1 Introduction

This document describes how to migrate from Kinetis MKW36A512xxx4 to MKW38A512xxx4 MCUs with emphasis on the connectivity software. In this document, the MKW36A512xxx4 and MKW38A512xxx4 devices are referred to as MKW36 and MKW38, respectively. The document is intended for software engineers, software testers, software integrators, and customers designing their own hardware.

2 Hardware considerations

The MKW36 wireless MCUs in 48-pin HVQFN packages are pin-to-pin compatible with MKW38, and almost all peripherals are the same on both devices. The main difference between the MKW36 and MKW38 is related to the radio.

Table 1 shows some of the similarities and differences between the two wireless MCUs.

<table>
<thead>
<tr>
<th>KW36A</th>
<th>KW38A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>48-MHz Cortex-M0+</td>
</tr>
<tr>
<td>Memory (Flash/RAM)</td>
<td>512 KB with ECC/ 64 Kb</td>
</tr>
<tr>
<td>Supply voltage (DCDC)</td>
<td>2.1 to 3.6 V</td>
</tr>
<tr>
<td>Radios</td>
<td>BT 5 8x Connections (1 Mbit/s) GFSK (250 k/500 k/1 Mbit/s)</td>
</tr>
<tr>
<td>Radio Tx Power</td>
<td>+3.5 dBm at antenna connector (+5 dBm capable)</td>
</tr>
<tr>
<td>Radio Sensitivity (Bluetooth LE Uncoded)</td>
<td>-95 dBm(1 Mbit/s) w/balun</td>
</tr>
<tr>
<td>Radio Sensitivity (Bluetooth LE Coded or Long-Range)</td>
<td>NA</td>
</tr>
<tr>
<td>Radio Sensitivity (GFSK, 250 Kbit/s-BT=0.5, H=0.5)</td>
<td>-99 dBm</td>
</tr>
<tr>
<td>Radio Power (Rx/Tx)</td>
<td>6.3 mA/5.7 mA(0 dBm)</td>
</tr>
<tr>
<td>Others</td>
<td>Radio flexibility (access to internal register) important to implement localization function, software support</td>
</tr>
</tbody>
</table>

Table continues on the next page...
2.1 Peripherals instantiation

The KW36 devices in 48-pin HVQFN packages are pin-to-pin compatible with the KW38 devices, but the LPUART0 used for bootloader is not. KW36 uses PTC2(LPUART0_RX) and PTC18(LPUART0_TX), while KW38 uses PTC6(LPUART0_RX and PTC7(LPUART0_TX). For more details, see Chapter 11. “Kinetis Flashloader” in the MKW36/35/34 Reference Manual (document MKW36A512RM) and MKW39/38/37 Reference Manual (document MKW39A512RM).

The KW36 devices are also available in 40-pin “wettable” HVQFN packages. The bold alternatives are available only for the MKW36 devices and the alternatives in *italics* are only available for the MKW38 devices.

Table 2. MKW36/38 instance comparative

<table>
<thead>
<tr>
<th>KW36</th>
<th>KW36</th>
<th>KW38</th>
<th>Pin Name</th>
<th>Default</th>
<th>ALT0</th>
<th>ALT1</th>
<th>ALT2</th>
<th>ALT3</th>
<th>ALT4</th>
<th>ALT5</th>
<th>ALT6</th>
<th>ALT7</th>
<th>ALT8</th>
<th>ALT9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>-48</td>
<td>-48</td>
<td>PTA16</td>
<td>DISAB</td>
<td>PTA1 6/ LLWU _P4</td>
<td>SPI1_SOUT</td>
<td>LPUART1_ RTS_ b</td>
<td>TPM0 _CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>4</td>
<td>PTA16</td>
<td>DISAB</td>
<td>PTA1 6/ LLWU _P4</td>
<td>SPI1_SOUT</td>
<td>LPUART1_ RTS_ b</td>
<td>TPM0 _CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-48</td>
<td>-48</td>
<td>"HVQFN"</td>
<td>PTA17</td>
<td>DISAB</td>
<td>PTA1 7/ LLWU _P5</td>
<td>SPI1_SIN</td>
<td>LPUART1_ RX</td>
<td>CAN0 _TX</td>
<td>TPM_ CLKIN 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>5</td>
<td>PTA17</td>
<td>DISAB</td>
<td>PTA1 7/ LLWU _P5</td>
<td>SPI1_SIN</td>
<td>LPUART1_ RX</td>
<td>CAN0 _TX</td>
<td>TPM_ CLKIN 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-48</td>
<td>-48</td>
<td>"HVQFN"</td>
<td>PTA18</td>
<td>DISAB</td>
<td>PTA1 8/ LLWU _P6</td>
<td>SPI1_SCK</td>
<td>LPUART1_ TX</td>
<td>CAN0 _RX</td>
<td>TPM2 _CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>6</td>
<td>PTA18</td>
<td>DISAB</td>
<td>PTA1 8/ LLWU _P6</td>
<td>SPI1_SCK</td>
<td>LPUART1_ TX</td>
<td>CAN0 _RX</td>
<td>TPM2 _CH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-48</td>
<td>-48</td>
<td>"HVQFN"</td>
<td>PTA19</td>
<td>DISAB</td>
<td>ADC0 _SE5</td>
<td>PTA1 9/ LLWU _P7</td>
<td>SPI1_PCS0</td>
<td>LPUART1_ CTS_ b</td>
<td>TPM2 _CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>7</td>
<td>PTA19</td>
<td>DISAB</td>
<td>ADC0 _SE5</td>
<td>PTA1 9/ LLWU _P7</td>
<td>SPI1_PCS0</td>
<td>LPUART1_ CTS_ b</td>
<td>TPM2 _CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-41</td>
<td>-41</td>
<td>"HVQFN"</td>
<td>PTC5/</td>
<td>DISAB</td>
<td>LLWU _P13/ RF_N OT_A ALLOWED/</td>
<td>LPTM R0_ ALT2</td>
<td>LPUART0_ RTS_ b</td>
<td>TPM1 _CH1</td>
<td>BSM_CLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>41</td>
<td>41</td>
<td>PTC5/</td>
<td>DISAB</td>
<td>LLWU _P13/ RF_N OT_A ALLOWED/</td>
<td>LPTM R0_ ALT2</td>
<td>LPUART0_ RTS_ b</td>
<td>TPM1 _CH1</td>
<td>BSM_CLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
<table>
<thead>
<tr>
<th>RF_PRIORITY</th>
<th>I2C1_SDA</th>
<th>TPM2_CH0</th>
<th>BSM_FRAME</th>
<th>SPI0_SDA</th>
<th>TPM2_CH1</th>
<th>BSM_DATA</th>
<th>LPUA_RT0_TX</th>
<th>LPUA_RT0_TX</th>
<th>TPM0_CH2</th>
<th>CMT_IRO</th>
<th>CAN0_RX</th>
<th>CAN0_TX</th>
<th>BSM_CLK</th>
<th>LTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>42</td>
<td>PTC6</td>
<td>DISABLED</td>
<td>PTC1_2_15</td>
<td>SPI0_SDA</td>
<td>TPM2_CH1</td>
<td>BSM_DATA</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>PTC7</td>
<td>DISABLED</td>
<td>PTC1_2_15</td>
<td>SPI0_SDA</td>
<td>TPM2_CH1</td>
<td>BSM_DATA</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>PTC1_9</td>
<td>PTC1_9</td>
<td>PTC1_2_15</td>
<td>SPI0_SDA</td>
<td>TPM2_CH1</td>
<td>BSM_DATA</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>PTA0</td>
<td>SWD_DIO</td>
<td>PTA0_PCS1</td>
<td>SPI0_SDA</td>
<td>TPM1_CH0</td>
<td>SWD_DIO</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>PTA1</td>
<td>SWD_CLK</td>
<td>PTA1_PCS0</td>
<td>SPI0_SDA</td>
<td>TPM1_CH1</td>
<td>SWD_CLK</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>PTB0</td>
<td>DIABLED</td>
<td>PTB0_SCL</td>
<td>CMP0_OUT</td>
<td>TPM0_CH1</td>
<td>CLKO_TX</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>PTB1</td>
<td>DISABLED</td>
<td>ADC0_SE1</td>
<td>RTPM0_CH1</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>LPUA_RT0_TX</td>
<td>TPM0_CH2</td>
<td>CMT_IRO</td>
<td>CAN0_RX</td>
<td>CAN0_TX</td>
<td>BSM_CLK</td>
<td>LTU</td>
</tr>
</tbody>
</table>
Table 2. MKW36/38 instance comparative (continued)

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>18</th>
<th>18</th>
<th>PTB2</th>
<th>DISAB</th>
<th>LED</th>
<th>ADC0 _SE3/CMP0 _IN3</th>
<th>PTB2/RF_NOT_ALLO WED/ LLWU _P9</th>
<th>DTM_ TX</th>
<th>TPM0 _CH0</th>
<th>TPM1 _CH0</th>
<th>TPM2 _CH0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>PTB3</td>
<td>DISAB</td>
<td>LED</td>
<td>ADC0 _SE2/CMP0 _IN4</td>
<td>PTB3/ERCL K32K/ RF_ACTIVE</td>
<td>TPM0 _CH1</td>
<td>CLKO UT</td>
<td>TPM1 _CH1</td>
<td>RTC_ CLKO UT</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>PTB1 6</td>
<td>EXTA L32K</td>
<td>EXTA L32K</td>
<td>PTB1 6</td>
<td>LPUA RT1_ RX</td>
<td>I2C1_ SCL</td>
<td>TPM2 _CH0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>PTB1 7</td>
<td>XTAL 32K</td>
<td>XTAL 32K</td>
<td>PTB1 7</td>
<td>LPUA RT1_ TX</td>
<td>I2C1_ SDA</td>
<td>TPM2 _CH1</td>
<td>BSM_ CLK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>23</td>
<td>23</td>
<td>PTB1 8</td>
<td>NMI_b / ADC0 _SE4/CMP0 _IN2</td>
<td>PTB1 8</td>
<td>LPUA RT1_ CTS_b</td>
<td>I2C1_ SCL</td>
<td>TPM_ CLNK0</td>
<td>TPM0 _CH0</td>
<td>NMI_b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>PTC1</td>
<td>DISAB</td>
<td>LED</td>
<td>PTC1/ RF_E ARLY WARN ING</td>
<td>ANT_B</td>
<td>I2C0_ SDA</td>
<td>LPUA RT0_ RTS_b</td>
<td>TPM0 _CH2</td>
<td>SPI1_ SCK</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>38</td>
<td>38</td>
<td>PTC2</td>
<td>DISAB</td>
<td>LED</td>
<td>PTC2/ LLWU _P10</td>
<td>TX_ SWIT CH</td>
<td>I2C1_ SCL</td>
<td>LPUA RT0_ RX</td>
<td>CMT_ I RO</td>
<td>DTM_ RX</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>39</td>
<td>39</td>
<td>PTC3</td>
<td>DISAB</td>
<td>LED</td>
<td>PTC3/ RX_</td>
<td>I2C1_ SDA</td>
<td>LPUA RT0_</td>
<td>TPM0 _CH1</td>
<td>DTM_ TX</td>
<td>SPI1_ SIN</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 2. MKW36/38 instance comparative (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>LLWU_P11</th>
<th>SWITCH</th>
<th>TX</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>40</td>
<td>40</td>
<td>PTC4</td>
<td>DISAB LED</td>
<td>PTC4/ LLWU_P12/ BLE_RF_ACTIVE</td>
<td>ANT_A</td>
<td>EXTR G_IN</td>
<td>LPUA RT0_ CTS_b</td>
<td>TPM1_CH0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>38</td>
<td>45</td>
<td>45</td>
<td>PTC16</td>
<td>DISAB LED</td>
<td>PTC1 6/ LLWU_R0/ RF_STATUS</td>
<td>SPI0_SCK</td>
<td>I2C0_SDA</td>
<td>LPUA RT0_ RTS_b</td>
<td>TPM0_CH3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>39</td>
<td>46</td>
<td>46</td>
<td>PTC17</td>
<td>DISAB LED</td>
<td>PTC1 7/ LLWU_P1/ RF_E XT_OSC_EN</td>
<td>SPI0_SOUT</td>
<td>I2C1_SCL</td>
<td>LPUA RT0_ RX</td>
<td>BSM_FRAME</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>40</td>
<td>47</td>
<td>47</td>
<td>PTC18</td>
<td>DISAB LED</td>
<td>PTC1 8/ LLWU_P2</td>
<td>SPI0_SIN</td>
<td>I2C1_SDA</td>
<td>LPUA RT0_ TX</td>
<td>BSM_DATA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>41</td>
<td>49-64</td>
<td>49</td>
<td>Ground</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Table 2 is not a full description of the MKW36/38 pinout. For more details, see the MKW36A/35A/34A DataSheet and MKW39/38/37 Data Sheet. There is a change in the number of available digital pins between the 40-pin and 48-pin packages due to a different number of pins. For example, in the 48-pin package, there is a total of 25 digital pins. In the 40-pin package, there are 18 digital pins.

2.2 System memory map

Both devices contain various memories and memory-mapped peripherals which are located in the 4-GB memory space. Table 3 shows some peripheral locations within the memory map for the KW36 and KW38 devices.
Table 3. KW36/38 differences between system memory map

<table>
<thead>
<tr>
<th>System 32-bit Address Range</th>
<th>Destination Slave</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KW36</td>
<td>KW38</td>
</tr>
<tr>
<td>0x0000_0000–0x07FF_FFFF</td>
<td>Program flash</td>
<td>Program flash</td>
</tr>
<tr>
<td>0x1400_0000 – 0x1400_1FFF</td>
<td>Programming Acceleration RAM</td>
<td>Programming Acceleration RAM</td>
</tr>
<tr>
<td>0x1FFF_C000 – 0x1FFF_FFFF</td>
<td>SRAM_L: Lower SRAM</td>
<td>SRAM_L: Lower SRAM</td>
</tr>
<tr>
<td>0x2000_0000 – 0x2000_BFFF</td>
<td>SRAM_U: Upper SRAM</td>
<td>SRAM_U: Upper SRAM</td>
</tr>
<tr>
<td>0x2001_8000–0x3FFF_FFFF</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x4000_0000–0x4007_FFFF</td>
<td>AIPS Peripherals</td>
<td>AIPS Peripherals</td>
</tr>
<tr>
<td>0x4008_0000–0x4008_FFFF</td>
<td>Reserved</td>
<td>Radio (including BTLL, GFSK except RSIM)</td>
</tr>
<tr>
<td>0x4009_0000–0x400E_FFFF</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x400F_F000–0x400F_FFFF</td>
<td>General purpose input/ output (GPIO)</td>
<td>General purpose input/ output (GPIO)</td>
</tr>
<tr>
<td>0x800_0000–0xFFFF_FFFF</td>
<td>IOPORT: GPIO (single cycle)</td>
<td>IOPORT: GPIO (single cycle)</td>
</tr>
</tbody>
</table>

NOTE
Table 3 does not contain the entire memory map. For more details, see the MKW36A/35A/34A Data Sheet and MKW39/38/37 Data Sheet.

2.3 NVIC configuration

NVIC configuration shows the differences between the KW36 and KW38 devices regarding the interrupt vector assignments. The vector number is the value stored in the stack when an interrupt is serviced and the IRQ number is non-core interrupt source count (which is the vector number minus 16).

Table 4. KW36/8 interrupt vector assignments

<table>
<thead>
<tr>
<th>Address</th>
<th>Vector</th>
<th>IRQ</th>
<th>Source module</th>
<th>Source description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KW36</td>
<td>KW38</td>
<td>KW36</td>
<td>KW38</td>
</tr>
<tr>
<td>0x0000_0050</td>
<td>20</td>
<td>4</td>
<td>-</td>
<td>Data stream</td>
</tr>
</tbody>
</table>
2.4 Migration from KW35 series non-wettable flank package to KW38 series HVQFN48 wettable flank

If you have an older design based on KW35 series 48-pin non-wettable flank package, refer to this section.

KW35 series 48-pin non-wettable flank package pinout is shown in the figure below.

Figure 1. 48-pin non-wettable flank package pinout

KW38 series 48-pin HVQFN48 wettable flank pinout is shown in the figure below.
Figure 2. 48-pin HVQFN48 wettable flank pinout

KW35 non-wettable DCDC pins Layout is shown in the figure below.

Figure 3. KW35 non-wettable DCDC pins layout
KW38 wettable DCDC pins Layout is shown in the figure below.

3 Software development kit download and install

This chapter shows how to download the Software Development Kit (SDK) for the MKW36A512xxx4 and MKW38A512xxx4 devices. The steps to download the SDK package for the KW36 devices are as follows:

1. Go to the MCUXpresso web page (mcuxpresso.nxp.com).
2. Log in with your registered account.
3. Search for the FRDM-KW36 device. Click "FRDM-KW36" in the "Boards" tab and then click "Build MCUXpresso SDK".

Figure 4. KW38 wettable DCDC pins layout

Figure 5. Building MKW36 SDK package
4. The next page is displayed. Select “All toolchains” in the “Toolchain / IDE” box and provide a name to identify the package.

![Figure 6. Selecting version of SDK](image)

5. Click the “Download SDK” button. This starts the building process of the desired SDK. It takes a few minutes until the system gets the package into your profile at MCUXpresso web page.

6. When the SDK is ready to be downloaded, the “Software Terms and Conditions” are displayed. Accept them and the download process starts automatically.

7. If the download does not start automatically, click “Download SDK Archive”.

![Figure 7. MKW36 SDK displayed in Dashboard](image)

8. If the above picture is not displayed, click the “Download SDK archive and documentation” button in the “MCUXpresso SDK Dashboard”.

Application Note
Now you have downloaded the SDK package for MKW36A devices. To download the SDK for MKW38A devices, repeat all the above steps substituting “FRDM-KW36” with “FRDM-KW38”.

Now both SDKs are downloaded.

The following steps are applicable only if the KW36 Bluetooth LE stack version number and Framework version number are at least equal to 1.3.5. and 5.4.5, respectively.

4 Software migration in IAR Embedded Workbench IDE

This chapter shows how to migrate MKW36 example code to the MKW38 devices in the IAR Embedded Workbench IDE. The Heart Rate Sensor project is used as a base in this document, because it is an easy-to-understand example and involves the Bluetooth LE connectivity software stack (included in the SDK).

4.1 Changes required in project options and settings

In this section, the “bare-metal” version of the project is used. However, the same steps apply for FreeRTOS projects. Some paths related to the “bare-metal” projects may differ when using FreeRTOS versions.

1. Copy the KW36 heart rate sensor project located at `<KW36 SDK_root>/boards/frdmkw36/wireless_examples/bluetooth/hrs` into the wireless examples folder of the MKW38 SDK `<KW38SDK_root>/boards/frdmkw38/wireless_examples/bluetooth`.

 Rename the KW36 heart rate project when copying it into the KW38 SDK. There is also a project named `hrs`. In this document, it is renamed to `hrs_migr`. It is used just as an example on how to migrate a KW36 project to KW38.
2. After the KW36 project is copied into KW38 SDK examples, open the hrs_bm.ewp file in a text editor. It is located in the \\
<KW38SDK_root>/boards/frdmkw38/wireless_examples/bluetooth/hrs_migr/bm/iar/ folder.

 a. Replace all references to framework_5.4.x with framework.
 b. Replace all references to bluetooth_1.3.x with bluetooth.
 c. Save the changes.

 NOTE

The Framework and Bluetooth versions may differ depending on the KW36 SDK version. To find which versions
are used, check the SW-Content-Register.txt file in the KW36 SDK folder or see the versions directly in the
hrs_bm.ewp file.

3. Open the hrs_bm.eww project. It is located in the \\
<KW38SDK_root>/boards/frdmkw38/wireless_examples/bluetooth/
hrs_migr/bm/iar/ folder.

 a. Press ALT + F7 to open the project options.
 b. In the C/C++ Compiler-> Preprocessor window, change the references to KW36, as specified in Table 5.

Table 5. Changes

<table>
<thead>
<tr>
<th>Original version</th>
<th>Changes to made</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PROJ_DIR$/../../../../../../../devices/MKW36Z4/drivers</td>
<td>$PROJ_DIR$/../../../../../../../devices/MKW38A4/drivers</td>
</tr>
<tr>
<td>$PROJ_DIR$/../../../../../../../middleware/wireless/framework/LowPower/Interface/MKW36Z</td>
<td>$PROJ_DIR$/../../../../../../../middleware/wireless/framework/LowPower/Interface/MKW38Z4</td>
</tr>
<tr>
<td>$PROJ_DIR$/../../../../../../../middleware/wireless/framework/DCDC/Interface/MKW36Z</td>
<td>$PROJ_DIR$/../../../../../../../middleware/wireless/framework/DCDC/Interface/MKW38Z4</td>
</tr>
<tr>
<td>$PROJ_DIR$/../../../../../../../middleware/wireless/framework/XCVR/MKW36Z4</td>
<td>$PROJ_DIR$/../../../../../../../middleware/wireless/framework/XCVR/MKW38Z4/drv</td>
</tr>
</tbody>
</table>

Table continues on the next page...
c. In the C/C++ Compiler-> Preprocessor window, change the path to the pre-include file. The new pre-
include file should be $PROJ_DIR$/../../../../../../../boards/frdmkw38/wireless_examples/bluetooth/hrs_migr/bm/ app_preinclude.h.

![Figure 10. Change path to pre-include file](image)

d. In the Defined symbols text box, modify "CPU_MKW36Z512VHT4" to "CPU_MKW38A512VFT4" and "FRDM_KW36" to "FRDM_KW38". Delete "FREEDOM". Add "CR_INTEGER_PRINTF", "ENABLE_RAM_VECTOR_TABLE=1" and "CFG_BLE_PRJ=1".
e. Save the workspace (“File -> Save workspace”).

4. Copy the MKW38A512xxx4_PD_connectivity.icf file, which is located at <KW38SDK_root>/middleware/wireless/framework/Common/devices/MKW38A4/iar, into the project in the iar folder located at <KW38SDK_root>/boards/frdmkw38/wireless_examples/bluetooth/hrs_migr/bm/iar/.

5. Delete the MKW36Z512xxx4_PD_connectivity.icf file from the folder mentioned above.

6. Press ALT + F7 to open the project options.

7. In the "Linker->Config" window, change the linker configuration file to $PROJ_DIR$ \MKW38A512xxx4_PD_connectivity.icf.
8. In "Linker->Library", change the additional library from $PROJ_DIR$/../../../../../../../middleware/wireless/bluetooth/controller/lib/lib_ble_kw36z_controller_iar.a to $PROJ_DIR$/../../../../../../../middleware/wireless/ble_controller/lib/lib_ble_kw38a4_controller.a.

9. Click "OK" and save the workspace.

10. Press "ALT + F7" to open the options. In the "General Options -> Target" tab, change "Device". Click the icon at the right-hand side of the "Device" textbox and select "NXP -> KinetisKW -> KW3x -> NXP MKW38A512xxx4".
11. Click "OK" in the "Options" tab and then save the workspace.

NOTE

The above changes are made only for the current configuration. The default configuration is "Debug". To change the "Release" configuration, select "Release" in "Workspace" and repeat steps 3-10.

12. Open the hrs_bm.ewp file in the <KW38SDK_root>/boards/frdmkw38/wireless_examples/bluetooth/hrs_migr/bm iar/ project folder in a text editor.

 a. Replace all references to "devices\MKW36Z4" with "devices\MKW38A4".

 b. Replace all references to "MKW36Z4" with "MKW38Z4".

 c. Replace all references to "MKW36Z" with "MKW38Z4".

13. When you go back to the IAR project, a window warns you that the hrs_bm.ewp file was modified and you are asked if you would like to reload the project. Click "Yes to All".

14. Add these groups and files into the heart rate sensor project:

 a. Expand the bluetooth folder, select the controller folder, right-click, select "Add -> Add Group" and add the config group.
b. Select the config folder, right-click, select "Add -> Add Files" and add the ble_controller_task_config.h, ble_il_globals.h, and ble_ilGlobals.h files at <KW38SDK_root>/middleware/wireless/ble_controller/config/.

c. Expand the "interface" group from the controller folder. Select controller_interface.h, right-click, and click "Remove". Select the interface folder and add the following files: controller_interface.h from <KW38SDK_root>/middleware/wireless/ble_controller/interface and controller_init.c from <KW38SDK_root>/middleware/wireless/ble_controller/src/MKW38/.

d. Select the config folder, right-click, select "Add -> Add Files" and add ble_controller_task.c from <KW38SDK_root>/middleware/wireless/ble_controller/src.

e. Select the bluetooth folder and add the "hci_transport" group. Select the hci_transport folder and add the "interface" and "source" groups.

f. Select the interface folder and add the hci_transport.h file from <KW38SDK_root>/middleware/wireless/bluetooth/hci_transport/interface/.

g. Select the source folder and add the hcit_serial_interface.c file from <KW38SDK_root>/middleware/wireless/bluetooth/hci_transport/source/.

h. The bluetooth folder should now have the following structure:

i. Expand the drivers folder and remove the following files: fsl_i2c.h, fsl_i2c.c, and fsl_flash.c. Add the following files: fsl_ftfx_controller.c, fsl_flexcm_controller.h, fsl_ftfx_flash.c, fsl_ftfx_flash.h, "sl_ftfx_flexnvm.c, and fsl_ftfx_flexnvm.h. They are located at: <KW38SDK_root>/devices/MKW38A4/drivers.
j. Expand the **framework** folder:
 - Expand the **SerialManager** folder, expand the **Source** folder, select the `I2C_Adapter.c`, `I2C_Adapter.h`, `UART_Adapter.c`, and `UART_Adapter.h` files, and click **Remove**.
 - Select the **SPI_Adapter** folder, remove the `SPI_Adapter.c` and `SPI_Adapter.h` files, and add `SPI_Serial_Adapter.c` and `SPI_Serial_Adapter.h`, located at `<KW38SDK_root>/middleware/wireless/framework/SerialManager/Source/SPI_Adapter/`.
 - Select the **Source** folder and add the `UART_Serial_Adapter.c` and `UART_Serial_Adapter.h` files located at `<KW38SDK_root>/middleware/wireless/framework/SerialManager/Source/`.
 - Expand the **XCVR** folder, then the **MKW38Z4** folder, select all the files inside, and remove them. Then:
 - Select the **MKW38Z4** folder and add the "nb2p4ghz" group. Select the nb2p4ghz folder and add the "configs" group.
 - Select the configs folder and add all files from the `<KW38SDK_root>/middleware/wireless/framework/XCVR/MKW38Z4/drv/nb2p4ghz/configs/gen35` folder.
 - Select the nb2p4ghz folder and add all files from the `<KW38SDK_root>/middleware/wireless/framework/XCVR/MKW38Z4/drv/nb2p4ghz` folder.
 - Select the **MKW38Z4** folder and add all files from the `<KW38SDK_root>/middleware/wireless/framework/XCVR/MKW38Z4/drv/` folder.

k. Expand the **source->common** folder and remove the `ble_controller_task.c` and `ble_controller_task_config.h` files.

l. Expand the **startup** folder, select all the files inside it, and remove them. Add the `startup_MKW38A4.s` file from the `<KW38SDK_root>/devices/MKW38A4/iar/` folder.

m. Select the "hrs_bm" project and add the "device" group. Select the device folder and add the `sl_device_registers.h`, `MKW38A4_features.h`, `MKW38A4.h`, `system_MKW38A4.c`, and `system_MKW38A4.h` files located at `<KW38SDK_root>/devices/MKW38A4`.

n. Select the "hrs_bm" project and add the "components" group. Select the "component" group and add the "lists", "serial_manager", and "uart" groups. Select each folder and add all the files located in the corresponding folders from `<KW38SDK_root>/components/`.

o. Select the **utilities** folder, remove all the files inside it, and add the `fsl_str.c` and `fsl_str.h` files from `<KW38SDK_root>/devices/MKW38A4/utilities/str/`, the `fsl_assert.c` file from `<KW38SDK_root>/devices/MKW38A4/utilities/`, and the `fsl_debug_console.c`, `fsl_debug_console.h`, and `fsl_debug_console_conf.h` files from `<KW38SDK_root>/devices/MKW38A4/utilities/debug_console/`.

15. Press "ALT + F7" to open the project options. In the "C/C++ Compiler -> Preprocessor" window and "Additional include directories" textbox, add the following lines:
 - `$PROJ_DIR$/../../../../../../../middleware/wireless/bluetooth/hci_transport/interface`
 - `$PROJ_DIR$/../../../../../../../components/uart`
 - `$PROJ_DIR$/../../../../../../../components/lists`
 - `$PROJ_DIR$/../../../../../../../components/serial_manager`
 - `$PROJ_DIR$/../../../../../../../devices/MKW38A4/utilities/str`
 - `$PROJ_DIR$/../../../../../../../devices/MKW38A4/utilities/debug_console`

16. Save the workspace.

4.2 Changes required at application level

- Open the `board.h` file located in the `board` folder in the workspace:
— Include the `EmbeddedTypes.h` file:

```c
#include "EmbeddedTypes.h"
```

— Change the board name from "FRDM-KW36" to "FRDM-KW38":

```c
#define BOARD_NAME "FRDM-KW38"
```

— Add the following debug macros in the "Definitions" section:

```c
#ifndef BOARD_DBGINITSET
#define BOARD_DBGINITSET(__x, __y)
#endif

#ifndef BOARD_DBGINITDBGIO
#define BOARD_DBGINITDBGIO()
#endif

#ifndef BOARD_DBGAPPIOSET
#define BOARD_DBGAPPIOSET(__x, __y)
#endif

#ifndef BOARD_DBGTOGGLEDBGIO
#define BOARD_DBGTOGGLEDBGIO()
#endif

#ifndef BOARD_DBGCONFIGINIT
#define BOARD_DBGCONFIGINIT(__x)
#endif

#ifndef DBG_LOG_DUMP
#define DBG_LOG_DUMP(__x)
#endif
```

— Declare the following functions:

```c
void BOARD_RTC_Init(void);
void BOARD_RTC_Deinit(void);

extern void BOARD_SetCoreClock48Mhz(void);
extern void BOARD_ResetCoreClock(void);

extern uint8_t BOARD_GetXtal32MhzTrim(bool_t regRead);
extern void BOARD_SetXtal32MHzTrim(uint8_t trimValue, bool_t saveToHwParams);
```

• Open the `board.c` file located in the `board` folder in the workspace:

— Add the next define:

```c
#define BOARD_32MHZ_XTAL_TRIM_DEFAULT 0x4BU
```

— Add the following variable definition:

```c
static uint8_t Xtal32MhzTrim = BOARD_32MHZ_XTAL_TRIM_DEFAULT;
```

— Remove `static const uint8_t mXtalTrimDefault = 0x36;`
— In the `hardware_init()` function, change:

```c
if(0xFFFFFFFF == gHardwareParameters.xtalTrim)
{
    gHardwareParameters.xtalTrim = mXtalTrimDefault;
}
to
if(0xFFFFFFFF != gHardwareParameters.xtalTrim)
{
    Xtal32MhzTrim = (uint8_t)gHardwareParameters.xtalTrim;
}
```

— Add the following function definitions:

```c
void BOARD_RTC_Init(void)
{
    SIM->SCGC6 |= SIM_SCGC6_RTC_MASK;

    if ((RTC->CR & RTC_CR_OSCE_MASK) == 0u)
    {
        uint16_t rtcCRMask;
        /* RTC_CR: SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
        rtcCRMask = (uint16_t)~(RTC_CR_SC2P_MASK | RTC_CR_SC4P_MASK | RTC_CR_SC8P_MASK | RTC_CR_SC16P_MASK);
        RTC->CR &= (uint32_t)rtcCRMask;
        /* RTC_CR: OSCE=1 */
        RTC->CR |= RTC_CR_OSCE_MASK;
    }
}

void BOARD_RTC_Deinit(void)
{
    if((SIM->SCGC6 & (uint32_t)SIM_SCGC6_RTC_MASK) != 0U)
    {
        /* switch off 32kHz oscillator */
        RTC->CR &= ~RTC_CR_OSCE_MASK;
    }
}

void BOARD_SetCoreClock48Mhz(void)
{
    /* Set core clock to 48Mhz */
    MCG->C4 |= MCG_C4_DRST_DRS(1) | MCG_C4_DMX32(1);
}

void BOARD_ResetCoreClock(void)
{
    /* Set core clock to default clock (20-25MHz) */
    MCG->C4 &= (uint8_t)(~(MCG_C4_DRST_DRS(1) | MCG_C4_DMX32(1)));
}

uint8_t BOARD_GetXtal32MhzTrim(bool_t regRead)
{
    uint8_t retVal;

    if (TRUE == regRead)
    {
        /* get the XTAL trim value from XCVR reg */
        retVal = (uint8_t)((RSIM->ANA_TRIM & RSIM_ANA_TRIM_BB_XTAL_TRIM_MASK)>>RSIM_ANA_TRIM_BB_XTAL_TRIM_SHIFT);
    }
```
else
{
 /* get the XTAL trim value from HW params */
 retVal = Xtal32MhzTrim;
}

return retVal;

void BOARD_SetXtal32MHzTrim(uint8_t trimValue, bool_t saveToHwParams)
{
 uint32_t temp;
 assert((trimValue & 0x80U) == 0U); /* High bit must not be set */
 /* Apply a trim value to the crystal oscillator */
 temp = RSIM->ANA_TRIM;
 temp &= ~(RSIM_ANA_TRIM_BB_XTAL_TRIM_MASK);
 RSIM->ANA_TRIM = temp | RSIM_ANA_TRIM_BB_XTAL_TRIM(trimValue);

 if ((TRUE == saveToHwParams))
 {
 hardwareParameters_t hwParams;

 /* write new XTAL trim value into hardware params structure */
 (void)NV_ReadHWParameters(&hwParams);
 hwParams.xtalTrim = (uint32_t)trimValue;
 (void)NV_WriteHWParameters(&hwParams);

 /* update the local variable that holds the XTAL trim value */
 Xtal32MhzTrim = trimValue;
 }
}

• Open the app_preinclude.h file located in the source folder in the workspace and do the following changes:
 — Delete the definitions of gXcvrDacTrimValueSorageAddr_d and gPreserveXcvrDacTrimValue_d

#define gXcvrDacTrimValueSorageAddr_d ((uint32_t)FREESCALE_PROD_DATA_BASE_ADDR + 1040)
#define gPreserveXcvrDacTrimValue_d 1

• Add the Link Layer pool configuration to the memory pools. Change:

#define PoolsDetails_c
 AppPoolsDetails_c
 to
#define PoolsDetails_c
 AppPoolsDetails_c
 LlPoolsDetails_c

• Configure the LlMem pool by adding the following lines:

#ifndef gLlMemPoolId_c
/* If define is not set by application, use a common pool for app/host and LL. */
#define gLlMemPoolId_c 0
#else /* gLlMemPoolId_c */
/* Application set the flag, make sure it is valid. */
#if (gLlMemPoolId_c > 1)
#error Please select pool 0 or pool 1
#endif /* (gLlMemPoolId_c > 1) */
#endif /* ifndef gLlMemPoolId_c */
#endif /* gLlMemPoolId_c */

#if defined(gLlUsePeriodicAdvertising_d)
/* check compile switch incompatibilities */
#else defined(gAppExtAdvEnable_d)
#if ((gAppExtAdvEnable_d == 0) && (gLlUsePeriodicAdvertising_d == 1))
#error Compile switch incompatibility! gLlUsePeriodicAdvertising_d=1 shall not be used with gAppExtAdvEnable_d=0
#endif /* ((gAppExtAdvEnable_d == 0) && (gLlUsePeriodicAdvertising_d == 1)) */
#else
/* Periodic advertising support needs extended advertising support. */
#if (gLlUsePeriodicAdvertising_d == 1)
#define gAppExtAdvEnable_d 1
#endif /* (gLlUsePeriodicAdvertising_d == 1) */
#endif /*defined(gAppExtAdvEnable_d)*/
#endif /* (defined(gLlUsePeriodicAdvertising_d)) */

#if (defined(gLlScanPeriodicAdvertiserListSize_c) && !defined(gLlScanAdvertiserListSize_c))
#if (gLlScanPeriodicAdvertiserListSize_c != 0)
#define gLlScanAdvertiserListSize_c (26-gLlScanPeriodicAdvertiserListSize_c)
#endif /* (gLlScanPeriodicAdvertiserListSize_c != 0) */
#endif /* (defined(gLlScanPeriodicAdvertiserListSize_c) && !defined(gLlScanAdvertiserListSize_c)) */

#if (!defined(gAppExtAdvEnable_d))
#define gAppExtAdvEnable_d 0
#endif /* (!defined(gAppExtAdvEnable_d)) */

/* Defines LlMem pools by block size and number of blocks. Must be aligned to 4 bytes.*/
#if (gAppExtAdvEnable_d == 0)
/*Large size events (<= 72 bytes).*/
#define gLlBufferNbrLargeSizeEvent_c (4) //BT_FW_LE_EVENT_TYPE1_BUFFERS
/*Medium size events (<= 32 bytes).*/
#define gLlBufferNbrMediumSizeEvent_c (4) //BT_FW_LE_EVENT_TYPE2_BUFFERS
/*Small size events (<= 12 bytes).*/
#define gLlBufferNbrSmallSizeEvent_c (6) //BT_FW_LE_EVENT_TYPE3_BUFFERS
/*Generic events (<= 72 bytes).*/
#define gLlBufferGenericSizeEvent_c (4) //BT_FW_LE_EVENT_TYPE4_BUFFERS
#define gLlCmdBuffer80Bytes_c (1)

/*If extended advertising is not set, use legacy settings for advertising*/
#else defined(gLlMaxUsedAdvSet_c)
#define gLlMaxUsedAdvSet_c 1
#else defined(gLlMaxExtAdvDataLength_c)
#define gLlMaxExtAdvDataLength_c 31
#endif /* (gLlMemPoolId_c == 1)*/
#if ifndef gLlPoolsDetails_c
#define LlPoolsDetails_c _block_size_ 32 _number_of_blocks_ (gLlBufferNbrSmallSizeEvent_c+gLlBufferNbrMediumSizeEvent_c+((3+4)*gAppMaxConnections_c)) _pool_id_(1) _eol_ _block_size_ 64 _number_of_blocks_ ((2*gAppMaxConnections_c)) _pool_id_(1) _eol_ _block_size_ 80 _number_of_blocks_
#if (gLlMemPoolId_c == 1)
#ifndef LlPoolsDetails_c
#define LlPoolsDetails_c

_block_size_ 32 _number_of_blocks_ ((3+4)*gAppMaxConnections_c) _pool_id_(1) _eol_
_block_size_ 64 _number_of_blocks_ (gLlBufferNbrSmallSizeEvent_c+(2*gAppMaxConnections_c)) _pool_id_(1) _eol_
_block_size_ 80 _number_of_blocks_ (gLlBufferGenericSizeEvent_c) _pool_id_(1) _eol_
_block_size_ 128 _number_of_blocks_ (gLlBufferNbrMediumSizeEvent_c) _pool_id_(1) _eol_
_block_size_ 268 _number_of_blocks_ (gLlBufferNbrTxAclPkts+gLlBufferNbrRxAclPkts) _pool_id_(1) _eol_
_block_size_ 288 _number_of_blocks_ (gLlBufferNbrLargeSizeEvent_c+gLlCmdBuffer288Bytes_c) _pool_id_(1) _eol_
#endif /* LlPoolsDetails_c */
#else /* (gLlMemPoolId_c == 1) */
#error Single pool is used, please do not define LlPoolsDetails_c in app_preinclude.h
#endif /* LlPoolsDetails_c */
#endif /* (gLlMemPoolId_c == 1) */
#endif /* (gAppExtAdvEnable_d == 0) */
• If using the KW38 A0 samples, define `gXcvrAddTxOffset_d` to select a proper timing for BLE LL. For the KW38 B0 sample, it is not needed. Because the radio drivers support both Gen 3.5 and Gen 4.0, add the following definition to select the Gen 3.5 radio:

```c
#define gXcvrAddTxOffset_d
#define RADIO_IS_GEN_3P5 1
#ifndef RF_OSC_26MHZ
#define RF_OSC_26MHZ 0
#endif
```

• Enable deep sleep modes 1 and 3 and disable deep sleep modes 5 and 8:

```c
#define cPWR_EnableDeepSleepMode_1 1 //0
#define cPWR_EnableDeepSleepMode_3 1 //0
#define cPWR_EnableDeepSleepMode_5 0 //1
#define cPWR_EnableDeepSleepMode_8 0 //1
```

• Change the application connection sleep mode and the default deep sleep mode:

```c
#define gAppDeepSleepMode_c 1 // 8
#define cPWR_DeepSleepMode 3 //5
```

5 Build and run Bluetooth LE connectivity stack examples

All the examples referenced in the Bluetooth LE Demo Applications User’s Guide are compatible with the MKW38 devices after the modifications described in this document. The changes required at the application level may be different, depending on the application.

6 Revision history

This table summarizes the changes done to this document since the initial release.

Table 6. Revision history

<table>
<thead>
<tr>
<th>Revision number</th>
<th>Date</th>
<th>Substantive changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>06/2021</td>
<td>Added a new section Migration from KW35 series non-wettable flank package to KW38 series HVQFN48 wettable flank.</td>
</tr>
<tr>
<td>1</td>
<td>07/2020</td>
<td>Modified Peripherals instantiation.</td>
</tr>
<tr>
<td>0</td>
<td>04/2020</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, Altivec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Converge, QorIQ, the SafeAssure logo, StarCore, Symphony, VortiQa, Hybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKPro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 June 2021
Document identifier: AN12560