AN13040 How to use SCT to generate PWM and control BLDC motor on LPC51U68

Rev. 0 — 11/2020

Application Note

1 Introduction

The LPC51U68 based on Arm[®] Cortex[®]-M0+ is a low cost, low-power consumption, 32-bit Micro Controller Unit (MCU) family that operates at frequencies of up to 100 MHz and supports up to 256 KB on-chip flash memory and up to 96 KB total SRAM composed of up to 64 KB main SRAM, plus an additional 32 KB SRAM. The on-chip peripherals in LPC51U68 includes:

- One DMA controller
- 48 General-Purpose I/O (GPIO) pins
- One CRC engine
- One 12-bit ADC
- One 32-bit Real-Time Clock (RTC)
- One multiple-channel Multi-Rate 24-bit Timer (MRT)
- One Windowed Watchdog Timer (WWDT)
- Eight Flexcomm interfaces which can be selected by software to be a USART, SPI, or I²C interface

Contents

1	Introduction1
2	Brushless direct current motor
	composition2
3	Brushless direct current motor control
	principle3
3.1	BLDC power output stage3
3.2	Six-step commutation7
3.3	Commutation table9
3.4	PWM waveform9
4	System hardware overview 10
5	System software overview14
6	SCTimer/PWM-based BLDC motor
	control16
6.1	LPC51U68 SCTimer/PWM
	features16
6.2	SCTimer/PWM-based PWM
	control state machine17
6.3	SCTimer/PWM-based PWM
	waveform with dead time
7	System software implementation 18
7.1	Main program flow18
7.2	ADC configurations19
7.3	Pin multiplexing and GPIO
	configurations 20
7.4	Application state machine21
7.5	Pattern match engine and SCTimer
	configurations23
7.6	Get motor position23
7.7	Update SCTimer output23
7.8	SCTimer interrupt service routine
	25
8	FreeMASTER run-time debugging
	tool26 How to use LPC51U68 BLDC
9	How to use LPC51U68 BLDC
	application demo27
10	LPC51U68 BLDC application run in
	IDE debug mode 30

As the peripheral only available in NXP MCUs, the state configurable timer (SCTimer/PWM) is available on all LPC51U68 devices. It can work like traditional timer as a timer/counter. However, unlike traditional timer, a state machine is introduced to SCTimer/PWM. This is the most outstanding feature of SCTimer/PWM and it greatly enhances the configuration and control flexibility of LPC devices. Thanks to this feature, SCTimer/PWM is allowed to support multi-channel PWM with dead-time.

This application note demonstrates how to generate PWM with dead-time and implements 3-phase BrushLess Direct Current (BLDC) motor control including motor position detection based on Hall sensor and six-step commutation based on LPC51U68.

2 Brushless direct current motor composition

BLDC consists of a permanent-magnet rotor with a three-phase stator. Therefore, the winding as an electromagnet is wound on the stator to remain stationary while the rotor rotates as a permanent magnet.

BLDC, as the name suggests, is electronic commutation instead of mechanical brush commutation used by brushed direct current motor. In BLDC control, power should be supplied to the appropriate stator windings according to the position of the rotor to generate a proper magnetic field to ensure continuous motor rotation. Therefore, accurate rotor position is a key factor for the smooth and continuous rotation of the BLDC motor. In many applications, Hall-effect sensors are used to detect the rotor position and the microcontroller implements electronic commutation based on the position output of the Hall-effect sensor.

3 Brushless direct current motor control principle

3.1 BLDC power output stage

Motor control system usually needs to provide power outputs to drive the motor. However, the standard TTL/CMOS level signal generated by the microcontroller is not enough to drive the motor directly. Therefore, in most motor drive schemes, the microcontroller just generates control signals to drive the power output stage, and the power output stage drives the motor to rotate.

Figure 3 shows a basic three-phase motor control topology. The motor control topology is a three-phase inverter which is composed of six N-channel enhanced FETs(Field Effect Transistor) including Q1T, Q1B, Q2T, Q2B, Q3T, Q3B.

- PWM_1P and PWM_1N are for phase A and are applied on Q1T and Q1B.
- PWM 2P and PWM 2N are for phase B and are applied on Q2T and Q2B.
- PWM_3P and PWM_3N are for phase C and are applied on Q3T and Q3B.

The three pairs of complementary PWMs are all from MCU. If voltage applied on N-channel enhanced FET is high level, the FET is turned on and if voltage applied on N-channel enhanced FET is low level, the FET is turned off.

PWM modulation modes applied on BLDC power output stage can be divided into three types: restricted unipolar, unipolar, bipolar. There are different control waveforms and characteristics among these three modes. Topology structure and forward/ reverse current flow for restricted unipolar, unipolar, bipolar are shown in Figure 4, Figure 5, and Figure 6. Table 1 makes a comparison of the advantages and disadvantages of these three modes.

As shown in Figure 4, Figure 5, and Figure 6, topology of driving circuit is like English alphabet **H**. Therefore, it is also called as H-bridge driving circuit. Restricted unipolar mode applies PWM on single side top or bottom transistor and other side bottom or top transistor is on constantly. Unipolar mode applies complementary PWMs on single side two transistors and other side bottom transistor is on constantly. Bipolar mode applies one PWM on Q1 and Q4, other PWM on Q2 and Q3. These two PWMs are complementary.

NOTE This document uses unipolar mode to drive motor.

Table 1. Power output stage PWM modulation mode characteristics

Mode	Advantage	Disadvantage
		 No brake No energy consumption brake
Restricted unipolar	Simplify control	 No reverse torque when the load exceeds the set speed

Table continues on the next page ...

Mode	Advantage	Disadvantage
		 Large static difference Poor speed control performance Poor stability
Unipolar	 Fast start-up Acceleration Brake Energy consumption brake Energy feedback 	 No brake when speed is close to 0 Poor dynamic performance
Bipolar	 Clockwise or counterclockwise rotation Fast startup High precision of speed regulation Good dynamic performance Small static difference of speed regulation Wide range of speed regulation Wide range of speed regulation Acceleration, slowing down Brake Reverse torque when the load exceeds preset speed The static friction overcoming of motor bearing Very low rotation rate 	 Complex control Large power consumption

Table 1. Power output stage PWM modulation mode characteristics (continued)

In order to generate the specified phase current, the MOS FETs of the BLDC power output stage need to be turned on and off properly. Table 2 describes the relationship between phase current and power output stage MOS FET.

	Table 2. Relationship between phase current and MOS FETs of power output stage						
	Phase current ¹	Q1T ²	Q1B	Q2T	Q2B	Q3T	Q3B
	AB	PWM_1P ³	PWM_1N	Low	High	Low	Low
	AC	PWM_1P	PWM_1N	Low	Low	Low	High
	ВА	Low	High	PWM_2P	PWM_2N	Low	Low
	BC	Low	Low	PWM_2P	PWM_2N	Low	High
	CA	Low	High	Low	Low	PWM_3P	PWM_3N
1							

Table 2 Pelationship between phase current and MOS FETs of power output stage

Low

1. Phase current direction rule is that the first phase is input and the second phase is output. For example, AB means that phase A is input and phase B is output.

Low

2. Low means that apply low level on QxT or QxB and High means that apply high level on QxT or QxB.

3. PWM xP and PWM xN are complementary PWM pair and applied on QxT and QxB respectively.

Low

How to use SCT to generate PWM and control BLDC motor on LPC51U68, Rev. 0, 11/2020

СВ

PWM_3N

PWM_3P

High

3.2 Six-step commutation

Correct commutation is a key point for smooth and continuous rotation of the BLDC motor. In order to achieve correct commutation, two conditions should be met.

- 1. Precise commutation point is a must and this can be achieved by reading Hall sensor outputs.
- 2. It is important to make sure the commutation table is correct.

The commutation table describes the relationship between Hall sensor outputs and power sequence of three phases. Usually the commutation table is manually tested by the developer.

Three Hall sensors are installed at the position that is close to the rotor poles at 120 degrees of electrical angle in pairs, as shown in Figure 7. They determine the rotor position by detecting the rotor magnetic flux. The outputs of these three Hall sensors can be combined in six states except 000 and 111. The six states divide the 360-degree electrical angle into six sectors, as shown in Figure 8. Where, the Hb sensor is under the **N** pole of the permanent magnet and it outputs 1 signal. However, H_a and H_c are under the **P** pole of the permanent magnet.

Figure 9 shows an example for BLDC commutation. Now, the combined state of the Hall sensors is 010. For example, if the rotor rotates clockwise, it is crucial to generate magnetic field to move rotator from sector where the combined state of the Hall sensors is 010 to sector where the combined state of the Hall sensors is 011. The magnetic field in this direction can be generated when the current flows into phase A and flows out of phase C. According to this principle, if the rotor rotates counterclockwise, it is necessary to generate the current which flows into phase C and flows out of phase A.

After understanding the BLDC commutation principle, if the BLDC rotates clockwise, power-on sequence of the phase A, B and C windings is AC -> BC -> BA -> CA -> CB -> AB -> AC and if the BLDC rotates counterclockwise, power-on sequence of the phase A, B and C windings is AC -> BC -> BA -> CA -> CB -> AB -> AC and if the BLDC rotates counterclockwise, power-on sequence of the phase A, B and C windings is AC -> BC -> BA -> CA -> CB -> AB -> AC and if the BLDC rotates counterclockwise, power-on sequence of the phase A, B and C windings is AC -> BC -> BA -> CA -> CB -> AB -> AC and if the BLDC rotates counterclockwise, power-on sequence of the phase A, B and C windings is AC -> BC -> BA -> CA -> CB -> AB -> AC -> AC.

Finally, through the analysis of BLDC commutation, we can draw the following conclusions:

- The rotor rotates one circle and passes through a 360 degree of electrical angle.
- The winding excitation current needs to be changed every 60 degree of the rotor. This operation is also called as commutation. Therefore, 360-degree electrical angle undergoes a total of 6 commutations.
- The commutation point corresponds to the change of the Hall sensor output state.
- At a certain moment, only two-phase windings are powered, and the other phase winding is not powered.

3.3 Commutation table

The commutation table is a must so that the microcontroller can provide control on the BLDC. As mentioned above, the commutation table describes the relationship between the combined output value of the Hall sensors and the winding excitation.

Phase ID		Hall sensors ¹			Phase ²	
Flidse ID	а	b	с	А	В	С
1	0	1	1	NC ³	+4	_5
2	0	0	1	-	+	NC
3	1	0	1	-	NC	+
4	1	0	0	NC	-	+
5	1	1	0	+	-	NC
6	0	1	0	+	NC	-

Table 3. Commutation table for clockwise rotation

1. It is from Hall sensors output.

2. Phase value can be +, -, NC.

3. Symbol NC means that not connected, in other words, no voltage is applied on this phase.

4. Symbol + means that the current flows into this phase.

5. Symbol - means that the current flows out of this phase.

3.4 PWM waveform

As shown in Figure 3, the 3-phase currents are controlled by six-channel PWMs, including PWM_1P , PWM_1P , PWM_2P , PWM_2

System hardware overview

4 System hardware overview

System hardware of LPC51U68 BLDC application consists of three parts:

- One LPCXpresso51U68 (OM40005) evaluation board
- One FRDM-MC-LVBLDC Freedom development board
- One BLDC

The LPCXpresso51U68 (OM40005) evaluation board has been designed to enable evaluation of and prototyping with the LPC51U68 MCU leveraging the high-performance Cortex-M0+ core, power-efficiency and cost sensitive capabilities. The board also features an on-board CMSIS-DAP/SEGGER J-Link compatible debug probe.

The FRDM-MC-LVBLDC Freedom development board implements a 3-phase BLDC interface platform that adds BLDC motor control capabilities, such as rotational or linear motion, to user's applications.

Product model of the BLDC motor used in this document is 45ZWN24-40 from LINIX Motor Co., Ltd. This is a motor with a supply voltage up to 24 V and a power up to 40 W.

Block diagram and actual hardware of LPC51U68 BLDC development platform are shown in Figure 16 and Figure 17. Symbol **PA**, **PB** and **PC** means phase A, phase B and phase C, as shown in Figure 16.

The IO pin assignment for LPC51U68 BLDC application and the hardware connection relationship between LPC51U68 evaluation board and FRDM-MC-LVBLDC Freedom development board are shown in Table 4, Table 5, and Figure 18.

Function	LPC	Xpresso51U68	FRDM MC LVBLDC	
Function	Connector	Connector Function		Function
PWM A Top (PWM_1P)	J1-16	PIO0_7 (SCT0_OUT0)	J3-15	PWM_AT
PWM A Bottom (PWM_1N)	J2-15	PIO0_8(SCT0_OUT1)	J3-13	PWM_AB
PWM B Top (PWM_2P)	J2-13	PIO0_9(SCT0_OUT2)	J3-11	PWM_BT
PWM B Bottom (PWM_2N)	J2-11	PIO0_10(SCT0_OUT3)	J3-9	PWM_BB
PWM C Top (PWM_3P)	J8-7	PIO1_2(SCT0_OUT5)	J3-7	PWM_CT
PWM C Bottom (PWM_3N)	J2-20	PIO1_3(SCT0_OUT6)	J3-5	PWM_CB
Hall-A	J8-1	PIO0_2(PME_IN)	J3-3	ENC_A
Hall-B	J8-3	PIO0_3(PME_IN)	J3-1	ENC_B
Hall-C	J1-20	PIO0_5(PME_IN)	J1-3	ENC_I
Volt. DCB	J2-3	PIO1_0(ADC0_3)	J2-7	VOLT_DCB
Current DCB	J1-15	PIO1_1(ADC0_4)	J2-9	CUR_DCB
3V	J7-12	3V VCC	J3-8(4)	3V VCC
GND	J7-16(18)	7-16(18) GND		GND

Function	LPC>	(presso51U68	LPCXpresso51U68		
runcion	Connector	Function	Connector	Function	
PME_OUT/SCT_IN0	J1-18	PIO0_6 (GPIO)	J4-9	PIO0_23(GPIO)	

Table 5. Connection between LPCXpresso51U68 and LPCXpresso51U68

5 System software overview

System software of LPC51U68 BLDC application can drive the motor to achieve the following functional requirements:

- Start and Stop.
- Rotating direction control. Motor is able to rotate clockwise and counterclockwise.
- Speed control. Motor speed can be regulated from 500 rpm to 2500 rpm. The speed range depends on the motor used.
- FreeMASTER is able to provide real-time monitoring of motor status including setting and displaying of start/stop, speed, rotating direction and other motor parameters.

The functional block diagram of this application combining hardware and software is as shown in Figure 19.

As shown in Figure 19, the overall control process of LPC51U68 BLDC application is mainly completed by the following three parts:

• AppRun

This function regulates duty cycle of PWMs by obtaining the ramp speed so that the motor speed gradually reaches the preset target speed.

• ADC0_SEQA_IRQHandler

SCT_OUT7, as shown in Figure 19, is the 7th output channel of SCTimer and it is used as the trigger source for ADC sequence conversion which only converts 3rd and 4th channel of ADC. Once a sequence conversion of ADC is done, an interrupt will be generated and the Interrupt Service Routine (ISR) named as ADC0_SEQA_IRQHandler will be called. You can obtain the digitized values of the direct current bus voltage and current in this ISR. These two digitized values are usually used to detect the overcurrent, overvoltage and undervoltage faults.

• SCT0_IRQHandler

As mentioned above, the commutation is based on the rotor position detection using Hall sensor. Outputs of phase A,B and C of Hall sensor are connected to PO_2 , PO_3 , and PO_5 pins of LPC51U68. PO_2 , PO_3 , and PO_5 pins are configured as input source 0, 1 and 2 of Pattern Match Engine (PME) in LPC51U68. PME can detect rising and falling edges on the three

pins. Once an edge is detected on any of these three pins, PME will send a signal which is a level or edge to SCT input 0. When SCT input 0 receives a level or edge signal, SCT will generate an interrupt and interrupt service routine named as sct0_IRQHandler will be called to obtain motor position to complete commutation and update six PWM outputs.

6 SCTimer/PWM-based BLDC motor control

6.1 LPC51U68 SCTimer/PWM features

The SCTimer/PWM supports:

- · Eight inputs
- Eight outputs
- Ten match/capture registers
- Ten events
- Ten states

Counter/timer features:

- Each SCTimer is configurable as two 16-bit counters or one 32-bit counter.
- Counters clocked by system clock or selected input.
- Configurable as up counters or up-down counters.
- Configurable number of match and capture registers. Up to 10 match and capture registers total.
- Upon match and/or an input or output transition create the following events: interrupt; stop, limit, halt the timer or change counting direction; toggle outputs; change the state.
- Counter value can be loaded into capture register triggered by a match or input/output toggle.

PWM features:

- Counters can be used in conjunction with match registers to toggle outputs and create time-proportioned PWM signals. PWM waveforms can change based on the current state.
- Up to 8 single-edge or 4 dual-edge PWM outputs with independent duty cycle and common PWM cycle length.

Event creation features:

- In bi-directional mode, events can be enabled based on the count direction.
- The following conditions define an event: a counter match condition, an input (or output) condition such as an rising or falling edge or level, a combination of match and/or input/output condition.
- · Selected events can limit, halt, start, or stop a counter or change its direction.
- Events trigger state changes, output transitions, timer captures, interrupts, and DMA transactions.
- Match register 0 can be used as an automatic limit.
- In bi-directional mode, events can be enabled based on the count direction.
- · Match events can be held until another qualifying event occurs.

State control features:

- A state is defined by events that can happen in the state while the counter is running.
- A state changes into another state as a result of an event.
- · Each event can be assigned to one or more states.
- State variable allows sequencing across multiple counter cycles.

6.2 SCTimer/PWM-based PWM control state machine

As mentioned above, SCTimer/PWM contains a configurable state machine. This document uses the following state machine to complete BLDC motor control. This state machine is always available during the entire application run.

As shown in Figure 20, this state machine consists of three states: Idle, Transient and Active, and eight events, EV0 to EV7.

• Idle

The Idle state is the initial and default state.

Active

The Active state is used to generate 6-channel complementary PWM signals. Four events, EV3, EV4, EV5 and EV6, correspond to four edges, Edge 0, Edge 1, Edge 2 and Edge 3, respectively. Event labeled as EV6 is a limit event, which is used to determine the PWM period and the events labeled as EV4 and EV5 are used to determine the PWM duty cycle. In addition, Active state also contains an event labeled as EV7 which is used to trigger ADC conversion to obtain the direct current bus voltage and current.

Event labeled as EV0 occurs when the PME detects an edge at one of the Hall sensor outputs. This event is available both in Idle and Active. SCTimer should stop counting and reset the count value to 0 to prepare for commutation when this event occurs. Therefore, EV0 event is a stop and limit event.

Transient

The Transient state is entered when EV0 event occurs and it is used to update six-channel SCTimer outputs in order to perform commutation. Two events are defined in this state. The first event labeled as EV1 is used to drive outputs that need to go low to become low. The second event labeled as EV2 is used to set one output that needs to go high to become high and to prepare six-channel PWM signals. This second event is also a limiting event and it is used to update the PWM duty cycle.

When the state machine switches to the Transient state, SCTimer interrupt service routine named as scT0_IRQHandler is called to update six-channel SCTimer outputs by configuring the SCT OUT SET/CLR registers. Once this update is done, state machine returns to Active state again.

6.3 SCTimer/PWM-based PWM waveform with dead time

It is essential to insert dead time for the complementary PWM signals to prevent the two MOS transistors which may be Q1T/Q1B or Q2T/Q2B or Q3T/Q3B from being turned on simultaneously. Once this happens, it will cause permanent and irreversible damage to the power output stage.

This document adopts edge-aligned mode to generate PWM with dead time and the waveform details are as shown in Figure 21.

PWM period is determined by EV6 event and EV6 is a limit event to reset SCTimer counter to 0. Time duration between EV3 and Time Start is equal to the one between EV5 and EV4. The two time durations are all dead time. PWM duty cycle is determined by EV4 and EV5. If you want to regulate PWM duty cycle, move EV4 position and EV5 must be equal to the sum of EV4 and dead time.

7 System software implementation

This section elaborates on the software design of the LPC51U68 BLDC application, including main program flow, key peripheral configuration and key function analysis.

7.1 Main program flow

After power-on reset, LPC51U68 begins to execute main program flow which is implemented by main function. Main function first initializes on-chip peripherals, FreeMASTER protocol and application state machine, then enters an infinite loop to periodically call the FMSTR_Example_Poll function to query the commands sent from the FreeMASTER tool on PC end. The main program flow is as shown in Figure 22.

7.2 ADC configurations

ADC is triggered by SCTimer 7th output channel and converts direct current bus voltage on 3rd channel and current on 4th channel for overvoltage, undervoltage and overcurrent detection. Figure 23 shows the configurations for ADC sequence control register A and Figure 24 shows the ADC configuration flow.

```
ADCO->SEQ CTRL[0] = ADC SEQ CTRL CHANNELS(1<<3 | 1<<4) | //ADC IN3/4
                    ADC SEQ CTRL TRIGGER(2)
                                                      | //SCT OUT7 hw trigger
                    ADC SEQ CTRL TRIGPOL(1)
                                                       | //trigger @ positive edge
                    ADC SEQ CTRL SYNCBYPASS(0)
                                                      | //enable synchronization
                    ADC SEQ CTRL START(0)
                                                      | //do not START
                                                     | //no BURST
                    ADC SEQ CTRL BURST(0)
                    ADC SEQ CTRL SINGLESTEP(0)
                                                     //no SINGLESTEP
                    ADC SEQ CTRL LOWPRIO(0)
                                                      | //set SEQ A as high priority
                    ADC SEQ CTRL MODE(1)
                                                      | //retrieve data at the end of sequence
                    ADC_SEQ_CTRL_SEQ_ENA(1);
                                                          //enable sequence
Figure 23. ADC Sequence Control Register A configuration
```


7.3 Pin multiplexing and GPIO configurations

Pin multiplexing and GPIO configuration are performed by BOARD_InitPins and GPIO_Configuration() functions. Table 6 lists the pin function multiplexing and GPIO configuration of LPC51U68 BLDC application.

Table 6. Pin multiplexing and GPIO configurations

Pin	Function	Using in BLDC application	Input/Output (if it is GPIO)
P0_0	FC0_RXD_SDA_MOSI	USART RXD	_
P0_1	FC0_TXD_SCL_MISO	USART TXD	_
P0_2	PIO0_2	Hall Sensor Phase A	Input
P0_3	PIO0_3	Hall Sensor Phase B	Input
P0_5	PIO0_5	Hall Sensor Phase C	Input
P0_6	PIO0_6	PME Output	Output
P0_23	PIO0_23	SCTimer/PWM IN Channel 0	Input

Table continues on the next page...

Pin	Function	Using in BLDC application	Input/Output (if it is GPIO)
P0_7	SCT0_OUT0	SCTimer/PWM Out Channel 0	—
P0_8	SCT0_OUT1	SCTimer/PWM Out Channel 1	_
P0_9	SCT0_OUT2	SCTimer/PWM Out Channel 2	—
P0_10	SCT0_OUT3	SCTimer/PWM Out Channel 3	—
P1_2	SCT0_OUT5	SCTimer/PWM Out Channel 5	—
P1_3	SCT0_OUT6	SCTimer/PWM Out Channel 6	—
P1_0	ADC0_3	ADC IN Channel 3	—
P1_1	ADC0_4	ADC IN Channel 4	—
P0_21	PIO0_21	Debug	Output

Table 6. Pin multiplexing and GPIO configurations (continued)

7.4 Application state machine

LPC51U68 BLDC application state machine performs overall system control. Its roles are as follows:

- Motor start and stop control.
- Calculate the error between the actual speed and the target speed, and convert the error to PWM duty cycle, and finally calculate SCTimer match load register, MATCHREL, setting value according to PWM duty cycle and dead time.
- · Configure PME.
- Configure SCTimer and startup SCTimer/PWM-based PWM control state machine, as described in SCTimer/PWM-based PWM control state machine.

Figure 25 shows the state transition diagram of application state machine.

System software implementation

- AppInit is the state function of INIT state which is the initial state of application state machine. It is used to:
 - 1. Initialize variables related to BLDC application
 - 2. Call the MC_INIT function to initialize PME and SCTimer and startup PWM control state machine
 - 3. Call the AppInitToStop function to switch the state machine state to STOP.
- AppStop is the state function of STOP state. This function determines whether to call the AppStopToStart function to switch the state machine state to START according to the startup flag, ui8AppStartFlag. The ui8AppStartFlag flag can be controlled by FreeMASTER GUI running on the PC. If it is 1, it indicates that the motor is started. Otherwise, the motor is stopped.
- AppStart is the state function of START state. SCTimer starts up by clearing halting bit in SCTimer control register. Meanwhile, SCTimer/PWM-based PWM control state machine is also started to run. After SCTimer starts up, AppStartToRun is called to switch the state machine state to RUN.
- AppRun is the state function of RUN state. This function adjusts the output of the PI controller according to the error between the actual speed and the target speed, and then PI controller output is converted to PWM duty cycle.

- 1. As mentioned in SCTimer/PWM-based PWM waveform with dead time, PWM duty cycle is determined by EV4 and EV5 events.
- 2. According to the SCT_INIT function which is used to intialize SCTimer, EV4 event corresponds to match reload register 3 which is defined as macro MR3 and EV5 event corresponds to match reload register 4 which is defined as macro MR4. PWM duty cycle updating is done when MR3 and MR4 have been configured.
- 3. If motor startup flag named as ui8AppStartFlag is 0, AppRunToStop is executed to switch the state machine state to INIT.

7.5 Pattern match engine and SCTimer configurations

PME_Init and scT_Init are used to configure PME and SCTimer. The code project accompanying this document has detailed comments to explain the technical details about the two functions.

7.6 Get motor position

GET_MPOS is called by SCT0_IRQHandler which is the interrupt service routine of SCTimer to get the position of motor to determine which sector the motor is located in. The code for this function is as shown in Figure 26.

```
unsigned char GET MPOS(void)
                       {
                         //BLDC rotor position variable
                        unsigned char s MotorPosition;
                         //Count variable
                        unsigned int s i;
                         //Hall sensor phase A status
                        uint32 t pha;
                         //Hall sensor phase B status
                        uint32 t phb;
                         //Hall sensor phase C status
                        uint32 t phc;
                         //a short delay
                         for(s i=0; s i<10; s i++)</pre>
                         {
                         };
                         //clear BLDC rotor position variable
                         s MotorPosition = 0;
                         //Get Hall sensor A phase status
                         pha = ((GPIO->PIN[0] & (1 << M_PHA)) >> M_PHA) << 2;
                         //Get Hall sensor B phase status
                         phb = ((GPIO->PIN[0] & (1 << M PHB)) >> M PHB) << 1;
                         //Get Hall sensor C phase status
                        phc = ((GPIO->PIN[0] & (1 << M PHC)) >> M PHC) << 0;
                         //Get BLDC rotor position
                         s MotorPosition = pha | phb | phc;
                        return s_MotorPosition;
                       }
Figure 26. Get motor position
```

7.7 Update SCTimer output

As described in BLDC power output stage, this document adopts unipolar mode to drive the motor. Array defined as hall_to_pwm, as shown in Figure 27, is used to converts the Hall sensor states into PWM output combinations. Macro defined as PWM_TB_H_Lx

specifies the channels on which complementary PWM pair is applied, the channel on which high level is applied and the channels on which low level is applied.

```
#define PWM TB H Lx(PT, PB, H, L2, L1, L0) (
                                                             PT<<28 | PB<<24 |
                                                             H<<12 |
                                                             L2<<8 | L1<<4 | L0<<0
                                                            )
              const unsigned long hall to pwm[2][8] =
              {
                {
                  Ο,
                                             //000
                  PWM TB H Lx(5,6,4,3,2,1), //001
                  PWM TB H Lx(3,4,2,6,5,1), //010
                  PWM TB H Lx(5,6,2,4,3,1), //011
                  PWM TB H Lx(1,2,6,5,4,3), //100
                  PWM TB H Lx(1,2,4,6,5,3), //101
                  PWM TB H Lx(3,4,6,5,2,1), //110
                  0
                                              //111
                },
                { 0,
                                              //000
                  PWM TB H Lx(3,4,6,5,2,1), //001
                  PWM TB H Lx(1,2,4,6,5,3), //010
                  PWM TB H Lx(1,2,6,5,4,3), //011
                  PWM TB H Lx(5,6,2,4,3,1), //100
                  PWM TB H Lx(3,4,2,6,5,1), //101
                  PWM TB H Lx(5,6,4,3,2,1), //110
                  0
                                             //111
                3
              };
Figure 27. Hall-to-PWM array
```

Function named as update_sct_out extracts the channels on which complementary PWM pair is applied, the channel on which high level is applied and the channels on which low level is applied and updates SCTimer output channels. Key code segments are as shown in Figure 28 and Figure 29.

```
pwm_out_t = out_pwml_6_2_sct_out[(pwm_control>>28) & 0x0F];
pwm_out_b = out_pwml_6_2_sct_out[(pwm_control>>24) & 0x0F];
pwm_out_h = out_pwml_6_2_sct_out[(pwm_control>>12) & 0x0F];
pwm_out_12 = out_pwml_6_2_sct_out[(pwm_control>>8) & 0x0F];
pwm_out_11 = out_pwml_6_2_sct_out[(pwm_control>>4) & 0x0F];
pwm_out_10 = out_pwml_6_2_sct_out[(pwm_control>>0) & 0x0F];
```

Figure 28. Parse the SCTimer output channel

```
SCT0->OUT[pwm_out_t].SET = 1<<app_pwm_ev_edge0;
SCT0->OUT[pwm_out_t].CLR = 1<<app_pwm_ev_edge1 | 1<<app_pwm_ev_update0;
SCT0->OUT[pwm_out_b].SET = 1<<app_pwm_ev_edge2;
SCT0->OUT[pwm_out_b].CLR = 1<<app_pwm_ev_edge3 | 1<<app_pwm_ev_update0;
SCT0->OUT[pwm_out_h].SET = 1<<app_pwm_ev_update1;
SCT0->OUT[pwm_out_h].CLR = 0;
SCT0->OUT[pwm_out_12].SET = 0;
SCT0->OUT[pwm_out_12].CLR = 1<<app_pwm_ev_update0;
SCT0->OUT[pwm_out_11].SET = 0;
SCT0->OUT[pwm_out_11].SET = 0;
SCT0->OUT[pwm_out_11].CLR = 1<<app_pwm_ev_update0;
SCT0->OUT[pwm_out_10].SET = 0;
SCT0->OUT[pwm_out_10].CLR = 1<<app_pwm_ev_update0;</pre>
```

7.8 SCTimer interrupt service routine

SCT0_IRQHandler is the SCTimer interrupt service routine and it is mainly used to perform the commutation based on the motor position from Hall sensor. Figure 30 shows the program flow.

8 FreeMASTER run-time debugging tool

FreeMASTER is a user-friendly real-time debug monitor and data visualization tool and supports *non-intrusive monitoring* of variables on a running system and can *display multiple variables* on oscilloscope-like displays as standard widgets (gauges, sliders, and more) or as data in text form, offering simple-to-use data recorders.

FreeMASTER is used as a real-time monitoring tool for LPC51U68 BLDC application. Figure 31 shows the user interface for this application and Table 7 lists common-used variables. The project file is named as *SCT_BLDC_LPC51U68.pmpx* which is located in *boardsllpcxpresso51u68*|driver_examples|sctimer|common.

■ The Demo Project ► DC BUS current	Restance of the second			^{\$} freescale [*]
	EREEMA	STER D	emo	
	FreeMASTER is an application rur and control of the embedded applic	nning on MS Windows TM opera cation.	ating systems and enables	s real-time visualization, demonstration
	Press the 🕮 button in the toolbar communication port settings.	above to open or close the com	munication port. Go to me	nu Project / Options to change
	This example application demonstr FreeMASTER (formerly "PC Master			can find more information about the le.
	control page			
	Variable Watch			
Application Commands $- \mathbf{\nabla} \mathbf{P} \mathbf{X}$	AppState	Value APP_RUN [3]	Unit	100
[00] cmd_00()	abbstate			
	ui8AppStartFlag	motor startu	ip flag(Tsta	rt U:stop)
[01] cmd_01()	uloAppStarting			500rpm-2000rpm)
[02] cmd_02()		1000.06	rom	100
[03] cmd_03()	116 LargetSpeedRamped	0.209656	unit	100
	sSpeedRampParam.f16F sSpeedRampParam.f16F	0.00997925	unit unit	1000
	Speed	1185.8	Rom	100
	f16SpeedCoef	0.0748596 1022	unit	1000
	dutv speed limit monitor	3	DEC DEC	100
	speed limit monitor ol		DEC	0
	f16Idcb sSpeedCtrl.a32IGain	0.063446 0.00997925	A unit	1000
	sSpeedCtrl.a32PGain	0.5	unit	1000
	f16Vdcb f16IdcbHiahLimit	49.905 0.399811	V A	1000 1000
	f16Idcbl owl imit	0.299103	Α	1000
	motor rotating d	o irection(0:cloc	dec kwise 1:cour	1000 nterclockwise)
Application Co Variable Stimulus	J			
Figure 31. LPC51U68 BLDC application	FreeMASTER UI			

Table 7. Commonly-used FreeMASTER variables

Variable	Value	Unit	Attributes	Function
ui8AppStartFlag	0	_	read-write	Stop

Table continues on the next page ...

Variable	Value	Unit	Attributes	Function
	1			Start
f16TargetSpeed	500 - 2500	rpm	read-write	Target speed
Speed	Depending on actual measurement	rpm	read-only	Actual speed
s_Mdirection	0		read-write	Clockwise rotation
S_Mairection	1		reau-while	Counterclockwise rotation
f16TargetSpeedRamped	0.00213623* f16TargetSpeed		read-only	Target ramp speed
f16ldcb	Depending on actual measurement	A	read-only	Direct current bus current
f16Vdcb	Depending on actual measurement	V	read-only	Direct current bus voltage
f16ldcbHighLimit	0.399811	A	read-only	Direct current bus current upper limit
f16ldcbHighLimit	0.299103	A	read-only	Direct current bus current lower limit

Table 7. Commonly-used FreeMASTER variables (continued)

9 How to use LPC51U68 BLDC application demo

Please follow the steps below in order to run this application:

- 1. Prepare LPCXpresso51U68 evaluation board and FRDM-MC-LVBLDC motor driver board.
- 2. Compile the code project accompanying with this document to generate the executable program and download it to the LPCXpresso51U68 evaluation board. Then exit debug mode.
- 3. According to Table 4, Table 5, and Figure 18, use jumpers to connect the LPCXpresso51U68 evaluation board and FRDM-MC-LVBLDC motor driver board, as shown in Figure 17.
- 4. Connect the motor wires such as three phase outputs, HALL signals, 5 V and GND to the FRDM-MC-LVBLDC board.
- 5. Open FreeMASTER project file for this application. The project file is *SCT_BLDC_LPC51U68.pmpx* which is located in *boardsl/pcxpresso51u68\driver_examples\sctimer\common*.
- 6. Click Project -> Option, as shown in Figure 32. Figure 33 shows the configure communication interface.

SCT_BLDC_LPC51U68.pmpx - FreeMASTER							
Eile Edit View Explorer Project Tools Help							
i 🖙 🔚 🚳 🐠 🗝 📭 🛛 Variables 🗞 🕸 🗫							
Project Tree <u>C</u> ommands							
The Demo Project Reload Symbol File Ctrl+M							
DC BUS current							
Resource Files 2							
Qptions Ctrl+T							
FREEMASTE							
Figure 32. Enter project configuration interface							
Options ×							
Comm MAP Files Pack Dir HTML Pages Demo Mode Views & Bars							
-Communication							
Speed: 115200 Timeouts							
C Plug-in Module:							
Connect string:							
Save settings to project file Save settings to registry, use it as default.							
Communication state on startup and on project load							
C Open port at startup							
Do not open port at startup							
C Store port state on exit, apply it on startup Store state to project file, apply upon its load Advanced							
OK Cancel Apply Help							
Figure 33. Configure communication interface							

7. Click **MAP Files** to configure symbol file path, as shown in Figure 34. The symbol file path is *boardsl/pcxpresso51u68\driver_examples\sctimer\simple_pwm\iar\debug\sctimer_simple_pwm.out*.

Options Comm MAP Files	Click here to select executable file path × Pack Dir HTML Pages Demo Mode Views & Bars
Default symbol file <u>F</u> ile format:	e:\simple_pwm\iar\debug\sctimer_simple_pwm.out Binary ELF with DWARF2/DWARF4 dbg format. ▼ Edit Del
List of all valid symbol files:	\simple_pwm\iar\debug\sctimer_simple_pwm.out New Del View
	Note: The file selected in the list will be used as default symbol file when the project is opened
	□ Let the user select starting symbol file ✓ Synchronize variables each time the symbol file loads □ List errors (variables using undefined symbols) ● Always ○ Except after project load ○
	OK Cancel Apply Help
ure 34. Configure symbol file	path

- 8. Connect LPCXpresso51U68 evaluation board to PC using USB cable.
- 9. Supply the 12 V direct current voltage to the FRDM-MC-LVBLDC board and click the GO button on FreeMASTER.

SCT_BLDC_LPC51U68.pmpx - FreeMASTER
File Edit View Explorer Project Tools Help
: 🖆 🖬 🚳 🚥 🖷 🗈 🕋 🍲 🖕 🔶 😰 💷 🖄 🕸 😥 🏠 🛄 🛧 🔸
Project Tree
EREEMASTER DEMO
Figure 35. Start Up FreeMASTER Communication

- 10. LPC51U68 BLDC application user interface appears as shown in Figure 31.
 - Set ui8AppStartFlag to 1 or 0 to start or stop motor rotation.
 - Set **f16TargetSpeed** to specify desired speed.
 - Set s_Mdirection to select rotating direction, which is clockwise if s_Mdirection is 0 and counterclockwise if s_Mdirection is 1.

10 LPC51U68 BLDC application run in IDE debug mode

LPC51U68 BLDC application usually runs in normal mode, that is, non-debug mode. However, if it runs in debug mode, pause debugging will affect the operation of this application.

Refer to How to use LPC51U68 BLDC application demo and establish the operating environment of the application including software and hardware. This application is developed based on IAR Embedded Workbench. Therefore, download application code to LPC51U68 and then the application enters debug mode. Make the application run continuously without breakpoints in debug mode, and then click the pause debugging button in IAR to pause debugging. Meanwhile, use an oscilloscope to observe six PWM outputs and a possible result is as shown in Figure 36.

As shown in Figure 3 and Figure 36, PWM_2P and PWM_2N which consist of one complementary PWM pair are applied on Q2T and Q2B MOS transistors. Meanwhile, PWM_3N which is a constant high level is applied on Q3B. Refer to Table 2 and this means that the current flows into the motor B-phase winding and flows out of the C-phase winding. If the high PWM duty cycle causes the phase current to be more than 2A, the motor may heat up in a short time.

How to solve this problem? As shown in Figure 37 which is from Figure 27, SCT connections in UM11071 - LPC51U68 User manual with version 1.2, signal defined as **debug halted** can be used as SCTimer input. This signal is generated when the application debugging is paused. SCTimer can use this signal as event source and is configured to clear six PWM outputs and stop SCTimer when this event occurs. Figure 38 shows the key code segment.


```
//debug halt event is 8th event
 //debug halt may be generated when application is in idle or active or transient state
SCTO - >EV[8].STATE = (
                      (1<<app pwm st idle) |
                      (1<<app pwm st active) |
                      (1<<app pwm st transient)
                     );
SCT0->EV[8].CTRL = SCT EV CTRL DIRECTION(0x0) | //This event is triggered
                                                 //regardless of the count direction
                    SCT EV CTRL IOCOND(0x3)
                                              //high level is trigger condition
                    SCT EV CTRL OUTSEL(0x0) | //trigger source is input
                    SCT EV CTRL IOSEL(0x7) | //debug halt is connected to SCTimer input 7
                    SCT EV CTRL COMBMODE(0x2) | //only IO event can trigger this event
                    EVCTR_STATE_NO_CHANGE; //state no change
SCT0->OUT[app_out_pwm1].CLR = 0x100;//only event 8 can clear PWM out1
SCT0->OUT[app out pwm1].SET = 0;
SCT0->OUT[app out pwm2].CLR = 0x100;//only event 8 can clear PWM out2
SCT0->OUT[app_out_pwm2].SET = 0;
SCT0->OUT[app out pwm3].CLR = 0x100;//only event 8 can clear PWM out3
SCT0->OUT[app out pwm3].SET = 0;
SCT0->OUT[app out pwm4].CLR = 0x100;//only event 8 can clear PWM out4
SCT0->OUT[app out pwm4].SET = 0;
SCT0->OUT[app out pwm5].CLR = 0x100;//only event 8 can clear PWM out5
SCT0->OUT[app out pwm5].SET = 0;
SCT0->OUT[app out pwm6].CLR = 0x100;//only event 8 can clear PWM out6
SCT0->OUT[app out pwm6].SET = 0;
SCT0->STOP |= ((1<<8) | (1<<24)); //stop SCTimer when event 8 occurs
Figure 38. SCTimer Debug Halted Event Setting
```

Please follow the steps below to run this application in the debug mode:

- 1. Refer to How to use LPC51U68 BLDC application demo and follow the steps described in this chapter to establish the hardware and software environment required for this application to run.
- Use jumpers to connect six test channels and ground of logic analyzer to the six PWM inputs and ground on FRDM-MC-LVBLDC.
- 3. Compile the code project accompanying with this document to generate the executable program and download it to the LPCXpresso51U68 evaluation board. The application enters debug mode after downloading.
- 4. Click the run button or pause button shown in Figure 39 to run or pause this application.

5. Measure six PWM inputs on FRDM-MC-LVBLDC using logic analyzer and one possible result is shown in Figure 40. We can see that only PWM_2N and PWM_3N are high level, therefore, no current flows through the motor winding coil.

Start		•	0 s									
00 PWM_1P	۵											
01 PWM_1N	٥	+ 1	Low									
02 PWM_2P	٥	+£	Low									
03 PWM_2N	۵	+f	High									
04 PWM_3P	۵	+f	Low									
05 PWM_3N	۵	+£	Hiah									

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 11/2020 Document identifier: AN13040

arm