* Defined by the user */
  vfnLVDIsrUser, /* Defined by the user */
  vfnIRQIsrUser, /* Defined by the user */
  vfnSWIIsrUser, /* Defined by the user */
  //_FXTH87X6LibStartup /*Defined in the library ; See prm
 file: VECTOR 0 _FXTH87x6LibStartup */
 }; 

For NTM88:

void (* const IsrVector []) (void) @ (0xFFE0u =
 {
  vfnKBIIsr, /* IRQ15 KBI Interrupt */
  vfnFRCIsr, /* IRQ14 FRC Interrupt */
  vfnUnusedIsr, /* IRQ13 Reserved */
  vfnRTIIsr, /* IRQ12 RTI Interrupt */
  vfnLFRIsr, /* IRQ11 LFR Interrupt */
  vfnADCIsr, /* IRQ10 ADC Interrupt */
  vfnRFMIsr, /* IRQ9 RFM Interrupt */
  vfnTPMSSMIIsr, /* IRQ8 SMI Interrupt - defined in
 firmware library */
  vfnTPMIsr, /* IRQ7 TPM Overflow Interrupt */
  vfnTPMCH1Isr, /* IRQ6 TPM Channel 1 Interrupt */
  vfnTPMCH0Isr, /* IRQ5 TPM Channel 0 Interrupt */
  vfnPWUIsr, /* IRQ4 PWU Interrupt */
  vfnLVDIsr, /* IRQ3 LVD Interrupt */
  vfnIRQIsr, /* IRQ2 IRQ Interrupt */
  vfnSWIIsr, /* IRQ1 SWI Interrupt */
  /* _Startup * IRQ0 Reset Vector - defined in
 Project.prm */
 }; 

Note on the LF interrupt vector

In firmware-based applications, not jumping in the LF user interrupt vector ensures all
data bytes are read by the function TPMS_LF_READ_DATA. See Section 3.4.

However, in library-based applications there is no distinction between firmware and
user interrupt. The LF interrupt vector defined by the application is accessed each time
an interrupt occurs. To ensure a correct operation of TPMS_LF_READ_DATA, the
user must ensure the execution time of the user code in the LF interrupt vector is short
enough. If the user code execution time is too long, TPMS_LF_READ_DATA may not
read all LF data bytes.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
13 / 19

Note on the reset vector

For FXTH87/87E, the reset function “_FXTH87x6LibStartup” is defined in the firmware
library. In the application, the user must configure this function to be the reset vector in
the prm file:

 VECTOR 0 _fxth87x6LibStartup /* Reset vector defined in
 IsrVector */

The function “_FXTH87x6LibStartup” performs the following actions:

• LF registers LFCTRLB to LFCTRLE are configured with NXP recommended values;
• The stack pointer is set to address 28Fh (last address of the RAM);
• Jump to main;

For NTM88, the default CodeWarrior startup function is used as the reset vector and is
defined in the prm file of the project:

 VECTOR ADDRESS 0xFFFE _Startup

The statement performs the following actions:

• Sets the stack pointer to the last address of the stack allocated by the linker;
• Jumps to main;

Note: if the preprocessor macro __ONLY_INIT_SP is not defined in the project, the
_Startup function will also perform global variable initialization, which would overwrite all
global variables upon exit from STOP1. This would also apply to the variables located
in the RAM section preserved in STOP1. In order to avoid such a situation, make sure
that the preprocessor macro __ONLY_INIT_SP is defined in the project. For that,
always select the option "Minimal Startup Code" when creating a project from scratch, or
manually add this macro in the project's Properties > C/C++ Build > Settings > HCS08
Compiler > Preprocessor.

4.6 Protection and security registers
Library-based applications have access to the protection and security registers.
The protection and security registers are located at addresses FFBDh to FFBFh12.
Applications can directly configure these registers and firmware functions are no longer
required to access these registers. As a result, the TPMS_FLASH_PROTECTION
function, available in the embedded firmware programmed by NXP, is not available in the
firmware library.

The user must now configure the security register in the application to maintain the
device as "unsecured". When the section of the flash containing the security register is
erased prior to programming, the security register takes the value FFh. If the security
register is set to FFh when a hardware reset is done, it secures the device and prevents
any further background debug mode (BDM) access. The user must ensure that the
application code configures the security register to unsecure the MCU. For example, the
user may configure the security register to value 82h13.

For example, place the following declaration in main.c to keep the device "unsecure".

12 Refer to the Reference Manual.
13 Refer to the Reference Manual.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
14 / 19

 // This is to keep the device unsecure
 volatile const UINT8 FLASH_NVOPT @0xFFBF = 0x82;

This declaration ensures that the security register is always programmed to 82h and the
device is never secured.

4.7 TPMS_FLASH functions
Firmware functions TPMS_FLASH_WRITE and TPMS_FLASH_ERASE are provided to
write and erase flash bytes. The function TPMS_FLASH_CHECK is provided to verify
integrity of the flash programmed by NXP at production.

4.7.1 FXTH TPMS_FLASH functions

For FXTH, the functions available in the firmware library have access to the whole flash
except the trim page from FC00h to FDFFh. They are not restricted to the section C000h
to DFFFh anymore like in the firmware model.

The firmware library function TPMS_FLASH_CHECK is provided to check the trim
section integrity. This function calculates the CRC16 checksum for the NXP trim area.
The function compares the checksum with a pre-calculated stored value and reports
whether the two values match.

4.7.2 NTM88 TPMS_FLASH functions

For NTM88, the function TPMS_FLASH_WRITE has access to the whole flash except
the trim section from FD40h to FDFFh. It can be used to write bytes in the one-time
programmable section from FC00h to FD3Fh.

The function TPMS_FLASH_ERASE can erase any memory page except the trim page
from FC00h to FDFFh. The one-time programmable section from FC00h to FD3Fh
cannot be erased because flash memory is erased page by page (512 bytes by 512
bytes) only. Erasing the one-time programmable section would imply erasing the trim
coefficients, which must not be done.

The TPMS_FLASH_CHECK function is available to check the trim section integrity with
compatible NTM88 devices14 This function calculates the CRC16 checksum for the NXP
trim area. The function compares the checksum with a pre- calculated stored value and
reports whether the two values match.

5 Migrating from firmware to library model: summary of differences

Optimization of the flash memory is the advantage of the library model compared to the
firmware model. With the firmware model, all firmware functions are placed in memory
in the firmware flash. With the library model, only functions used by the application are
placed in memory. The library model saves memory space.

14 Part numbers that cannot use TPMS_FLASH_CHECK are:

• PTM88H05 with CODEH = 15h or 95h
• PTM88H06 with CODEH = 16h or 96h
• PTM88H13 with CODEH = 1D or 9D
• PTM88H14 with CODEH = 1E or 9E

All other PTM88 and NTM88 can use the function.

.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
15 / 19

Table 2 is a summary of the differences between the two models. Users must consider
these differences when migrating the FXTH application from the firmware to the library
model.

Table 2. Firmware and library model differences
Migration consideration points Firmware model Library model

Part numbers compatible with the
model

All FXTH87 and FXTH87E part
numbers.

FXTH87xx02 programmed by NXP
with firmware 2Ah, and FXTH87xx1x
programmed by NXP with firmware 24h.
All NTM88 part numbers.

Target selected in the CodeWarrior
project

FXTH87/87E: FXTH870000
(available by default when installing the
latest CodeWarrior versions)

FXTH87/87E: FXTH870000_LIB
(available after installing the FXTH870000_
LIB patch)
NTM88: NTM88_LIB (available after
installing the NTM88_LIB patch)

Flash memory accessible by the
application

User flash from C000h to DFFFh.
Firmware flash from E000h to FFFFh is
not accessible.

From C000h to FBFFh, and from FE00h
to FFFFh. Only the trim page is not
accessible.

Firmware functions placed in
memory

All firmware functions are placed in
memory in the firmware flash section.

Only the firmware functions used by the
application are placed in memory.

Access to the firmware functions Application calls the firmware functions
via the jump table programmed by NXP.

Application calls the firmware functions via
a firmware library added in the project.

Content of CODE 0 / CODE F byte
returned by TPMS_READ_ID

Version of the embedded firmware
programmed by NXP at production.

Version of the library added in the project.

Interrupt vectors Upon interrupt, the program enters the
firmware interrupt vector where TPMS_
INTERRUPT_FLAG is updated when
applicable, and then jumps in the user
interrupt vector when applicable.

There is only one array of interrupt vectors
which must be defined in the application.
Code updating TPMS_INTERRUPT_FLAG
must be added in the appropriate interrupt
functions.

TPMS_FLASH_ERASE and TPMS_
FLASH_WRITE

The functions can access flash from
C000h to DFFFh only.

The functions can access the whole flash
except the trim.

TPMS_FLASH_CHECK The function checks the integrity of
the embedded firmware programmed
between E000h and FFFFh.

The function checks the integrity of the trim
section.

TPMS_FLASH_PROTECTION Is provided in the embedded firmware
as the application does not have direct
access to the protection register.

Is not available in the firmware library as
the application has direct access to the
protection register.

Security register Configuration of the register is not
supported.

The application has direct access to the
security register so must configure the
register to maintain the device unsecure
after programming.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
16 / 19

6 Glossary
Table 3. Glossary
Term Definition

Library Model
Applications

Applications which erase the embedded firmware programmed by NXP at production. In library model
applications, there is no distinction between user flash and firmware flash. The firmware functions, used
by the application, are added in the application via a firmware library.

Firmware Model
Applications

Applications that maintain separate user flash, containing the user application, and firmware flash,
containing the embedded firmware programmed by NXP at production. In firmware model applications,
the firmware functions are called from the user application code via a jump table.

7 Revision history
Table 4. Revision history
Revision Date Description

2 20191210 • Section 2, revised content and image in Figure 1.
• Section 4.2, split the last paragraph into two separate paragraphs, one for FXTH and

the second for NTM88.
• Section 4.3, revised the image and caption for Figure 5 and corrected register range

values in the section narrative.
• Section 4.5, added new note at the end of the section.
• Section 4.7.1, revised "The firmware function..." to "The firmware library function..." in

the second paragraph.
• Section 4.7.2, revised the register value ranges in the section, revised the third

paragraph and included new footnote.
• Section 5, Table 2, revised the library model description for TPMS_FLASH_CHECK.

1 20190722 Initial release

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
17 / 19

8 Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not
give any representations or warranties, expressed or implied, as to the
accuracy or completeness of such information and shall have no liability
for the consequences of use of such information. NXP Semiconductors
takes no responsibility for the content in this document if provided by an
information source outside of NXP Semiconductors. In no event shall NXP
Semiconductors be liable for any indirect, incidental, punitive, special or
consequential damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal or replacement
of any products or rework charges) whether or not such damages are based
on tort (including negligence), warranty, breach of contract or any other
legal theory. Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative
liability towards customer for the products described herein shall be limited
in accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes
no representation or warranty that such applications will be suitable
for the specified use without further testing or modification. Customers
are responsible for the design and operation of their applications and
products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications
and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate

design and operating safeguards to minimize the risks associated with
their applications and products. NXP Semiconductors does not accept any
liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or
the application or use by customer’s third party customer(s). Customer is
responsible for doing all necessary testing for the customer’s applications
and products using NXP Semiconductors products in order to avoid a
default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this
respect.

Suitability for use in automotive applications — This NXP
Semiconductors product has been qualified for use in automotive
applications. Unless otherwise agreed in writing, the product is not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer's own
risk.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced
security features, all products may be subject to unidentified vulnerabilities.
Customers are responsible for the design and operation of their applications
and products to reduce the effect of these vulnerabilities on customer’s
applications and products, and NXP Semiconductors accepts no liability for
any vulnerability that is discovered. Customers should implement appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

CodeWarrior — is a trademark of NXP B.V.
NXP — is a trademark of NXP B.V.

NXP Semiconductors AN12523
Firmware versus Library model applications

AN12523 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2019. All rights reserved.

Application note Rev. 2 — 10 December 2019
18 / 19

Tables
Tab. 1. Interrupt vector definition11
Tab. 2. Firmware and library model differences 15

Tab. 3. Glossary .. 16
Tab. 4. Revision history ...16

Figures
Fig. 1. Memory map of the FXTH87/87E and

NTM88 devices as shipped by NXP2
Fig. 2. Memory map of the FXTH87/87E using a

firmware-based application 4
Fig. 3. Program flow when an interrupt is triggered5

Fig. 4. Program flow when an LF interrupt is
triggered .. 6

Fig. 5. Memory map of the FXTH87/87E and
NTM88 using a library-based application 9

NXP Semiconductors AN12523
Firmware versus Library model applications

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2019. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 December 2019
Document identifier: AN12523

Contents
1 Introduction ... 1
2 Memory map of the FXTH87/87E and NTM88

devices shipped by NXP 1
3 Firmware-based applications for

FXTH87/87E ..2
3.1 CodeWarrior target .. 2
3.2 Memory map ..3
3.3 Calling the firmware functions 4
3.4 Interrupt vectors ...4
3.5 Protection and security registers 6
3.6 TPMS_FLASH functions7
4 Library-based applications for FXTH87/87E

and NTM88 ...7
4.1 Compatible part numbers 7
4.2 CodeWarrior target .. 7
4.3 Memory map ..9
4.4 Calling the firmware functions 10
4.5 Interrupt vectors ...10
4.6 Protection and security registers 13
4.7 TPMS_FLASH functions14
4.7.1 FXTH TPMS_FLASH functions 14
4.7.2 NTM88 TPMS_FLASH functions 14
5 Migrating from firmware to library model:

summary of differences 14
6 Glossary ... 16
7 Revision history .. 16
8 Legal information ..17

	1 Introduction
	2 Memory map of the FXTH87/87E and NTM88 devices shipped by NXP
	3 Firmware-based applications for FXTH87/87E
	3.1 CodeWarrior target
	3.2 Memory map
	3.3 Calling the firmware functions
	3.4 Interrupt vectors
	3.5 Protection and security registers
	3.6 TPMS_FLASH functions

	4 Library-based applications for FXTH87/87E and NTM88
	4.1 Compatible part numbers
	4.2 CodeWarrior target
	4.3 Memory map
	4.4 Calling the firmware functions
	4.5 Interrupt vectors
	4.6 Protection and security registers
	4.7 TPMS_FLASH functions
	4.7.1 FXTH TPMS_FLASH functions
	4.7.2 NTM88 TPMS_FLASH functions

	5 Migrating from firmware to library model: summary of differences
	6 Glossary
	7 Revision history
	8 Legal information
	Tables
	Figures
	Contents

