
 

© 2019 NXP B.V.  

 

 

 

 

Flash ECC Error Report Path and Safety 

Mechanism Implementation 

by: NXP Semiconductors 

 

1. Introduction 

MPC57XX family of 32-bit microcontrollers is widely 

used in integrated automotive application controllers. It 

belongs to an expanding range of automotive focused 

products designed for flexibility to support a variety of 

applications. The advanced and cost-efficient host 

processor core of the MPC57XX(includes MPC5746R, 

MPC5775B/E, MPC5777C) automotive controller 

family complies with the Power Architecture® 

embedded category. All devices in this family are built 

around a safety concept based on the delayed lockstep, 

targeting an ISO26262 ASIL-D (Design) integrity level. 

To meet the higher level of security needs, the safety 

requirements from the chip safety manual were 

complemented and were integrated in the safety library. 

For more detailed information about MPC57XX Safety 

Library please refer to the safety manual. 

This application note introduces some functions of the 

MPC57XX Safety Library. It focuses on introducing the 

theory and implementation of flash ECC error report 

path test. 

  

NXP Semiconductors Document Number: AN13067 

Application Notes Rev 0 .  11/2020 

Contents 

1. Introduction ........................................................................ 1 

2. ECC and Flash Memory Characters ................................... 2 

2.1. MPC57XX flash memory ....................................... 2 

2.2. ECC introduction .................................................... 3 

3. ECC Error Injection Implementation ................................. 6 

3.1. ECC error injection ................................................. 6 

3.2. ECC error detection ................................................ 9 

3.3. Software Implementation ...................................... 10 

4. The Demo Code and Test Results .................................... 12 

4.1. Test logic and code ............................................... 12 

4.2. Test results ............................................................ 13 

5. References ........................................................................ 13 



ECC and Flash memory characters 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

2  NXP Semiconductors 

 

2. ECC and Flash memory characters  

2.1. MPC57XX flash memory 

The primary function of the embedded flash memory is to serve as an electrically programmable and 

erasable non-volatile memory (NVM). It can be used for instruction and data storage. The following 

figure shows the top-level diagram and functional organization of the flash memory unit. 

 
Figure 1. Block diagram 

The embedded flash memory consists of address spaces in four groupings. 

• Low address space 

• Mid address space 

• High address space 

• 256 KB address space 

The main address space is divided into partitions. Each address space mentioned above consists of a 

partition pair. Partitions are used to determine locations for valid read-while-write (RWW) operations. 

While the embedded flash memory is performing a write (program or erase) operation to a given 

partition, it can simultaneously perform a read operation for any other partition. For program operations, 

only the address specified by an interlock write determines the partition being written (block locking and 



ECC and Flash memory characters 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

NXP Semiconductors  3 

 

block select registers do not determine the RWW partitions being written). For erase operations, only 

blocks that are selected and unlocked determine the RWW partitions being written.  

The main address space is also divided into blocks to implement independent erase and program 

protection. The UTEST NVM block also exists as a block and has an independent program protection. 

The UTEST NVM block is included to support systems that require nonvolatile memory (NVM) for 

safety or to store system initialization information. Safety library shall use one block flash memory to 

execute the FLASH ECC error report path test. This block is also used to store safety information of 

other safety library test, for example, the MISRs of the Flash array integration test. This flash block shall 

be declared in the linker file and could not be used to store another data. And it also could not be the 

same partition with a flash of programming safety core binary. 

The embedded flash memory is addressable by word (32 bits) or double word (64 bits) for program 

operation and page (256 bits) for a read operation. Multiple-words or double-word writes may be done 

in the flash memory to fill up the program page buffer (256bits), enabling page programming (256 bits, 

requiring 4 double-word writes) and quad-page programming (1024 bits, requiring 16 double-word 

writes). Flash memory reads always return 256 bits, although read page buffering may be performed by 

the Bus Interface Unit (BIU). 

Flash memory on-chip consists of a flash memory controller and a flash memory array module. The 

flash controller provides flash configuration and control functions and manages the interface between 

the flash memory array and the device crossbar switch. The following figure shows the flash memory 

architecture. The remaining sections give the functional details of the flash controller and flash array, 

followed by the memory maps. 

 

Figure 2. C55fmc memory block diagram 

2.2. ECC introduction 

To support market demand related to improved functional and transient fault detection capabilities, this 

family of automotive microcontrollers includes end-to-end ECC (e2eECC) support. This e2eECC is 



ECC and Flash memory characters 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

4  NXP Semiconductors 

 

structurally different from traditional “ECC at memory” functionality because it provides robust error 

detection capabilities from one endpoint of an information transfer to another endpoint, with temporary 

information stored in one or more intermediate components. 

 

Table 1. ECC comparison of data write-then-read sequence 

  

Memory protected by ECC/EDC traditionally generates and checks additional error parity information 

local to the memory unit to detect and/or correct errors that have occurred on data stored in the memory. 

On the other hand, e2eECC generates error protection codes at the source of data generation. It sends the 

encoded data and error protection codes to intermediate storage when a memory write is initiated by a bus 

master and performs a data integrity check using the previously-stored error protection codes at a data 

memory when a read of stored information is requested by a bus master. The intermediate storage may 

transform the generated error protection codes into another format for storage and then regenerate the 

codes for provision when a request is made to read the stored information or it may simply store the 

original protection codes unaltered, depending on the particular unit. 

Additionally, the error protection codes are generated based on more than just the data associated with a 

storage location to protect additional information associated with access. In particular, address information 

corresponding to the access location of the stored information is combined with the stored data at the data 

source to generate error protection codes that cover certain types of addressing errors in the system 

interconnector or in the memory unit. The error protection codes may be checked at the memory unit on 

a store to ensure that no address information or data has been corrupted while the request has transitioned 

through the device from the bus master source. The error protection codes may also be checked to ensure 

that address decoding within the storage memory was performed properly (although not all address 

decoding errors can be detected this way) or it may simply store the received data and protection codes at 

the address it receives. 

On a read request from a bus master, the memory unit retrieves the data information and error protection 

codes corresponding to the received address from the storage location or locations and supplies the data 



ECC and Flash memory characters 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

NXP Semiconductors  5 

 

along with the error protection codes to the requesting device. The requesting device uses a locally stored 

address value corresponding to the read request to check the returning data and error protection codes to 

ensure that no errors have occurred in either addressing the memory or in the retrieved data. This ensures 

that the address sent for the request was not corrupted, the addressed location was actually accessed (to 

the extent it is possible to ensure) and the stored data was error-free, to the extent the ECC coding scheme 

can detect. As a result, the fault coverage provided by the end-to-end check is considerably more robust 

than the previous implementation of locally generated and checked/corrected error protection at each 

memory unit. 

• Data check bits generation - external interfaces, 64-bit data ECC granularity 

• Internal data check bits generation - 32-bit data ECC granularity 

• The address portion of check bits generation, 64- or 32-bit data ECC granularity 

• CACHE and IMEM data check bits generation - 64-bit ECC granularity 

• D-CACHE and DMEM internal data check bits generation - 32-bit data ECC granularity 

 

 

Figure 3.  MPC5777C e2eECC overview 

 

Single bit errors are automatically corrected and will be reported to the ERM/MEMU module. Multiple 

bit ECC errors will be detected and different platforms will cause different behavior. 

For z0, z1, z3, and z6 versions of e200 cores. 

 

 

 

 

 

 



ECC error injection implementation 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

6  NXP Semiconductors 

 

Table 2. Multiple Bit ECC Error detection for z0/z1/z3/z6 

 
 

For z4 and z7 versions of e200 cores. 

 

Table 3. Multiple Bit ECC Error detection for z4/z7 

 

3. ECC error injection implementation 

3.1. ECC error injection 

Flash ECC error injection test includes two parts, single-bit error injection test and multi-bit error 

injection test. The safety library uses one flash block(the last one of the large block in this demo) to store 

some safety information for the flash ECC test. This block is divided into three parts and allocation is 

shown in Figure 4 and Figure 5. The first part is used to store important information(eg: Flash ECC 

injection test header information). The second part and the third part are used for the flash ECC test. The 

second part is four-byte alignment, and the third part is eight-byte(8 bytes shall generate ECC) 

alignment. The second part is used to record the usage of this flash block and the third part is used for 



ECC error injection implementation 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

NXP Semiconductors  7 

 

ECC error injection. After completing an ECC error injection test, the second part shall be updated. The 

system will erase all this block when any one of the three blocks is full. 

 

 

Figure 4.  The flash block allocation 

 

Figure 5.  The ECC info store mechanism 

3.1.1. Inject ECC 1-bit error 

Flash single-bit ECC error needs to be programmed twice. Follow the steps for programming it: 



ECC error injection implementation 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

8  NXP Semiconductors 

 

1) Enable the single-bit ECC error report in the flash controller. 

static void FS_FLASH_AccessEnableCEReport(const uint8_t flashInst) 

{  

       C55FMC_Type *pBase = s_pFlashRegList[flashInst];     
       /* Enable single bit ECC error reporting in flash controller */    

       pBase->UT0 = 0xF9F99999;    /* Enable UTE */ 
       /*Enable single bit error correction*/ 

       pBase->UT0 = C55FMC_UT0_SBCE(1); 

       pBase->UT0 = C55FMC_UT0_UTE(0); /* Disable UTE */ 
} 

2) Program to the same valid flash address twice to generate a single-bit ECC error. The first time 

program value are 0xFFFFFFFF and 0x00000000; and the second time program value are 

0xFFFFFFFF and 0x00000001. 

status = FS_FLASH_ProgramBytes(0xFFFFFFFF,  0x00000000, …); 

if (FS_STATUS_SUCCESS == status) 
{ 

status = FS_FLASH_ProgramBytes(0xFFFFFFFF, 0x00000001, …) 

} 

3.1.2. Inject ECC 2-bits error 

Flash 2-bits ECC error also needs to be programed twice. Program the same valid flash address twice to 

generate a 2-bits ECC error. Follow the below steps: 

1) The first time program value: 0x00450000 and 0x00000000;  

2) The second time program value: 0x00580000 and 0x00000000. 

status = FS_FLASH_ProgramBytes(0x00450000, 0x00000000); 
if  (FS_STATUS_SUCCESS == status) 

{ 
status = FS_FLASH_ProgramBytes(0x00580000, 0x00000000); 

} 

NOTE 

There are some special data that might generate the same ECC, so you 

need to avoid these cases. The data with the same ECC check bits is 

shown in Table 4. 

 

 

 

 

 

 

 

 



ECC error injection implementation 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

NXP Semiconductors  9 

 

Table 4. Data with the same ECC 

 

3.2. ECC error detection 

When a flash ECC error occurred, the error is reported to MEMU(MPC5746R)/ERM(MPC5775E, 

MPC5775B, MPC5777C) and FCCU module. MEMU module can record flash error type(1-bit / 2-bits) 

and error address. ERM module just record flash error type(1-bit / 2-bits).  

  

Figure 6. MPC5746R FCCU channel for flash 

 

 



ECC error injection implementation 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

10  NXP Semiconductors 

 

MPC5775E/ MPC5775B/MPC5777C FCCU channel for flash ECC error. 

 

Figure 7. MPC577x FCCU channel for flash 

MPC5746R MEMU has 20 entries for flash 1-bit error and 1 entry for flash 2-bits error. Each entry in 

the reporting table corresponds to a unique error event. 

 

Figure 8. MPC5746R MEMU entry for flash 

 

MPC5775E/ MPC5775B/MPC5777C ERM channel for flash ECC error 

 

Figure 9. MPC577x ERM channel for flash 

3.3. Software Implementation  

For software implementation follow the belowsteps: 

1. Fetching the flash ECC injection address; 

FS_FLASH_CalcEccErrReportAddr(&singleBitAddr, &multiBitAddr);  

2. Disable data cache; 

FS_CACHE_Disable(FS_CACHE_TYPE_DCACHE); 

3. 2-bit flash ECC error will lead to IVOR1, need to install exception call back function to jump out 

IVOR1. 

FS_EXCEPTION_RegisterCallback(…); 

3.3.1 ECC 1-bit software implementation 

The software procedure(initialization, injection, and check error flag) is completed by the steps shown in 

the following figure. 

 



ECC error injection implementation 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

NXP Semiconductors  11 

 

 

Figure 10.  Flash 1-bit ECC error report path flow 

3.3.2 ECC 2-bits software implementation 

The software procedure(initialization, injection, and check error flag) is being done by the steps shown 

in the following figure. 

  



Demo code and test results 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

12  NXP Semiconductors 

 

 

Figure 11.   Flash 2-bits ECC error report path flow 

4. Demo code and test results 

The purpose of the demo is to show how to inject 1-bit and 2-bit ECC error in internal FLASH (you can 

choose the 1-bit or 2-bit operation depend on the special application) and how to check flash ECC error 

with safety library base on MPC57XX MCUs. The demo is only possible to run in the internal FLASH 

target and the test block is invalid for application. Ensure the UART is working normally because all the 

test information will be printed through it. 

4.1. Test logic and code 

The whole sequence (test initialization, injection, handling and print result) shown in the following 

steps: 

1. Definition a test result  variable for test. 

fs_flash_ecc_report_path_test_result_t testObj; 

2. Definition and initialize  a test input variable for test. 

fs_flash_ecc_report_path_test_param_t testCfg =  
{ 

.singleBitSelect = 1; 

.multiBitSelect = 1; 
}; 

3. Configure the flash ECC test address in the linker file.  

FS_FLASH_ECC_ERR_PATH_TEST_ADDR = 0xBC0000; 



References 

Flash ECC Error Report Path and Safety Mechanism Implementation, Rev 0, 11/2020 

NXP Semiconductors  13 

 

4. Set the PIT timer 0 as delay timer. 

FS_TIMER_DelayInit(0); 

5. Initialize store safety information. 

FS_STORE_SafetyInfoStoreInit(); 

6. Initialize the flash ECC error report path test configuration. 

FS_FLASH_GetEccReportPathTestConfig(&testCfg); 

7.  Execute flash ECC error report path test. 

FS_FLASH_EccReportPathTest(&testObj); 

8. Check and print out test result.   

if (!testObj.singleBitPassed) 
{ 

         FS_PRINT_ERR("Failed to test Flash ECC single bit Err path.\n"); 

 } 
 if (!testObj.multiBitPassed) 

 { 
         FS_PRINT_ERR("Failed to test Flash ECC multi bit Err path.\n"); 

 }   

4.2. Test results 

UART is used to print the result of the Flash ECC error report path test.   

 

Figure 7.  Flash ECC error report path test result 

5. References 

• MPC57XX PRM 

• AN5288 

• AN5200 

 
 

 

 

https://www.nxp.com/docs/en/reference-manual/MPC5746RRM.pdf
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/docs/en/application-note/AN5200.pdf


 
 
 

 
 
 

Document Number: AN13067 
Rev 0 

11/2020 

   

 

How to Reach Us: 

Home Page: 

nxp.com 

Web Support: 

nxp.com/support 

Information in this document is provided solely to enable system and software 

implementers to use NXP products. There are no express or implied copyright licenses 

granted hereunder to design or fabricate any integrated circuits based on the 

information in this document. NXP reserves the right to make changes without further 

notice to any products herein. 

NXP makes no warranty, representation, or guarantee regarding the suitability of its 

products for any particular purpose, nor does NXP assume any liability arising out of 

the application or use of any product or circuit, and specifically disclaims any and all 

liability, including without limitation consequential or incidental damages. “Typical” 

parameters that may be provided in NXP data sheets and/or specifications can and do 

vary in different applications, and actual performance may vary over time. All operating 

parameters, including “typicals,” must be validated for each customer application by 

customer's technical experts. NXP does not convey any license under its patent rights 

nor the rights of others. NXP sells products pursuant to standard terms and conditions 

of sale, which can be found at the following address:nxp.com/SalesTermsandConditions. 

While NXP has implemented advanced security features, all products may be subject to 

unidentified vulnerabilities. Customers are responsible for the design and operation of 

their applications and products to reduce the effect of these vulnerabilities on 

customer’s  applications and products, and NXP accepts no liability for any vulnerability 

that is discovered. Customers should implement appropriate design and operating 

safeguards to minimize the risks associated with their applications and products. 

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, 

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, 

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, 

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, 

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the 

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, 

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, 

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the 

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, 

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, 

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names 

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, 

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of 

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, 

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, 

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the 

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of 

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the 

Power and Power.org logos and related marks are trademarks and service marks 

licensed by Power.org. 

© 2020 NXP B.V. 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. ECC and Flash memory characters
	2.1. MPC57XX flash memory
	2.2. ECC introduction

	3. ECC error injection implementation
	3.1. ECC error injection
	3.1.1. Inject ECC 1-bit error
	3.1.2. Inject ECC 2-bits error

	3.2. ECC error detection
	3.3. Software Implementation
	3.3.1 ECC 1-bit software implementation
	3.3.2 ECC 2-bits software implementation


	4. Demo code and test results
	4.1. Test logic and code
	4.2. Test results

	5. References

