
1 Introduction
The I2C protocol is a 2-wire serial communication interface implemented by
hardware in numerous devices. However, MC9S08PL16S does not support
I2C peripheral. In this situation, it is necessary to simulate the protocol using
the General Purpose Input Outputs (GPIOs) of the microcontroller, usually to
act as a master device.

This application note introduces how to implement GPIO simulated I2C as a
master based on S08PB/S08PLS.

The software tool in this document is based on CodeWarrior 11.1 IDE (must
install the service pack: CodeWarrior MCU 11.1 Service Pack for S08PB and
S08PLS), and the hardware is S08PB16-EVK board.

2 I2C protocol introduction
I2C bus is a multi-master bus. Serial, 8-bit oriented, bidirectional data transfers
can be made at up to 100 kbit/s in the Standard mode, and up to 400 kbit/s in
the Fast mode. I2C uses a Serial Data Line (SDA) and a Serial Clock Line (SCL)
for data transfers. The SDA and SCL of master devices and slave devices are
connected to the SDA and SCL of I2C bus. For more details about I2C bus
protocol specification, refer to I2C-bus Specification and User Manual
(document UM10204).

All devices connected to I2C must have open drain or open collector outputs.
A logic AND function is exercised on both lines with external pull-up resistors.
The master device initiates a transfer, generates clock signals, addresses the
slave device, and terminates a transfer. Figure 1 illustrates the timing of I2C
bus data transmission.

Contents

1 Introduction.. 1

2 I2C protocol introduction........................ 1

3 Simulating I2C master............................ 2
3.1 I/O pins selection.......... 3
3.2 Baud rate of simulate

I2C................................. 4
3.3 Simulating START

condition.........................5
3.4 Simulating STOP

condition.........................6
3.5 Simulating repeated

START condition............6
3.6 Simulating ACK and

NACK............................. 6
3.7 Simulating master to

write a byte.....................8
3.8 Simulating master to

read a byte..................... 9
4 Implementation details.........................10

4.1 Master writes data to
slave.............................11

4.2 Master reads data
from slave.................... 12

5 Conclusion... 13

6 References.. 13

AN12841
GPIO Simulated I2C for S08
Rev. 0 — May 2020 Application Note

https://freescaleesd.flexnetoperations.com/337170/907/15206907/com.freescale.mcu11_1.HCS08_PB16.win.sp.v1.0.8.zip?ftpRequestID=7510415907&server=freescaleesd.flexnetoperations.com&dtm=DTM20200107073526MzU4MTMxMjEy&authparam=1578411326_104641368b3cece7142f949f46f54830&ext=.zip
https://freescaleesd.flexnetoperations.com/337170/907/15206907/com.freescale.mcu11_1.HCS08_PB16.win.sp.v1.0.8.zip?ftpRequestID=7510415907&server=freescaleesd.flexnetoperations.com&dtm=DTM20200107073526MzU4MTMxMjEy&authparam=1578411326_104641368b3cece7142f949f46f54830&ext=.zip
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

Figure 1. I2C bus data transmission

Table 1 lists part features of the standard instance of I2C transmission.

Table 1. Part features of I2C transmission

Feature Description

START condition Falling edge on SDA while SCL is held high.

Slave address Indicates the address of the slave to whom the master wants to communicate.

R/W bit The R/W bit tells the slave the desired direction of data transfer.

ACK (Acknowledge bit) Held low at every ninth SCL clock cycle if the receiver successfully receives the data from
transfer. Held high otherwise.

Data transfer Proceed on a byte-by-byte basis in the direction specified by the R/W bit sent.

STOP condition Rising edge on SDA while SCL is held high.

3 Simulating I2C master
This chapter gives a detailed description of how to simulate I2C features using GPIO.

It is not intended to implement all the features simulation of an I2C bus. It provides only the basic functionality of how to use two
GPIOs to implement a master device data transmission (writes data to a slave device, reads data from a slave device). The
advantage of this method is it uses GPIOs on any S08 MCU.

PTA4 cannot be used to simulate I2C, as it is the output-only pin of S08PB16 or S08PL16S.

 NOTE

This application provides the following functionalities:

• Single master transmitter and receiver

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 2 / 14

• Communication with 7-bit addressing mode of I2C slave device

• Simulated I2C baud rate no more than 150 kHz

• Checking of acknowledgment signal

• Multiple data bytes within a serial transfer

3.1 I/O pins selection
I2C bus transmission can be simulated by controlling two digital I/O pins. These two I/O pins can simulate SCL line and SDA line
of I2C bus.

• If the selected I/O pins are push-pull pins, users need to enable internal pull up function of the push-pull pins or add
external pull-up resistors.

• If the selected I/O pins are open-drain pins, users must add pull-up resistors at the open-drain pins to make the pins to
achieve stable high voltage output.

For S08PB/S08PLS, the two open-drain pins PTB6/PTB7 are selected to make an example.

Select PTB6 pin to simulate SDA line and PTB7 pin to simulate SCL line. Users can change different pins according to their own
conditions.

The macro definitions for the PTB6 and PTB7 pins are shown as follows:

 #define SDA PTB6
 #define SCL PTB7
 /* PTB6/PTB7 output enable and input enable */
 #define i2c_SDA_Output() PORT_PTBOE_PTBOE6 =1
 #define i2c_SCL_Output() PORT_PTBOE_PTBOE7 =1
 #define i2c_SDA_Input() PORT_PTBIE_PTBIE6 =1
 #define i2c_SCL_Input() PORT_PTBIE_PTBIE7 =1

 /* PTB6/PTB7 output disable */
 #define i2c_SDA_Output_Off() PORT_PTBOE_PTBOE6 =0
 #define i2c_SDA_Input_Off() PORT_PTBIE_PTBIE6 =0

 /* set PTB6/PTB7 data to high or low */
 #define i2c_SDA_High() PORT_PTBD_PTBD6 = 1
 #define i2c_SDA_Low() PORT_PTBD_PTBD6 = 0
 #define i2c_SCL_High() PORT_PTBD_PTBD7 = 1
 #define i2c_SCL_Low() PORT_PTBD_PTBD7 = 0

 /* PTB6/PTB7 internal pull up enable */
 #define i2c_SDA_PullUp() PORT_PTBPE_PTBPE6 = 1;
 #define i2c_SCL_PullUp() PORT_PTBPE_PTBPE7 = 1;

 /* PTB6 data */
 #define i2c_SDA_Status() PORT_PTBD_PTBD6

It is the process to initialize the I/O pins to simulate I2C.

1. Make sure that two external pull-up resistors have been connected open-drain pins PTB6, PTB7 in S08PB16-EVK
board. For pull-push pins, it needs to enable the internal pull-up if external pull-up resistors are not added to the pins.

2. Configure the data direction of these two I/O pins as output.

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 3 / 14

The I/O pins (PTB6, PTB7) initialization reference code is as follows:

/* I/O initialization */
void i2c_Init(void)
{
 /* enable I/O pins internal pull up */
 //i2c_SDA_PullUp();
 //i2c_SDA_PullUp();

 /* enable PTB6(SDA)/PTB7(SCL) output */
 i2c_SCL_Output();
 i2c_SDA_Output();
}

3.2 Baud rate of simulate I2C

3.2.1 Using hardware timer to simulate I2C serial clock
This document gives an example about how to use the hardware timer MTIM0 to simulate I2C serial clock.

The bus clock of MTIM0 is configured to 16 M in the example code. In theory, if user wants to get a baud rate of 80 k, the function
MTIM0_Init(16000000, 160000) must be called to initialize the timer to configure MTIM0 frequency. The time of half SCL clock
cycle is simulated by calling the function SCL_Delay().

The simulate I2C baud rate is theoretically equal to half of the MTIM0 frequency. But actually, the actual baud rate is quite different
from the theory baud rate. Table 2 shows part of the comparative data between theoretical and actual baud rate.

Table 2. Comparison of theoretical and actual I2C baud rate

MTIM0 configure MTIM0_CLK_CLKS = 0, bus clock:16M

MTIM0_CLK_PS = 2, prescaler:4

MTIM0 frequency
(Hz)

40 k 80 k 100 k 120 k 160 k 200 k 240 k 280 k 320 k 360 k 400 k

Theory simulate
baud rate (Hz)

20 k 40 k 50 k 60 k 80 k 100 k 120 k 140 k 160 k 180 k 200 k

Actual simulate baud
rate (Hz)

18 k 33 k 40 k 46 k 56 k 65 k 74 k 81 k 87 k 91 k 97 k

If MTIM0 frequency is increased, the simulate i2c baud rate is also increased. But the maximum GPIO simulate i2c baud rate
can only up to about 150k when MTIM0 frequency up to 16 M.

The example functions of simulate serial clock are as follows:

/* mtim0 intialize, frequency range: 16k - 4M */
void MTIM0_Init(dword busCLKHz, dword mtim0Frq)
{
 byte dummy;

 /* select bus clock as mtim0 clock source */
 MTIM0_CLK_CLKS = 0x0;

 /* prescale is 4 */
 MTIM0_CLK_PS = 0x2;

 dummy = (byte)(busCLKHz/4/mtim0Frq);

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 4 / 14

 /* set modulo value */
 MTIM0_MOD = (dummy-1);

 /* start count */
 MTIM0_SC_TSTP = 0;
}

/* time delay of SCL pulse */
void SCL_Delay(void)
{
 /* counter reset to 0x00, TOF is cleared*/
 MTIM0_SC_TRST = 1;
 while(!(MTIM0_SC & MTIM0_SC_TOF_MASK));
}

The frequency range of MTIM0 is about 16 k to 4 M in the above code. If user wants to get other frequency, please configure
MTIM0_CLK_CLKS and MTIM0_CLK_PS to appropriate values.

3.2.2 Using software timer to simulate I2C serial clock
Using software delay can also simulate I2C serial clock. The time of half SCL clock cycle is simulated by the function
SCL_Delay(). It only takes 0.0625 µs to execute asm(nop)instruction. But it takes 5.7 µs to execute the following SCL_Delay()
function. The baud rate of the simulated I2C is set to approximately 88 kHz when using the following SCL_Delay() function.

The delay time function is as follows:

/* delay time is about 5.7us */
void SCL_Delay(void)
{
 unsigned int i;
 for(i=0;i<2;i++)
 {
 asm(nop);
 }
}

3.3 Simulating START condition
According to Figure 2, a HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition.

Figure 2. START, repeated START and STOP conditions

When using PTB6 (SDA) and PTB7 (SCL) to simulate the timing of START condition, please note that:

• It needs set to PTB7 (SCL) to low first in i2c_Start() function, then set PTB6 (SDA) to high, and PTB7 (SCL) to high
last. Configuration in the above order can prevent to generate unwanted STOP condition. If PTB6 (SDA) is changed from
low to high during PTB7 (SCL) is high, the unwanted STOP condition is generated.

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 5 / 14

START condition reference code is as follows:：

/* START condition */
void i2c_Start(void)
{
 i2c_SCL_Low();
 i2c_SDA_High();
 i2c_SCL_High();
 SCL_Delay();
 /* SDA change from high to low when SCL is high, i2c start */
 i2c_SDA_Low();
}

3.4 Simulating STOP condition
According to Figure 2, a LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

When using PTB6 (SDA) and PTB7 (SCL) to simulate the timing of STOP condition, please note that:

• It needs set PTB7 (SCL) to low first in i2c_Stop()function, then set PTB6 (SDA) to low and PTB7 (SCL) to high.
Configuration in the above order can prevent to generate unwanted START condition. If PTB6 (SDA) is changed from high
change to low during PTB7 (SCL) is high, the unwanted START condition is generated.

STOP condition reference code is as follows:

/* STOP condition */
void i2c_Stop(void)
{
 i2c_SCL_Low();
 i2c_SDA_Low();
 i2c_SCL_High();
 SCL_Delay();
 /* SDA change from low to high when SCL is high, i2c stop */
 i2c_SDA_High();
}

3.5 Simulating repeated START condition
According to Figure 2, the START and repeated START conditions are functionally identical. After starting a communication,
before sending a stop signal, if the host sends a repeated START condition, the host and slave can be changed without releasing
the bus. The timing simulation of the repeated START condition is the same as the START condition.

#define i2c_RepeatedStart() i2c_start();

3.6 Simulating ACK and NACK
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter that the byte
was successfully received and another byte may be sent. The master generates all clock cycles, including the acknowledge ninth
clock cycle.

When SDA remains LOW during this ninth clock cycle, this is defined as the Acknowledge (ACK) signal. When SDA remains
HIGH during this ninth clock cycle, this is defined as the Not Acknowledge (NACK) signal.

3.6.1 Master reads ACK signal from slave
If a master receives low-level pulse (ACK signal) from a slave in the ninth clock cycle after sending a byte, the data transmission
is successful. If a master receives high-level pulse (NACK signal) from a slave in the ninth clock cycle after sending a byte, the
data transmission failed.

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 6 / 14

When using PTB6 (SDA) and PTB7 (SCL) to simulate the process of master reads ACK signal from slave, please note that:

• The master reading the ACK signal is actually reading the input data of PTB6 (SDA) in the ninth clock cycle.

Before reading the status of PTB6 (SDA), the data direction of PTB6 (SDA) needs to be set as input. Please disable the
output of PTB6 (SDA) before enabling the input of PTB6 (SDA) to change the data direction to input.

After reading the status of PTB6 (SDA), the data direction of PTB6 (SDA) needs to be changed to output soon. Please disable
the input of PTB6 (SDA) before enabling the output of PTB6 (SDA) to change the data direction to output.

• In the ninth clock cycle, it recommends read the status of PTB6 (SDA) during PTB7 (SCL) is high. At this time, the ACK
signal is in stable status.

• When the ninth clock is over, PTB7 (SCL) needs to be kept low, and PTB6 (SDA) is pulled high. The bus enters to wait
state.

A master reads ACK signal code is as follows:

/* master reads ACK signal */
uint8_t i2c_ReadACK(void)
{
 uint8_t ack;

 /* the 9th clock start */
 i2c_SCL_Low();

 /* disable PTB6(SDA) output, enable PTB6(SDA) input */
 i2c_SDA_Output_Off();
 i2c_SDA_Input();

 SCL_Delay();
 i2c_SCL_High();
 /* read ACK signal when SCL is high */
 ack = i2c_SDA_Status();
 SCL_Delay();
 /* the 9th clock end */

 /* disable PTB6(SDA) input, enable PTB6(SDA) output */
 i2c_SDA_Input_Off();
 i2c_SDA_Output();

 /* SCL hold low to wait */
 i2c_SCL_Low();
 i2c_SDA_High();

 return ack;
}

3.6.2 Master sends ACK signal or NACK signal to slave
If the master sends low-level pulse (ACK signal) to the slave after receiving a byte, it means that the master wishes to continue
reading the next byte, prompting the slave to prepare the next data. If the master sends high-level pulse (NACK signal) to the
slave after receiving a byte, the data transmission is considered to be over, and no more data is sent. At this time, the master
will generate a STOP signal to release the I2C bus or generate a repeated START signal to start a new transmission.

When using PTB6 (SDA) and PTB7 (SCL) to simulate the master sends ACK or NACK signals to slave, please note that:

• In the ninth clock cycle, PTB6 (SDA) is set to 0 during PTB7 (SCL) is low to enable master sends an ACK signal to the
slave. In the ninth clock cycle, PTB6 (SDA) is set to 1 during PTB7 (SCL) is low to enable master sends a NACK signal to
the slave. The value of SDA can only be changed when SCL is low.

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 7 / 14

• When the ninth clock is over, PTB7 (SCL) needs to be kept low, and PTB6 (SDA) is pulled high. The bus enters to wait
state.

The reference code is as follows:

/* master sends ACK to slave */
void i2c_SendACK(void)
{
 /* the 9th clock start */
 i2c_SCL_Low();
 /*send ACK signal */
 i2c_SDA_Low();
 SCL_Delay();
 i2c_SCL_High();
 SCL_Delay();
 /* the 9th clock start */

 /* SCL hold low to wait */
 i2c_SCL_Low();
 i2c_SDA_High();
}

/* master sends NACK to slave */
void i2c_SendNACK(void)
{
 /* the 9th clock start*/
 i2c_SCL_Low();
 /*send NACK signal */
 i2c_SDA_High();
 SCL_Delay();
 i2c_SCL_High();
 SCL_Delay();
 /* the 9th clock start */

 /* SCL hold low to wait */
 i2c_SCL_Low();
 i2c_SDA_High();
}

3.7 Simulating master to write a byte
I2C transmissions are sequences of 8-bit bytes. When using GPIO to simulate the master writes a byte, master should write data
to PTB6 (SDA) bit by bit when PTB7 (SCL) is low. It takes eight clock cycles to implement 8-bit data transmission.

When using PTB6 (SDA) and PTB7 (SCL) to simulate the master writes a byte to slave, please note that:

• If the master has finished sending 8-bit data to the slave, it needs set PTB7 (SCL) to low to prevent the unwanted START
or STOP conditions from being generated due to the PTB6 (SDA) voltage changes.

• It must check whether the master receives an ACK from the slave when the master finished sending 8-bit data. If the ACK
signal is not received, the master will generate a STOP condition and end the communication.

The master writes a byte and checks ACK signal codes as follows:

/* master writes a byte to salve and check ACK signal */
void i2c_write_byte(unsigned char data)
{
 unsigned char i;
 /* write 8 bits data */
 for(i=0;i<8;i++)

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 8 / 14

 {
 i2c_SCL_Low();
 SCL_Delay();

 /* Data can be changed only while SCL is low */
 if(data & 0x80)
 {
 i2c_SDA_High();
 }
 else
 {
 i2c_SDA_Low();
 }

 /* Data must be held stable while SCL is high */
 i2c_SCL_High();
 SCL_Delay();
 data = data<<1;
 }
 /* Must set SCL to low. If SCL is high, SDA change to High/Low will cause Stop/Start signal.*/
 i2c_SCL_Low();
 /* check ACK signal, ACK signal is 0, NACK signal is 1 */
 if(i2c_ReadACK() == 1)
 {
 /* receive NACK signal,stop data transfer */
 i2c_Stop();
 while(1);
 }
}

3.8 Simulating master to read a byte
I2C transmissions are sequences of 8-bit bytes. When using GPIO to simulate the master reads a byte from the slave, master
should read data from PTB6 (SDA) bit by bit when PTB7 (SCL) is high. It takes eight clock cycles to implement 8-bit data
transmission.

When using PTB6 (SDA) and PTB7 (SCL) to simulate the master reads a byte to slave, please note that:

• If the master has finished receiving 8-bit data from the slave, it needs set PTB7 (SCL) to low to prevent the unwanted
START or STOP conditions from being generated due to the PTB6 (SDA) voltage changes.

• The master reads data by bit, which is actually reading the input data of PTB6 (SDA).

Before reading the status of PTB6 (SDA), the data direction of PTB6 (SDA) needs to be set as input. Please disable the
output of PTB6 (SDA) before enabling the input of PTB6 (SDA) to change the data direction to input.

After reading the status of PTB6 (SDA), the data direction of PTB6 (SDA) needs to be changed to output soon. Please disable
the input of PTB6 (SDA) before enabling the output of PTB6 (SDA) to change the data direction to output.

The reference code is as follows:

/* master reads a byte from slave */
unsigned char i2c_read_byte(void)
{
 unsigned char i;
 unsigned char data = 0;

 /* disable PTB6(SDA) output, enable PTB6(SDA) input */
 i2c_SDA_Output_Off();
 i2c_SDA_Input();

NXP Semiconductors
Simulating I2C master

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 9 / 14

 /* write 8 bits data */
 for(i=0;i<8;i++)
 {
 i2c_SCL_Low();
 SCL_Delay();
 /* Data must be held stable while SCL is high */
 i2c_SCL_High();
 data = data<<1;
 /* read SDA data */
 if(i2c_SDA_Status())
 {
 data |= 0x01;
 }
 else
 {
 data &= ~0x01;
 }

 SCL_Delay();

 }

 /* disable PTB6(SDA) input, enable PTB6(SDA) output */
 i2c_SDA_Input_Off();
 i2c_SDA_Output();

 i2c_SCL_Low(); // set SCL to low

 return data;
}

4 Implementation details
This is the detailed information on how to realize master data read and write multiple data through I2C simulated by GPIO. Figure
3 shows the data transfer formats of a master.

Figure 3. Data transfer formats of a master writes data and a master reads data

NXP Semiconductors
Implementation details

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 10 / 14

Figure 4 shows the flowchart of GPIO simulated I2C communication. Users can write data sending and receiving procedures
according to the flowchart.

Figure 4. Flowchart of data transmission

4.1 Master writes data to slave
Prepare a slave device that can receive data normally. Referring to the flowchart shown in Figure 4 (a), there is an example about
the master successfully sending 0x0A, 0x0B two bytes to the slave device with address 0x56. The I2C serial clock is simulated
by configuring MTIM0_Init(16000000L, 80000L);. The simulated I2C baud rate is about 55.8 k.

The reference code is as follows:

/* master writes data to slave */
void i2c_master_WriteData(void)
{
 unsigned char i;
 unsigned char slaveID;
 char tx_data[16] = {10,11};

 /* shift address in right position, set R/W bit to 0 at end of slave address */
 slaveID = (0x56 << 1) | 0;

 /* send start condition */
 i2c_Start();

NXP Semiconductors
Implementation details

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 11 / 14

 /* send slave address with W/R bit */
 i2c_write_byte(slaveID);

 /* wait for master transmit completed */
 for (i=0; i<2; i++)
 {
 /* master write a byte to salve and check ACK signal */
 i2c_write_byte(tx_data[i]);
 }
 i2c_Stop();
}

The functions called in the above code have been explained in detail in Simulating I2C master.

The waveforms of simulated SCL and SDA are captured by a logic analyzer. Figure 5 is captured by a logic analyzer when running
the code, the simulated I2C baud rate is about 55.8 k.

Figure 5. Write two bytes to slave device with 0x56 address

4.2 Master reads data from slave
Prepare a slave device that can send 16 bytes of data (data: from 20 to 35) normally. Referring to the flowchart shown in Figure
4 (b), there is an example about the master successfully receive 0x14, 0x15 two bytes from the slave device with address 0x56.
The I2C serial clock is simulated by configuring MTIM0_Init(16000000L, 80000L);. The simulated I2C baud rate is about
55.8 k.

The reference code is as follows:

/* master reads data from slave */
void i2c_master_ReadData(void)
{
 unsigned char k;
 unsigned char slaveID;
 char rx_data[16] = {0};

 /* shift address in right position, set R/W bit to 1 at end of slave address */
 slaveID = (0x56 << 1) | 1;

 /* send start condition */
 i2c_Start();

 /* send slave address with W/R bit */
 i2c_write_byte(slaveID);

 /* wait for master transmit completed */
 for (k=0; k<2; k++)
 {
 rx_data[k] = i2c_read_byte();
 if(k == 1)
 {
 /* master sends NACK to slave*/

NXP Semiconductors
Implementation details

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 12 / 14

 i2c_SendNACK();
 /* Generate STOP condition */
 i2c_Stop();
 break;
 }
 else
 {
 /* master sends ACK to slave*/
 i2c_SendACK();
 }
 /* wait to receive next byte from slave */
 SCL_Delay();
 }
}

The functions called in the above code have been explained in detail in Simulating I2C master.

The waveforms of simulated SCL and SDA are captured by a logic analyzer. Figure 6 is captured by a logic analyzer when running
the code. The simulated I2C baud rate is about 55.8 k.

Figure 6. Reading two bytes from slave device with 0x56 address

5 Conclusion
This application note explains how to simulate I2C master with GPIO based on S08P. The simulate I2C master can implement
communication with I2C slave device. The maximum communication speed is close to 150 k on S08PB/S08PLS when the system
clock is 16 M. The reference code of GPIO simulated I2C can be downloaded at S08PB16-EVK.

6 References
Following references are available on NXP website:

1. MC9S08PB16 Reference Manual (document MC9S08PB16RM)

2. I2C-bus Specification and User Manual (document UM10204)

3. Emulating I2C Master Mode (document AN5264)

4. IIC Master on the MC9RS08KA2 (document AN3317)

NXP Semiconductors
Conclusion

GPIO Simulated I2C for S08, Rev. 0, May 2020
Application Note 13 / 14

https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/s08pb16-evk-evaluation-kit-for-s08pb16-and-s08pls-mcus:S08PB16-EVK
https://www.nxp.com/search?keyword=1.%09MC9S08PB16%20Reference%20Manual
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/application-note/AN5264.pdf
https://www.nxp.com/docs/en/application-note/AN3317.pdf

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: May 2020
Document identifier: AN12841

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 I2C protocol introduction
	3 Simulating I2C master
	3.1 I/O pins selection
	3.2 Baud rate of simulate I2C
	3.2.1 Using hardware timer to simulate I2C serial clock
	3.2.2 Using software timer to simulate I2C serial clock

	3.3 Simulating START condition
	3.4 Simulating STOP condition
	3.5 Simulating repeated START condition
	3.6 Simulating ACK and NACK
	3.6.1 Master reads ACK signal from slave
	3.6.2 Master sends ACK signal or NACK signal to slave

	3.7 Simulating master to write a byte
	3.8 Simulating master to read a byte

	4 Implementation details
	4.1 Master writes data to slave
	4.2 Master reads data from slave

	5 Conclusion
	6 References

