
1 Introduction
The Code Watchdog Timer (CWT) is available on all LPC55S1x/LPC551x
and LPC55S0x/LPC550x devices. This application note introduces the basic
concepts and usage of the CWT.

The CWT provides two primary mechanisms (Secure Counter and Instruction
Timer) for detecting code flow and data integrity checking.

Secure Counter (SEC_CNT): Detects altered software in the execution flow.

• This counter (that is, an accumulator) is loaded with an initial value
and then the runtime software issues ADD and SUB commands to
increment/decrement the counter.

• Periodically, a secure counter value check is initiated by passing the
expected value to the CWT using the STOP and RESTART commands.

• If a mismatch is detected between the Secure Counter and the value passed to it, it indicates that the execution flow has
been altered by a side channel attack or another suspicious activity.

Instruction Timer (INST_TIMER): Places an upper-limit on the interval between checks of the secure counter.

• The START command loads the internal decremental counter. Before the counter generates an underflow (reaches 0), a
STOP or RESTART command must be executed to force a secure counter check.

For more information, see LPC55S1x/LPC551x User Manual (document UM11295) and LPC55S0x/LPC550x User Manual
(document UM11424).

This AN only introduces the usage of CWT, and does not involve system security.

 NOTE

1.1 Secure Counter
The Secure Counter is a 32-bit accumulating register that holds a dynamically changing value. This value can be periodically
evaluated to determine if a program is executing in an expected manner. If a mismatch is detected, a FAULT is generated.

The Secure Counter is used to protect the code execution flow and also to ensure the integrity of critical data.

1.2 Instruction Timer
The Instruction Timer is a 32-bit count-down timer that is used by an application to set the number of instructions that are expected
to be executed. The Instruction Timer can therefore detect cases where the counter is reset (set to 0), which may be an indication
that unauthorized instructions are being executed. The application programmer pre-loads the Instruction Timer with slightly more
than the number of instructions in the next execution sequence. The Instruction Timer counts the instructions as they are executed
(clocks), and if the number is exhausted before the CWT is serviced, a FAULT is generated. The Instruction Timer can be
programmed to either pause, or keep running, while the interrupt service routines are executing.

The Instruction Timer can be used to confirm that the corresponding code is completed within the specified execution time.

Contents

1 Introduction......................................1
1.1 Secure Counter............................1
1.2 Instruction Timer.......................... 1
1.3 State...2
2 Usage..2
2.1 Secured read............................... 3
2.2 Secured write...............................3
2.3 Secured function..........................4
2.4 Secured loop................................6
2.5 Secured branch........................... 8
2.6 Secured decision control............. 9
2.7 Conclusion................................... 9
2.8 Revision history............................9
3 Revision history.............................10

AN12912
Using the Code Watchdog Timer
Rev. 1 — 11/2020 Application Note

https://www.nxp.com/webapp/Download?colCode=UM11295
https://www.nxp.com/docs/en/user-guide/UM11424.pdf

1.3 State
The STATE registers perform the following functions:

• The CWT has two legal states: IDLE and ACTIVE.

• Internally, the two states are encoded by 4 bits, with only two of the possible 16 combinations permissible.

• After any reset, including a reset generated by the CWT itself, the module is in IDLE state.

• A correct sequence of CPU writes to the CONTROL group, followed by a START command, which changes the state to ACTIVE.

• Once ACTIVE, a correctly formulated STOP COMMAND changes the state back to IDLE.

Figure 1. Code watchdog timer state

2 Usage
In this section, C-Style pseudocode is used to explain the usage and programming model of the CWT.

Table 1. C-style pseudocode

Pseudocode Function Description

CWT_Start(uint32_t reload, uint32_t start) Sets start to Secure Counter and reload to Instruction
Timer values.

CWT_Check(uint32_t check) This function compares the check value with the Secure
Counter value by writing to the RESTART register. If the
comparison fails, a fault is triggered.

Table continues on the next page...

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 2 / 11

Table 1. C-style pseudocode (continued)

Pseudocode Function Description

CWT_Stop(uint32_t stop) This function stops the Instruction Timer and Secure Counter.
stop is the expected value which is compared with the value of
the Secure Counter. If the comparison fails, a fault is triggered.

CWT_Add(uint32_t add) This function adds a specified value to the Secure Counter. add
denotes the value to be added.

CWT_Sub(uint32_t sub) This function subtracts a specified value from the Secure
Counter. sub is the value to be subtracted.

To maximize the security, the reload value of Instruction Timer must be as small as possible.

 NOTE

2.1 Secured read
We must ensure that the values read from Flash, OTP Fuse, and memory are not maliciously modified by external attacks while
the code is executing. CWT can be used to protect these critical data reads.

The pseudocode is as follows.

Figure 2. Secured read

Multiple values can be protected using this method. If needed, a volatile keyword can be used to prevent compiler optimization.

2.2 Secured write
A secured write is similar to a secured read. It is important to operate on security/critical related registers or write security-related
data. Ensure that the value written is the expected value.

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 3 / 11

The pseudocode is as follows.

Figure 3. Secured write

2.3 Secured function
This section describes how to write and call a function protected by CWT.

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 4 / 11

2.3.1 Writing a secured function

Figure 4. Secured Function

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 5 / 11

2.3.2 Calling a secured function

Figure 5. Secured Function Call

2.4 Secured loop
We must ensure that the loop executes a certain number of times as expected. This section describes how to use CWT to
implement this feature.

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 6 / 11

Figure 6. Secured Loop

loop_count must be initialized in a secured way (for example, secured read) if needed.

 NOTE

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 7 / 11

2.5 Secured branch

Figure 7. Secured Branch

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 8 / 11

2.6 Secured decision control

Figure 8. Secured decision control

2.7 Conclusion
The security counter can be used to protect function calls, loops, if-else constructs, switch-case constructs, pointers, and so on.

Multiple checks can be combined to save code size.

As more updates are made, more security is added (maximum is one Secure Counter update per basic block).

Each Secure Counter update can be seen as a checkpoint that a certain code location was passed. It does not guarantee that the
code around has not been altered by an attack. The checking before performing the critical operation is important.

To maximize the security, the reload value of Instruction Timer shall always be as small as possible.

The function of this module is closely related to the rational use of the application, considering there is some
performance loss.

 NOTE

2.8 Revision history
Table 2. Revision history

Rev Date Description

0 July 2020 Initial version

NXP Semiconductors
Usage

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 9 / 11

3 Revision history
Table 3. Revision history

Rev. Date Description

0 07/2020 Initial release

1 11/2020 Added description for LPC55S0x/LPC550x in Introduction

NXP Semiconductors
Revision history

Using the Code Watchdog Timer, Rev. 1, 11/2020
Application Note 10 / 11

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11/2020
Document identifier: AN12912

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Secure Counter
	1.2 Instruction Timer
	1.3 State

	2 Usage
	2.1 Secured read
	2.2 Secured write
	2.3 Secured function
	2.3.1 Writing a secured function
	2.3.2 Calling a secured function

	2.4 Secured loop
	2.5 Secured branch
	2.6 Secured decision control
	2.7 Conclusion
	2.8 Revision history

	3 Revision history

