
1 Introduction
The bootloader is a small flash resident code in the Microcontrollers (MCU)
that is implemented to download the application code to on-chip non-volatile
memory flash in S08PB series. Instead of using a dedicated debug interface,
the user only uses the communication interface (for example, SCI) to upgrade
the MCU firmware.

For this case, the bootloader requires the tool to download the user application
code using the serial communication interface without P&E Multilink or
CodeWarrior IDE.

This document introduces how to implement the bootloader with a SCI
interface on the S08PB16-EVK board by using the PC tool,
win_hc08sprg.exe, in the AN2295SW software package (available on 
www.nxp.com). The document also demonstrates an example of how to
configure the bootloader code and application code.

The implementation of the SCI bootloader for S08PB16 is based on the CodeWarrior 11.1 development environment (you must
install the service pack: CodeWarrior MCU 11.1 Service Pack for S08PB and S08PLS), SCI bootloader code, s19 file (application
code), and the S08PB16-EVK board.

2 Overview
You can obtain details about development board S08PB16-EVK from www.nxp.com/S08PB16-EVK. Figure 1 shows the tools
and codes that you can download from NXP website.

Figure 1. Tools and codes for bootloader

• PC tool: win_hc08sprg.exe is a host GUI software tool used in the PC. It is a free tool available in the AN2295SW software
package. You can find this package on www.nxp.com. You can get the win_hc08sprg.exe tool in the folder ...\AN2295SW
\masters\release. The tool win_hc08sprg.exe is referred as PC tool in this document. The PC tool is used to decode the
s19 file and transfer the application code to the target MCU via SCI interface, which is widely used in S08 products to
implement bootloader for MCU. Refer to AN2295 application note for detailed development information and instructions on
the PC tool.

• SCI bootloader code: SCI bootloader code is downloaded to MCU as a resident code, which is executed after MCU reset.
The code can communicate with the PC tool to check if there is an application code that needs to be downloaded to flash
memory.

Contents

1 Introduction............................................ 1

2 Overview................................................1
2.1 SCI bootloader

process.......................... 2
2.2 Memory allocation........ 3
2.3 Interrupt response

process for
application code............. 4

3 SCI bootloader implementation............. 6
3.1 Bootloader code........... 6
3.2 Application code

linker file.........................8
4 Conclusion........................................... 11

5 References.......................................... 11

AN12871
SCI Bootloader for S08PB16
Rev. 0 — May 2020 Application Note

http://www.nxp.com
https://freescaleesd.flexnetoperations.com/337170/907/15206907/com.freescale.mcu11_1.HCS08_PB16.win.sp.v1.0.8.zip?ftpRequestID=7510415907&server=freescaleesd.flexnetoperations.com&dtm=DTM20200107073526MzU4MTMxMjEy&authparam=1578411326_104641368b3cece7142f949f46f54830&ext=.zip
http://www.nxp.com/S08PB16-EVK
http://www.nxp.com


• Application code: When using the bootloader method to download the application code, the user only needs to modify the
linker file (Project.prm) to redistribute its memory, and then use PC tool to download its binary code (mtim.abs.s19).

The binary file, mtim.abs.s19, provided in the s19 file folder has been modified and can be used for test directly. The mtim project
is also available in the s19 file folder for reference.

2.1 SCI bootloader process
The PC tool is compatible with FC protocol and communicates with the MCU via SCI interface. The protocol is called FC protocol
because one significant character (acknowledge or ACK) 0xFC or 11111100b is used. The FC protocol communicates between
the PC and MCU to reprogram the MCU. Refer to AN2295 application note for details about the FC protocol.

The bootloader commands, ident/read/write/erase/quit, are sent by the PC tool to the MCU to program the s19 file. Figure 2
shows the SCI bootloader process when using PC tool. The process uses the bootloader commands available in AN2295SW to
program MCU.

Figure 2. SCI bootloader process

Following is the SCI bootloader process:

1. The bootloader process begins when the MCU is reset. Then MCU jumps to the address which is loaded from vector 0
(0xFFFE:0xFFFF) to execute the SCI bootloader code.

2. The MCU sends the 0xFC to hook up with the PC tool. The hook up between MCU and PC tool is successful when PC
tool receives the correct character 0xFC from the MCU. Then PC tool sends back 0xFC to MCU immediately.

If the MCU and PC tool hook up fails in the specified time, the MCU bootloader process ends. The MCU jumps to the
application code, and the next steps would not execute.

NXP Semiconductors
Overview

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 2 / 12



3. When MCU is calibrated to the correct clock or MCU is operating at the correct data rate, it sends the ACK character
0xFC to the PC tool to stop the calibration process. Then the PC tool sends IDENT command to the MCU, which sends
back the information predefined in the bootloader code.

4. The PC tool copies the contents of the interrupt vector table in the s19 file to the new address. The contents in origin
vector table are invalid. The interrupt vector table in s19 file is relocated.

5. The MCU receives the READ, ERASE, and WRITE commands from the PC tool to operate flash and download the s19
file.

6. The PC tool sends QUIT command to the MCU when s19 file downloads to MCU successfully. The MCU jumps to the
address of s19 file relocate reset vector to execute application code, and the MCU bootloader process ends.

2.2 Memory allocation
The on-chip memory in S08PB16 consists of 1 KB RAM and 16 KB flash program, I/O and control/status registers. The RAM
address space is 0x0040 - 0043F, and the flash address space is 0xC000 - 0xFFFF.

For flash allocation, 3 KB flash space 0xF400 - 0xFF9F is reserved for the SCI bootloader code. Before downloading application
code to MCU, the PC tool decodes the s19 file (application code) and copies the content of the address space 0xFFB0 - 0xFFFF
to the address 0xF3B0 - 0xF3FF. The content of the address space 0xFFB0 - 0xFFFF is invalid for the s19 file.

 
In RAM address space, 3 bytes of RAM 0x43D - 0x43F are reserved for bootloader vector redirection in the SCI
bootloader code, so they cannot be used by the application code. The bootloader code address and relocated
interrupt vector table address cannot be assigned in the same sector. Otherwise, a part of the bootloader code
will be erased.

  NOTE  

For specific allocation and configuration of SCI bootloader code and application code memory, see Chapter 3.1.1 and Chapter
3.2.1 in this document.

Figure 3 below shows memory allocation for SCI bootloader code and application code.

NXP Semiconductors
Overview

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 3 / 12



Figure 3. Memory allocation

2.3 Interrupt response process for application code
For the application code, mtim.abs.s19 file, mtim0 generates an interrupt request every one second. The MCU interrupt response
process is shown in Figure 4 after bootloader downloading of the mtim.abs.s19 file to the MCU is successful.

NXP Semiconductors
Overview

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 4 / 12



Figure 4. Interrupt response of application code

The process of application code interrupt response is summarized as follows:

Table 1. Summary of application code interrupt response process

1-2 When the MCU is reset, the program jumps to the reset vector (0xFFFE:0xFFFF), and the SCI bootloader
code starts. According to the interrupt service routine (ISR) entry address stored in the reset interrupt vector
0, the reset ISR is executed.

2-3 The MCU enters main function of bootloader code from the reset ISR. The PC tool and MCU hook up is timeout,
the bootloader process ends, and the program jumps to the application code.

3-4 The program jumps to the relocation reset vector (0xF3FE:0xF3FF) of the application code, then executes the
reset ISR of the application code according to the ISR entry address stored in the new interrupt vector table.

4-5 The MCU enters main function of the application code from the reset ISR. At this time, the mtim0 module in
the application code generates an interrupt request every one second.

5-6 When the mtim0 interrupt generates, the program jumps to the address which is loaded from mtim0 vector
(0xFFD8:0xFFD9) and executes mtim0 ISR in the SCI bootloader code.

Table continues on the next page...

NXP Semiconductors
Overview

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 5 / 12



Table 1. Summary of application code interrupt response process (continued)

6-7 After executing the mtim0 ISR in the SCI bootloader code, the program counter points to the address loaded
in the relocated mtim0 vector (0xF3D8: 0xF3D9).

7-8 The program executes mtim0 ISR in the application code according to the mtim0 ISR entry address stored in
the relocated mtim0 vector (0xF3D8:0xF3D9).

8-power off The mtim0 interrupt response completes in the application code. The application code continues to execute
at this time. If the interrupt request generates again during the running of the program, the program repeats
steps from 5 to 8.

3 SCI bootloader implementation
This section describes code implementation of the bootloader via SCI interface. The SCI bootloader code and application code
(s19 file) need to reconfigure the linker file to redistribute memory space to prevent flash memory from being overwritten that
might cause the bootloader to fail. In addition, the SCI bootloader code needs to include the FC protocol driver, FC_protocol.c/
FC_protocol.h, to implement the communication with the PC tool. The MCU information that the user needs to modify according
to the requirements is defined in FC_protocol.h. The PC tool performs the corresponding operations according to the information
obtained from MCU. Refer to the source code of PC tool for more details.

The following sections provide a brief introduction to the S08PB16 bootloader code and application code (mtim project)
development.

3.1 Bootloader code
3.1.1 Example of prm file modification in bootloader code

The sample Project.prm file in bootloader code is shown in Figure 5 below.

NXP Semiconductors
SCI bootloader implementation

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 6 / 12



Figure 5. Project.prm in SCI bootloader code

As shown in Figure 5, the flash address 0xF400 - 0xFF9F is reserved to store the bootloader code, with RELOCATE_TO code
in FLASH_ROUTINES that can be executed at a different address than it was allocated.

The code of flash launch command as shown in Figure 6 is programmed at 0xFFA0 - 0xFFAF address area (flash space), but
references to functions in FLASH_ROUTINES use addresses in the 0x0420 - 0x042F area (RAM space).

NXP Semiconductors
SCI bootloader implementation

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 7 / 12



Figure 6. Flash launch command code in flash.c

The flash launch command code is copied to RAM by the Flash_CopyInRAM() function (Figure 7), so that the flash command
code executes in the RAM space form 0x0420 and does not access flash when the flash is busy.

Figure 7. Flash_CopyInRAM() function in flash.c

3.2 Application code linker file
3.2.1 Example of prm file modification in application code

For the application code, the user only needs to modify the memory allocation in the linker file. The Project.prm file of the mtim
project is shown in the following figure.

The available flash memory space 0xC000 - 0xF000 is reserved to store application code to avoid overwriting of memory space.
The RAM space users can make appropriate assignments except for 3 bytes of RAM (0x43D - 0x43F) reserved for bootloader
code.

NXP Semiconductors
SCI bootloader implementation

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 8 / 12



Figure 8. Linker file configuration for application code

3.2.2 S-record file

After the Project.prm file memory allocation completes, rebuild the application code. The mtim.abs.s19 file in the mtim project is
available in the FLASH folder of the project, as shown in the following figure. The mtim.abs.s19 file is downloaded to MCU through
the PC tool.

NXP Semiconductors
SCI bootloader implementation

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 9 / 12



Figure 9. s19 file in application project

3.2.1 FC protocol driver
When using the PC tool to implement the MCU boot, the FC protocol driver (FC_protocol.c/FC_protocol.h) is required to include
in the bootloader code. As shown in Figure 8, the required information for the MCU bootloader is predefined in FC_protocol.h.
The pre-defined part of the content, such as the value of ‘FC_PROTOCOL_VERSION’, selects FC protocol version 2 to support
HCS08 bootloader implement. The start address of relocated interrupt vector table in s19 file is defined as
‘RELOCATION_VERTOR_ADDR’.

When designing the bootloader code, the user needs to correctly define the MCU's information in FC_protocol.h, so that the MCU
sends the information to the PC tool through the SCI interface, and the PC tool receives the correct response.

NXP Semiconductors
SCI bootloader implementation

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 10 / 12



Figure 10. FC_protocol.h configuration for SCI bootloader code

4 Conclusion
This application note explains how to implement the bootloader for S08PB16 via SCI interface by using the PC tool (see AN2295
application note to know details about PC tool). The bootloader is more convenient for the user to update the application code
without using other programming tools, such as P&E Multilink. The bootloader utility (AN2295SW) and the S08PB16 bootloader
code can be downloaded from www.nxp.com.

5 References
Following references are available on NXP website:

• Developer’s Serial Bootloader (AN2295) - https://www.nxp.com/docs/en/application-note/AN2295.pdf

• Serial Bootloader for 56F82xx (AN2745) - https://www.nxp.com/docs/en/application-note/AN2745.pdf

• UART Boot Loader Design on Kinetis E Series (AN4767) - https://www.nxp.com/docs/en/application-note/AN4767.pdf

• HC(S)08 and HC(S)12 Build Tools Utilities Manual - https://www.nxp.com/docs/en/reference-manual/HCS-RS08-
Build_Tools_Utilities.pdf

• AN2295SW

NXP Semiconductors
Conclusion

SCI Bootloader for S08PB16, Rev. 0, May 2020
Application Note 11 / 12

http://www.nxp.com
https://www.nxp.com/docs/en/application-note/AN2295.pdf
https://www.nxp.com/docs/en/application-note/AN2745.pdf
https://www.nxp.com/docs/en/application-note/AN4767.pdf
https://www.nxp.com/docs/en/reference-manual/HCS-RS08-Build_Tools_Utilities.pdf
https://www.nxp.com/docs/en/reference-manual/HCS-RS08-Build_Tools_Utilities.pdf


How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners.  AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: May 2020
Document identifier: AN12871

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	SCI Bootloader for S08PB16
	Contents
	1 Introduction
	2 Overview
	2.1 SCI bootloader process
	2.2 Memory allocation
	2.3 Interrupt response process for application code

	3 SCI bootloader implementation
	3.1 Bootloader code
	3.2 Application code linker file
	3.2.1 FC protocol driver


	4 Conclusion
	5 References




