<table>
<thead>
<tr>
<th>Information</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>FCC, ETSI, EMC/RF emissions, adaptivity, DFS</td>
</tr>
<tr>
<td>Abstract</td>
<td>Provides general guidance and tips on how to test products based on NXP Wi-Fi devices for regulatory compliance (FCC, ETSI, etc.).</td>
</tr>
</tbody>
</table>
1 Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.2</td>
<td>17 August 2023</td>
<td>Modifications:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 2.1 "Reference documents": updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 3 "Certification process overview": updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 5.1 "Related parameters": updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 5.2 "Test preparation": updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 5.3 "General test procedure": updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 7 "Adjacent channel selectivity": added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 8 "Acronyms and abbreviations": updated</td>
</tr>
<tr>
<td>v.1</td>
<td>3 November 2020</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
2 Introduction

This application note provides general guidance to test products based on NXP devices for regulatory compliance with standards like FCC and ETSI.

Users of this document will work with the regulatory test labs and module vendors to achieve the certification of their product.

It is recommended to read this document prior to going to the lab for compliance testing.

2.1 Reference documents

<table>
<thead>
<tr>
<th>Document type</th>
<th>Descriptive title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>AN13009 - Wi-Fi Tx Power Table Management in Linux</td>
</tr>
<tr>
<td>note</td>
<td>AN13756 - ETSI Adaptivity and Receiver Blocking Tests</td>
</tr>
<tr>
<td>User manual</td>
<td>UM11490 - Feature Configuration Guide for NXP-based Wireless Modules on i.MX 8M Quad EVK</td>
</tr>
</tbody>
</table>

2.2 Using certified modules

If your product contains a wireless module that has already been regulatory certified, ask your module vendor for the regulatory certification.

We also strongly recommend that you use the same antenna as the one used by your module vendor, or an antenna with lower gain. Doing so may reduce the testing needed to demonstrate compliance, which helps reduce cost and delays to the project schedule.
3 Certification process overview

The regulatory certification is a multiple step process to be planned closely with the regulatory test lab. Start by determining the countries in which you plan to market your product. Each country may have its own regulations that can affect:

- The allowable frequencies (channels) and channel bandwidths that your product may operate on.
- The maximum transmit power that is allowed for each channel.
- Specific requirements for each operating frequency/channel (for example, adaptivity or dynamic frequency selection (DFS)).
- Test schedule. Some certifications, like DFS can require more time to get certified.

Typical standards related to regulatory compliance include:

- FCC: Part 15C, Part 15E
- ETSI EN 300 328, ETSI EN 301 893, ETSI EN 301 489, ETSI EN 300 440

After determining the target certifications, work with the regulatory test lab to determine a test plan to demonstrate compliance with the relevant requirements.
4 EMC/RF emissions

This section provides some guidance for EMC/RF emissions tests. These tests measure the emissions transmitted at the antenna to determine if they exceed regulatory limits. The limits and test conditions for these tests:

- Are defined in the regulatory domain (for example, FCC versus ETSI).
- May vary with the frequency/channel of operation (for example, 2.4 GHz band requirements may be different from 5 GHz band requirements).
- May depend on antenna gain.

The regulatory requirements may restrict both in-band (for example, power spectral density) and out-of-band (for example, harmonics of the signal) emissions.

4.1 Related parameters

For EMC/RF emissions testing, the key parameter that can be adjusted to meet compliance requirements is the RF transmit power. In general, the goal of compliance testing is to determine the highest transmit power level that can be used that still meets regulatory requirements.

If the regulatory requirements still cannot be met after reducing the transmit power level, consider using an antenna with lower gain. If you are using a certified module, contact your module vendor for assistance.

4.2 Test preparation

Prior to going to the lab for compliance testing, work with the regulatory test lab to put together a test plan. The test plan is based on:

- The countries (regulatory domains) that you plan to get certified for
- The frequencies/channels of operation (for example, 2.4 GHz and/or 5 GHz bands)
- The channel bandwidths of operation (for example, 20 MHz, 40 MHz, and/or 80 MHz)

The test plan includes test cases, which specify the following:

- Bands, channels, channel bandwidths
- Transmit power levels
- Data rates

If you are using a wireless module that is already certified, we recommend obtaining the power table from the module vendor. The power table includes information on transmit power levels that are compliant for the specific module design and relevant regulatory domain. This transmit power table can be the initial starting point for compliance testing for your product.
4.3 General test procedure

The test procedures and limits are generally defined by the relevant regulatory standard issued by organizations such as FCC and ETSI. This section provides some general tips on how to configure the radio for these tests.

1. For each test case, configure the radio to the desired band, channel, channel bandwidth, transmit power level and data rate. Look up the transmit power level for that particular radio configuration in the module transmit power table.
2. Enable continuous transmission mode.
3. Measure the emissions as required by the relevant standard, and determine the margin compared to limits. If the test case fails, adjust the power setting down by 1 dB and measure again. Continue until the test case passes. Record the final power setting and margin for passing condition.
4. Repeat the above process for all test cases.

Examples of test commands are provided in the application note AN13756 - ETSI Adaptivity and Receiver Blocking Tests (Section 2.1).

4.4 After testing is completed

The Wi-Fi power table includes the allowable channels, and transmit power levels used in normal operation out in the field. The power table specifies the target transmit power level based on channel, channel bandwidth, and data rate.

During compliance testing, it is recommended to record the transmit power levels that meet regulatory requirements.

After compliance testing is completed, verify the entries in the power table to ensure that the correct channels and transmit power levels are used. Adjust the values if needed.

Refer to the application note AN13009 – Wi-Fi TX Power Table Management in Linux (Section 2.1) for guidance on how to update the power table.
5 Adaptivity

ETSI EN300 328 and EN301 893 standards require adaptivity. The adaptivity test confirms the ability of the radio to hold off transmitting when an interfering signal is present. Meeting this requirement proves that the radio can safely share the spectrum with other users.

For the 2.4 GHz band, if the transmit power is less than +10 dBm EIRP, the adaptivity requirements do not apply.

Note: For applications using Bluetooth, reduce the transmit power to less than 10 dBm EIRP so that the adaptivity requirement does not apply.

5.1 Related parameters

The key Wi-Fi radio parameter that can be adjusted to meet the adaptivity requirement is the ED-MAC threshold. The ED-MAC threshold determines the sensitivity of the radio to interfering signals. One ED-MAC threshold is used for all 2.4 GHz channels and another threshold is used for all 5 GHz channels. The ED-MAC threshold can be enabled or disabled.

The ED-MAC threshold may need to be tuned to pass the adaptivity test. However, you should avoid tuning the ED-MAC threshold to be sensitive, since doing so can impact performance.

Note: Prior to testing adaptivity, ensure that you calibrated RSSI for accurate measurements. For more information, refer to the application note "Calibration Structure" for your device.

5.2 Test preparation

Prior to going to the test lab, prepare a test plan and review the general test procedure in Section 5.3 to be familiar with the related commands.

The test requires that the unit under test (UUT) transmits data to a companion device. The purpose of the test is to demonstrate that the data transmissions are paused when an interfering signal is present. Therefore, it is recommended to have a companion device (such as an access point) and a tool to generate data traffic (such as iPerf) available for the test.

5.3 General test procedure

The ETSI standard generally defines the test procedures and limits. Refer to the application note AN13756 – ETSI Adaptivity and Receiver Blocking Tests (Section 2.1) for guidance to configure your device for adaptivity testing.

5.4 After testing is completed

If the ED-MAC threshold required tuning to pass the compliance test, it is important to log the passing value of the threshold. There is one ED-MAC threshold for the 2.4 GHz band, and one threshold for the 5 GHz band. If you tested multiple channels per band during the compliance test, choose the lowest passing value for that band.

The system software must then set the ED-MAC threshold when the product boots, to ensure compliance when the product is used in the field.
6 DFS

FCC, ETSI, and other countries when operating on certain channels require dynamic frequency selection (DFS). DFS is a scheme that allows wireless networks to operate in certain bands used by radar systems. The requirements and test procedure can vary by country.

When a DFS controller detects radar on the current channel, it stops operating on that channel and moves to a new channel. The DFS controller is the role of the access point in a Wi-Fi network.

The DFS controller informs the DFS responders when a channel change is required. Examples of DFS responders are the stations, or the client devices in a Wi-Fi network.

DFS compliance testing is required to operate on channels that require DFS.

DFS responder operation is enabled by default in the firmware.

Work with the test lab to prepare a test plan prior to going to the lab for certification.

Note:

1. DFS controller testing is not covered in this revision of the document.
2. Prior to testing DFS, ensure that you calibrated RSSI for accurate measurements. For more information, refer to the application note "Calibration Structure" for your device.
7 Adjacent channel selectivity

Adjacent channel selectivity is a requirement of ETSI EN 300 440. The requirement applies only to short range devices (SRD) operating from 1 GHz to 40 GHz. These devices are defined as Receiver Category 1 (highly reliable SRD communication media). Adjacent channel selectivity is a measure of the ability of the receiver to operate satisfactorily in the presence of a strong unwanted signal in an adjacent channel.

In EN 300 440 v2.1.1, the k value range is $0 \text{ dB} < k < 40 \text{ dBm}$. In EN 300 440 v2.2.1, the k value range has been updated to $-40 \text{ dB} < k < 0 \text{ dB}$. If you declare your device as a Receiver Category 1 device, NXP recommends using EN 300 440 v2.2.1.

Note: The adjacent channel selectivity requirement does not apply to Receiver Category 2 or Receiver Category 3 devices.
8 Acronyms and abbreviations

Table 2. Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Dynamic frequency selection</td>
</tr>
<tr>
<td>ED-MAC</td>
<td>Energy detect – Media/medium access controller</td>
</tr>
<tr>
<td>EIRP</td>
<td>Effective isotropic radiated power</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>SRD</td>
<td>Short range device</td>
</tr>
<tr>
<td>UUT</td>
<td>Unit under test</td>
</tr>
</tbody>
</table>
9 Legal information

9.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer may incur for any reason whatsoever, NXP Semiconductors’ aggregate liability under this agreement for actual damages caused by its negligence shall not exceed the purchase price of the product(s) directly related to any claim.

NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or defect in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as “Critical Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

9.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. NXP — wordmark and logo are trademarks of NXP B.V. Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license. i.MX — is a trademark of NXP B.V.
Tables

Tab. 1. Reference documents .. 3
Tab. 2. Acronyms and abbreviations 10
Contents

1 Revision history .. 2
2 Introduction ... 3
 2.1 Reference documents ..3
 2.2 Using certified modules 3
3 Certification process overview 4
4 EMC/RF emissions ..5
 4.1 Related parameters ... 5
 4.2 Test preparation ...5
 4.3 General test procedure6
 4.4 After testing is completed6
5 Adaptivity ...7
 5.1 Related parameters ... 7
 5.2 Test preparation ...7
 5.3 General test procedure7
 5.4 After testing is completed7
6 DFS ... 8
7 Adjacent channel selectivity 9
8 Acronyms and abbreviations10
9 Legal information ...11