Document Information

<table>
<thead>
<tr>
<th>Information</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>i.MX RT, i.MX RT Crossover MCUs, spread spectrum, communication technology, frequency spectrum, transmission signal, bandwidth, wireless communication, electromagnetic interference, EMI, EMI performance, System-on-Chip, SoC, application processors</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document intends to introduce the basic theory about spread spectrum and how to enable this feature for i.MX RT feature in order to enhance EMI performance.</td>
</tr>
</tbody>
</table>
1 Background

Spread spectrum is a communication technology that turns the frequency spectrum of a transmission signal to a wider bandwidth than its original bandwidth. It is widely used in the field of wireless communication.

This document introduces the basic theory about the spread spectrum and how to enable this feature for RT feature to enhance Electro Magnetic Interference (EMI) performance.

2 Spread spectrum introduction

• Narrowband signals
 The narrowband signals have the signal strength concentrated, as shown in Figure 1. A narrowband signal (or in this case the system clock) has a spectrum signature of a sharp narrow peak centered on a specific frequency.

![Narrowband Signal](image)

Figure 1. Narrowband signals
 Some characteristics are as follows:
 – The band of signals occupies a narrow range of frequencies.
 – The power density is high.
 – The spread of energy is low and concentrated.

• Spread spectrum signals
 The spread spectrum signals have the signal strength distributed, as shown in Figure 2. Instead of keeping the narrowband signal (or system clock in our case) at a fixed frequency, the spread spectrum works by moving the frequency across a defined range. The result is that the energy peak gets reduced and spreads over a range of frequency values.
Some characteristics are as follows:

- The band of signals occupies a wide range of frequencies.
- The power density is low.
- The energy is wide spread.

From the above descriptions, you can see that with these characteristics, the spread spectrum signals are highly resistant to interference or jamming.

3 Spread spectrum configuration

For the RT family, the `SYS_PLL2`, `AUDIO_PLL`, and `VIDEO_PLL` support the spread spectrum (spread down).

To enable the spread spectrum function, configure registers in SDK as shown in below.

```c
/*
0x40c84260 is used to configure the value of STOP(bit[31-16]) and STEP(bit[14:0]). Bit 8
is the enable bit.
The Frequency change is:
    Frequency change = STOP/B * 24MHz

The Step value is :
    The max frequency change for each time = STEP/B * 24Mhz

0x40c842a0 is used to configure the value of B.

So that, the following configure is:
STOP = 0x4B0;
B = 0x960;
STEP = 0x6;
Frequency change = 12MHz
The max frequency change for each time = 60KHz

STOP = 0x258;
B = 0x960;
*/
```

© 2023 NXP B.V. All rights reserved.
STEP = 0x6;
Frequency change = 6MHZ
*/
*(uint32_t *)(0x40c84260) = 0x04B08006; //12MHZ
//*(uint32_t *)(0x40c84260) = 0x02588006; //6MHZ
*(uint32_t *)(0x40c842a0) = 0x00000960;

/*! @brief Spread specturm configure Pll */
typedef struct _clock_pll_ss_config
{
 uint16_t stop; /*!< Spread spectrum stop value to get frequency change. */
 uint16_t step; /*!< Spread spectrum step value to get frequency change step. */
} clock_pll_ss_config_t;

/*! @brief PLL configure for Sys Pll1 */
typedef struct _clock_sys_pll1_config
{
 bool pllDiv2En; /*!< Enable Sys Pll1 divide-by-2 clock or not. */
 bool pllDiv5En; /*!< Enable Sys Pll1 divide-by-5 clock or not. */
 clock_pll_ss_config_t *ss; /*!< Spread spectrum parameter,
 it can be NULL, if ssEnable is set to false */
 bool ssEnable; /*!< Enable spread spectrum flag */
} clock_sys_pll1_config_t;

The following Phase Locked Loop (PLL) in RT1xxx series supports the spread spectrum.

<table>
<thead>
<tr>
<th>PLL</th>
<th>RT1170</th>
<th>RT1010</th>
<th>RT1015</th>
<th>RT1020/1024</th>
<th>RT1050</th>
<th>RT1060/1064</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL528</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PLL_528_</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PFDn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio_PLL</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Video_PLL</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PLL_1G</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

There are two points when enabling the spread spectrum: Spread spectrum range and Step.

- The spread range indicates how much frequency the PLL sweeps down. For example, a spread range of 6 MHz indicates that the PLL sweeps from Target_frequency to Target_Frequency - 6 MHz and then sweeps back.
 The basic formula is used to calculate the range:
 \[\text{Range} = \frac{\text{STOP}}{B} \times 24\text{MHz} \]

- The spread step indicates how many frequencies are changed in one step.
 The basic formula is used to calculate the step:
 \[\text{Step} = \frac{\text{STEP}}{B} \times 24\text{MHz} \]

Taking PLL528 as an example:
- STOP = 0x4B0
- B = 0x960
• STEP = 0x6
Then the Range and Step are:
• Range: 12 MHz
• Step: 60 kHz
The PLL528 sweeps from 528 MHz to 516 MHz (528 - Range) and sweeps back with one step 60 kHz.

STOP, B, and STEP can be configured in SYS_PLL2_SS and SYS_PLL2_MFD registers on RT10xx series.

STOP, B, and STEP can be configured in CCM_ANALOG_PLL_SYS_SS and CCM_ANALOG_PLL_SYS_DENOM registers on RT1170.

Now when a PLL is initialized, the spread spectrum function can also be configured. Fill the STOP, B, and STEP and then initialize the PLL. Once the PLL is enabled, the spread spectrum function is also enabled.

4 Radiation comparison under spread spectrum

MIMXRT1170-EVK platform is used for such test. The radiation value is tested under different configuration for spread spectrum using noncontact probe and spectrum analyzer.

From the settings of the test result, 6 MHz and 12 MHz stop value is recommended in such case to improve EMI performance.

<table>
<thead>
<tr>
<th>Spread spectrum (Hz)</th>
<th>0.75 M</th>
<th>1.5 M</th>
<th>3 M</th>
<th>6 M</th>
<th>12 M</th>
<th>24 M</th>
<th>---></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test result (dBm)</td>
<td>-46.2</td>
<td>-46.56</td>
<td>-49.85</td>
<td>-52.31</td>
<td>-53.35</td>
<td>-54.3</td>
<td>6 M and 12 MHz configuration is recommended.</td>
</tr>
</tbody>
</table>

Figure 3. Spectrum under 3 MHz configuration
5 Reliability test under spread spectrum

The Synchronous DRAM (SDRAM) reliability is verified under the spread spectrum enabled on the MIMXRT1170-EVK platform.

Table 3 describes the test pattern.

Table 3. Basic configuration of the test

<table>
<thead>
<tr>
<th>Module</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Cortex-M7 996 MHz</td>
</tr>
<tr>
<td>AXI to SEMC</td>
<td>32 bit 240 MHz</td>
</tr>
<tr>
<td>SEMC</td>
<td>32 bit 198 MHz</td>
</tr>
<tr>
<td>SDRAM chip</td>
<td>w9825g6kh 256 Mb/up to 200 MHz</td>
</tr>
<tr>
<td>L1 Dcache</td>
<td>Total 32 KB/One-line 32 B</td>
</tr>
<tr>
<td>Code</td>
<td>Text region in ITCM</td>
</tr>
<tr>
<td></td>
<td>Data region in DTCM</td>
</tr>
<tr>
<td></td>
<td>CStack region in DTCM</td>
</tr>
</tbody>
</table>

From the test result, both 6 MHz and 12 MHz spread spectrum configuration can pass the stress test under full temp test. The result indicates that it is reliable to enable the spectrum spread feature for SDRAM clock.
Considering about Smart External Memory Controller (SEMC) timing configuration under the spectrum spread, check the following points:

- For more stability of SDRAM, the SEMC timing configuration can be set with bigger margin based on the working clock speed.
- Referring to Table 4, the minimum values of t_{RC}, t_{RAS}, t_{RP}, t_{RCD}, t_{RW}, and t_{RRD} can be set more one or two cycles in SEMC register SDRAMCR1 and SDRAMCR2. For example, the t_{RC} is 6 cycles (60 ns minimum at 166 MHz) for standard. We can set it to 7 (or 8) cycles under spectrum spread mode.
- For t_{REF} (Refresh Cycle Time), it is set smaller than the maximum refresh cycle (64 ms). This setting can be implemented in SEMC register SDRAMCR3. In NXP SDK, the t_{REF} is set to be lower than half of the maximum refresh cycle.
- For the detailed SEMC timing configurations, refer to the NXP SDK.
Table 4. SDRAM device timing

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRC</td>
<td>Command period (REF to REF/ACT to ACT)</td>
<td>60</td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tRAS</td>
<td>Command period (ACT to PRE)</td>
<td>42</td>
<td>100 K</td>
<td>37</td>
<td>100 K</td>
<td>ns</td>
</tr>
<tr>
<td>tRP</td>
<td>Command period (PRE to ACT)</td>
<td>18</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tRCD</td>
<td>Active command To read/write command delay time</td>
<td>18</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tRDD</td>
<td>Command period (ACT [0] to ACT[1])</td>
<td>12</td>
<td>—</td>
<td>14</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tDPL</td>
<td>Input data to precharge command delay time</td>
<td>12</td>
<td>—</td>
<td>14</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tDAL</td>
<td>Input data to active/refresh command delay time (during auto-precharge)</td>
<td>30</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tMRD</td>
<td>Mode register program time</td>
<td>12</td>
<td>—</td>
<td>14</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tDDE</td>
<td>Power down exit setup time</td>
<td>6</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tXSR</td>
<td>Exit self-refresh to active time (4)</td>
<td>66</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>tT</td>
<td>Transition time</td>
<td>0.3</td>
<td>1.2</td>
<td>0.3</td>
<td>1.2</td>
<td>ns</td>
</tr>
<tr>
<td>tREF</td>
<td>Refresh cycle time (8192)</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>64</td>
<td>ms</td>
</tr>
</tbody>
</table>

For Ta ≤ 70 °C Com.,Ind., A1, A2: — 64 — 64 ms
For Ta ≤ 85 °C,Ind., A1, A2: — 64 — 64 ms
For Ta ≤ 85 °C A2: — 32 — 32 ms

7 Performance test under spread spectrum

The performance test is done under spectrum spread, check below test environment and test result. It can conclude that spectrum spread has small impact to SDRAM R/W performance and has no impact to applications.

- **Project configuration**: sdradm_debug
- **SDRAM MPU configuration**: non-shareable/cacheable/wb/disable Dcache
- **Four test environments**: Initial, 6 MHz, 12 MHz, and 24 MHz
- **Test results**: Test 16 kbit and 32 kbit data write/read performance for a few seconds. The results show that the read performances are all 22 MB/s. The write performances are as shown in Figure 6.

Table 5. SDRAM performance test under spread spectrum

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>6 M</th>
<th>12 M</th>
<th>24 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average write</td>
<td>Perf (MB/s)</td>
<td>693</td>
<td>689</td>
<td>685</td>
</tr>
<tr>
<td>Reduction percentage</td>
<td>—</td>
<td>-0.6%</td>
<td>-1.2%</td>
<td>-2.3%</td>
</tr>
</tbody>
</table>
8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9 Revision history

Table 6 summarizes the revisions to this document.
Table 6. Revision history

<table>
<thead>
<tr>
<th>Revision number</th>
<th>Release date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25 August 2023</td>
<td>Updated [Section 3]</td>
</tr>
<tr>
<td>1</td>
<td>09 March 2021</td>
<td>Updated [Section 3]</td>
</tr>
<tr>
<td>0</td>
<td>June 2020</td>
<td>Initial public release</td>
</tr>
</tbody>
</table>
10 Legal information

10.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products.

10.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. NXP — wordmark and logo are trademarks of NXP B.V.
Contents

1. Background ... 2
2. Spread spectrum introduction2
3. Spread spectrum configuration3
4. Radiation comparison under spread spectrum5
5. Reliability test under spread spectrum6
6. SEMC timing configuration under spectrum spread7
7. Performance test under spread spectrum8
8. Note about the source code in the document9
9. Revision history .. 9
10. Legal information ...11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.
All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 25 August 2023
Document identifier: AN12879