

AN1294/D
(Freescale Order Number)

9/96

™

M
ul

tip
ro

ce
ss

or
 S

ys
te

m
s

an
d

th
e

60
3e

A
pp

lic
at

io
n

N
ot

e

Application Note

Multiprocessor Systems and the
PowerPC 603e

™

 Microprocessor

This application note describes some of the issues confronting the systems designer when
the 603e or PowerPC 603™ processors are used to implement a multiprocessor system.
Although the 603e (and the 603, unless otherwise noted) does not provide hardware
support for multiprocessor system functions provided by the PowerPC 604™

processor,
many of the hardware mechanisms of the 604 that allow efficient operation in
multiprocessing systems can be provided by operating system software routines. This
document describes attributes of the 603e that require operating system software support
to facilitate multiprocessor system operation.

Additional information about the topics discussed in this document can be found in

PowerPC 603e RISC Microprocessor User’s Manual

(order #: MPC603EUM/AD), and

Addendum to PowerPC 603e RISC Microprocessor User’s Manual: PowerPC 603e
Microprocessor Supplement and User’s Manual Errata

(order #: MPC603EUMAD/AD).

In this document, the terms‘603’, ‘603e’, and ‘604’ are used as abbreviations for ‘PowerPC
603 microprocessor’, ‘PowerPC 603e microprocessor’, and ‘PowerPC 604
microprocessor’, respectively. These microprocessors are available from Freescale as
MPC603, MPC603e, and MPC604, respectively.

Note that the 603e is implemented in both a 2.5-volt version (PID 0007v PowerPC 603e
microprocessor, abbreviated as PID7v-603e) and a 3.3-volt version (PID 0006 PowerPC
603e microprocessor, abbreviated as PID6-603e). The scope of this document encompasses
both implementations of the 603e unless otherwise noted.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Freescale Semiconductor

© Freescale Semiconductor, Inc., 2004. All rights reserved.

2

Multiprocessor Systems and the PowerPC 603e

To locate updates for this document, refer to the website at http://www.mot.com/powerpc/.

1.1 MEI Cache Coherency Protocol

The 603e cache coherency protocol is a subset of the modified, exclusive, shared, and invalid (MESI) four-
state cache protocol, the 603e implements only MEI, as shown in Figure 1. Cache block loads from pages
marked globally coherent are identified during bus transactions as write misses (read-with-intent-to-modify
operations), causing other 603e processors to flush (if the snooped cache block is modified) or invalidate (if
the snooped cache block is unmodified) the corresponding copies of data from their cache. When a 603e has
completed a cache block load, it is the exclusive owner of the data and may write to it without performing
an address-only bus transaction indicating the cache state change from exclusive to modified.

Figure 1. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Figure 1 shows the operation of the MEI protocol for memory pages or blocks with WIM settings of 001
(write-back, caching-not-inhibited, and memory coherency enforced). One exception to the treatment of a
read operation by the 603e as a snooped write is when the snooped operation is a caching-inhibited read
(either single-beat or burst). If the 603e gets the snoop hit on a modified cache block, it writes the block back
to memory and marks the block exclusive unmodified. If the cache block is marked exclusive unmodified
when the caching-inhibited read operation is snooped, no bus action is taken and the cache block remains
in the exclusive unmodified state. This treatment of caching-inhibited reads reduces the possibility of data
thrashing by letting noncaching devices read data from the 603e’s data cache without invalidating the entry.

Systems with multiple 603e processors sharing the bus can reduce the number of bus transactions caused
by read-induced cache block invalidations and flushes by minimizing the number of pages and blocks with
memory coherency enforced (WIM = 001).

SH = Snoop Hit
RH = Read Hit
RM = Read Miss
WH = Write Hit

SH/CRW = Snoop Hit, Cacheable Read/Write

WM = Write Miss

SH/CIR = Snoop Hit, Caching-Inhibited Read

Bus Transactions

= Snoop Push

= Cache Line Fill

INVALID

MODIFIED EXCLUSIVE

SH/CIRWH

RH RH

WH

SH

WM

SH/CRW SH/CRW

RM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Multiprocessor Systems and the PowerPC 603e

3

The sharing of program instructions among multiple 603e processors is not subject to the same coherency
restrictions enforced for data, because no snooping is performed in the 603e instruction cache.

1.2 TLB Synchronization

The 603e provides translation lookaside buffer (TLB) structures to maintain on-chip copies of the page table
entries (PTEs) resident in memory. Following power-up, hard reset, or in the course of certain operating
system operations, the TLB entries must be explicitly cleared before valid entries are loaded. The
Translation Lookaside Buffer Invalidate Entry (

tlbie)

 instruction is provided for the invalidation of TLB
entries. Execution of the

tlbie

 instruction by the 603e does not cause an address-only bus transaction to
signal other 603e processors to invalidate their matching copies of the PTE, and the 603e does not invalidate
TLBs in response to a TLB invalidation broadcast by any other processor. Synchronization of TLB entries
in a multiple 603e system must be performed by the operating system or other software.

However, the 603e provides a TLBISYNC signal input to allow for hardware synchronization of changes to
TLBs and PTEs when multiple 603e processors or direct-memory access (DMA) devices share the same
MMU translation tables. While the TLBISYNC signal is asserted, the 603e halts instruction execution after
executing a Translation Lookaside Buffer Synchronization (

tlbsync

) instruction until the TLBISYNC signal
is negated. If the

tlbsync

 instruction is executed with the TLBISYNC signal negated no internal or external
action occurs. With the use of external control logic, the TLBISYNC signal can provide a locking and
updating mechanism for the TLBs and PTEs of 603e processors in a multiprocessor system.

The Translation Lookaside Buffer Invalidate All (

tlbia)

 instruction is not implemented on the 603e, and
when its opcode is encountered, an illegal instruction program exception is generated. To invalidate all
entries in both TLBs, 32

tlbie

 instructions must be executed, incrementing the value in EA[15–19] by one
each time. The

tlbie

 instruction will invalidate four TLB entries when executed, clearing both the instruction
and data translation lookaside buffer (ITLB and DTLB) entries indexed by EA[15–19].

1.3 Cache Management Instructions and Bus Broadcasting

Table 1 provides an overview of the bus operations initiated by cache control instructions. None of the
instructions broadcast address-only transactions on the bus except the Data Cache Block Set to Zero (

dcbz

)
instruction, and no broadcasts by other bus masters are snooped by the 603e, with the exception of cache
block kill transactions. When the HID0[ABE] bit is set the PID7v-603e broadcasts address-only
transactions when the Data Cache Block Invalidate (

dcbi

), Data Cache Block Flush (

dcbf

), and Data Cache
Block Store (

dcbst

) instructions are executed. The 603e coherency logic does not provide a snoop response
to the

dcbi

,

dcbf

, and

dcbst

 instructions; therefore, the system designer must ensure that the correct
response is provided.

Table 1. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction Cache State Next Cache State Bus Operation Comment

sync

Don’t care No change None Waits for memory queues
to complete bus activity

icbi

Don’t care Invalid None —

dcbi

Don’t care Invalid None (Kill block*) —

dcbf

Invalid, exclusive Invalid None (Flush block*) —

Modi ed Invalid Write-with-kill Block is pushed

dcbst

Invalid, exclusive No change None (Clean block*) —

Modi ed Exclusive Write Block is pushed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Multiprocessor Systems and the PowerPC 603e

1.4 Memory Synchronization Using lwarx and stwcx. Instructions

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events and the order in which memory operations are seen by other processors or
memory access mechanisms. The Load Word and Reserve Indexed (

lwarx

)

and Store Word Conditional
Indexed (

stwcx.

)

instructions allow programmers to emulate common semaphore operations such as ‘test
and set,’ ‘compare and swap,’ ‘exchange memory,’ and ‘fetch and add.’ Examples of these operations can
be found in Appendix E, “Synchronization Programming Examples,” in

PowerPC

™

 Microprocessor
Family: The Programming Environments

user’s manual. Both the

lwarx

 instruction and its corresponding

stwcx.

 instruction must have the same effective address. Note that the reservation granularity is 32 bytes.

The concept behind the use of the

lwarx

 and

stwcx.

 instructions is that a processor may load a semaphore
from memory, compute a result based on the value of the semaphore, conditionally store it back to the same
location (only if that location has not been modified since it was first read), and determine if the store was
successful. If the reservation exists when the store is executed, the store is performed and the CR0[EQ] bit
is set. If the reservation does not exist when the store is executed, the target memory location is not modified
and the CR0[EQ] bit is cleared.

If the store is successful, the sequence of instructions from the read of the semaphore to the write that
updated the semaphore appear to execute atomically (that is, nothing modified the semaphore location
between the read and the update), thus providing the equivalent of a real atomic operation. However, in
reality, other processors may have read from the location during this operation. A read operation that hits a
reserved cache block invalidates the cache block but does not clear the reservation. The subsequent
execution of an

stwcx.

 instruction to the invalidated cache block holding the reservation causes a single-beat
write to memory, after which the reservation is cleared. A single-beat write operation is also performed if
the cache block addressed by the

stwcx.

 instruction is valid (that is, the

stwcx.

 instruction is treated as a
write-through operation).

While only one reservation can exist on any processor, more than one processor in a multiprocessor system
can concurrently reserve a cache block. The address associated with the reservation can be changed by a
subsequent

lwarx

 instruction. The conditional store is performed based upon the existence of a reservation
established by the preceding

lwarx

 regardless of whether the addresses match. A reservation held by the
processor is cleared either by executing an

stwcx.

 instruction to any address or by an attempt by some other
device to modify a location in the reservation granularity (32 bytes).

dcbz

Invalid Modi ed Write-with-kill —

Exclusive, modi ed Modi ed Kill block Writes over modi ed data

dcbt

Invalid No change Read Fetched cache block is
stored in touch load queue

Exclusive, modi ed No change None —

dcbtst

I No change Read-with-intent-to-
modify

Fetched cache block is
stored in touch load queue

Exclusive, modi ed No change None —

Note:

Bus operation performed when PID7v-603e HID0[ABE] is set.

Table 1. Bus Operations Caused by Cache Control Instructions (WIM = 001) (Continued)

Instruction Cache State Next Cache State Bus Operation Comment

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

