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1 Introduction
The LPC55Sxx series MCU is a microcontroller based on the Arm®

Cortex®-M33 core, using the ARMv8-M architecture with TrustZone enabled.
LPC55S69 is one of the high-performance MCUs, including two Cortex-M33
cores, and CPU0 supports the security extension of TrustZone-M. FreeRTOS
is a lightweight embedded operating system. It has the characteristics of open
source code, portability, tailorability, and flexible scheduling strategy. It can
be easily transplanted to various embedded controllers and has been widely
used in various embedded products. This document takes an LPC55S69 as
example to describe how to use FreeRTOS in an ARMv8-M processor that
supports TrustZone.

2 Features of TrustZone technology
TrustZone technology has the following features:

• Allows users to divide memory map into Secure and Non-Secure regions.

• Blocks the debugging of secure code/data when not authenticated.

• CPU includes Security Attribution Unit (SAU) as well as a duplication of NVIC, MPU, SYSTICK, core control registers, etc.
Secure/Non-Secure codes have access to their own allocated resources.

• Stack management expands from two-stack pointers in original Cortex-M, Main Stack Pointer (MSP) and Process Stack
Pointer (PSP), to four, providing the above pairs individually to both Secure and Non-Secure.

• Introduces the concept of Secure Gateway opcode to allow secure code to define a strict set of entry points into it from a
Non-secure code.

TrustZone technology address some of the following security requirements of embedded systems directly.

• Data protection

Sensitive data are stored in Secure memory spaces and are only accessed by Secure software. Only after security check or
authentication, non-secure software can access to Secure APIs providing services to the Non-secure domain.

• Firmware protection

The pre-loaded firmware is stored in Secure memories to prevent it from being reverse engineered and compromised by
malicious attacks. TrustZone technology for ARMv8-M can work with extra protection techniques. For example, device level
read-out protection, a technique that is commonly used in the industry today, can be used with TrustZone technology for
ARMv8-M to protect the completed firmware of the final product.

• Operation protection

Software for critical operations can be pre-loaded as Secure firmware and the appropriate peripherals can be configured
to permit access from the Secure state only. In this way, the operations can be protected from intrusion from the
Non-secure side.

• Secure boot
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The Secure boot mechanism enables the confidence in the platform, as it will always boot from Secure memory.

3 Security environment configuration
This section introduces how to configure the security environment to use TrustZone technology to protect the important resources
of the system. LPC55S69 provides two levels of protection: CPU-level protection and system-level protection. TrustZone is
located inside CPU0 and belongs to CPU-level protection. In addition, LPC55S69 uses secure AHB controller to provide a layer
of system-level protection, as shown in Figure 1.

Figure 1. Two-level protection of LPC55S69

The configuration of the LPC55S69 security environment includes two parts: the configuration of TrustZone and the configuration
of the Secure AHB controller. The configuration of TrustZone is mainly the configuration of SAU.

3.1 TEE tool
The configuration of the security environment can be implemented by manually configuring the corresponding registers, or by
using NXP’s Trusted Execution Environment (TEE) tool. It is recommended that developers use TEE tool to quickly implement
the configuration of TrustZone and secure AHB controller. Figure 2 shows the GUI interface of TEE tool.
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Figure 2. GUI interface of TEE tool

For details on using TEE tool, see User Guide for MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG).

3.2 Secure/Non-secure state switch
After configuring the security environment of LPC55S69, users can use some special functions in the actual project to switch
between secure and non-secure states. Here are two special functions: Non-secure Callable (NSC function/Entry function) and
Non-secure function.

• NSC function

NSC functions are the secure functions that can be called by non-secure functions. NSC function needs to be defined with
the __attribute__((cmse_nonsecure_entry)) attribute. The example is as below.

__attribute__((cmse_nonsecure_entry)) void vToggleGreenLED(void)
{
     /* Toggle the on-board green LED. */
     GPIO_PortToggle(GPIO, LED_PORT, (1U << GREEN_LED_PIN));
}                

• Non-secure function

Non-secure functions are the functions that can be called by secure functions. Non-secure function needs to be defined with
the __attribute_((cmse_nonsecure_call)) attribute. The example is as below.

Typedef void _attribute_((cmse_nonsecure_call)) nsfunc(void);  
Nsfunc *FunctionPointer; 
FunctionPointer = cmse_nsfptr_create((nsfunc *) (0x21000248u)); 
If (cmse_is_nsfptr(FunctionPointer)) 
FunctionPointer();                

 
Non-secure functions must be called by the way of function pointers.

  NOTE  
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For more details about secure/non-secure state switching, see documents on TrustZone technology for ARMv8-M Architecture.

4 FreeRTOS usage with TrustZone
This section describes how to run FreeRTOS in LPC55S69 with TrustZone enabled. Officially FreeRTOS provides FreeRTOS
examples that support TrustZone to run on LPC55S69. FreeRTOS can be downloaded from Free RTOS. The path of LPC55S69
example is FreeRTOS/Demo/CORTEX_MPU_M33F_NXP_LPC55S69_MCUXpresso, as shown in Figure 3.

Figure 3. LPC55S69 FreeRTOS example

FreeRTOS provide documents about this demo. The documents can be downloaded from RTOS.

NXP's LPC55S69 SDK also provides a FreeRTOS example that supports TrustZone. The project name is freertos_tzm and
the path of the example is /SDK_2.8.2_LPCXpresso55S69_IAR/boards/lpcxpresso55s69/rtos_examples/freertos_tzm . The
freertos_tzm project is as shown in Figure 4.
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Figure 4. LPC55S69 freertos_tzm example in SDK v2.8

4.1 FreeRTOS example with TrustZone in SDK v2.8
This section takes the freertos_tzm project in SDK v2.8 as an example to introduce the workflow of FreeRTOS supporting
TrustZone. The workflow of freertos_tzm example is as shown in Figure 5.
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Figure 5. Workflow of the freertos_tzm demo

The memory partition of this project is as shown in Figure 6.

Figure 6. Memory partition in freertos_tzm example

Users can store some important resources in a secure region. FreeRTOS kernel is stored in a non-secure region, and the task
creation and scheduling process is also completed in the non-secure region. These non-secure tasks can access some specific
resources in the secure region by calling NSC functions, and secure functions can call the non-secure function to jump to the
non-secure region.

4.1.1 Create user task
In the freertos_tzm example, two user tasks are created, as shown in Figure 7.
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Figure 7. Create user tasks in non-secure world

When the user using the xTaskCreate() function to create a task in the non-secure region, a non-secure task stack will be
allocated. When the task is switched, the non-secure context can be stored in the non-secure task stack.

4.1.1.1 Allocate secure stack

Since the system memory is divided into a secure region and a non-secure region by TrustZone technology, it is possible to call
NSC functions when performing non-secure tasks. Therefore, it is also necessary to allocate a secure stack for the non-secure
task that call NSC functions to store the secure context. The allocation of the secure stack is completed when the non-secure task
is executed for the first time, as shown in Figure 8.

Figure 8. Allocate secure stack

When calling the portALLOCATE_SECURE_CONTEXT() function, an SVC interrupt is triggered, the
SecureContext_AllocateContext() function (NSC function) is called to allocate a secure space in the secure ucHeap array as
the secure stack for this non-secure task, and PSP_S and PSPLIM_S is initialized.

4.1.1.2 Define NSC function

After creating the task, users need to define the task function. If the non-secure task need to call the NSC function, they also need
to define the corresponding NSC function. The NSC function is defined in the nsc_functions.c file of the secure project. The NSC
function required by the freertos_tzm project is as shown in Table 1.
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Table 1. NSC functions

NSC function

uint32_t NSCFunction(Callback_t pxCallback)

void vToggleGreenLED(void)

void vToggleBlueLED(void)

uint32_t getSystemCoreClock(void)

4.1.2 Task switching
For MCUs supporting TrustZone, the context switch in FreeRTOS is different from the MCUs based on cortex-M3, M4, and M7
cores. This section introduces the task switching process of FreeRTOS supporting TrustZone. As it involves mutual call between
secure functions and non-secure functions, the CPU uses some banked core registers in the secure and non-secure region, such
as PSP, MSP, PSPLIM, MSPLIM, CONTROL registers, etc.. It makes the FreeRTOS task switching process more complex.

4.1.2.1 PendSV interrupt service process

The task switching process of FreeRTOS is completed in the PendSV interrupt service function. The task switching process of
FreeRTOS supporting TrustZone is as shown in Figure 9.
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Figure 9. Task switching process of FreeRTOS supporting TrustZone

 
The complete NS context in Figure 9 contains 12 values: {R4-R11}, xSecureContext, PSPLIM, CONTROL, LR. The
partial NS context contains only four values: xSecureContext, PSPLIM, CONTROL, LR.

  NOTE  

4.1.2.2 Store the context of the current task

When performing task switching, users need to store the current task context first. The MCU based on CM33 core may call NSC
functions when performing non-secure tasks. Therefore, when storing the current task context, they need to judge whether the
current task calls NSC function firstly, that is, whether there is a secure context related to the current task (according to the value
of the variable xSecureContext to determine whether the NSC function is called, if the variable value is not 0, it means that the
secure function is called):

• If there is a secure context, the program must first jump to the secure region to store the secure context. Store the value of
the PSP_S and PSPLIM_S to the corresponding secure stack.

— After storing the secure context, it is necessary to judge whether the NSC function is interrupted or the non-secure
function is interrupted during the task switching. According to the value of bit 6 of EXC_RETURN/LR, if bit 6 is 1, it
means the execution of the NSC function is interrupted; and if bit 6 is 0, it means that the non-secure function
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is interrupted). If the NSC function is interrupted, because {r4 -r11} registers have been stored to the non-secure
stack before calling NSC function and the secure context has also been stored to the secure stack, only part of the
non-secure context (xSecureContext , PSPLIM, CONTROL, LR) needs to be stored.

— If the non-secure function is interrupted, users need to store the complete non-secure context including {r4-r11},
xSecureContext, PSPLIM, CONTROL, LR.

• If the current task does not call the NSC function, users only need to store the complete non-secure context, as shown in
Figure 10.

Figure 10. Store completed non-secure context

 
The freertos_tzm project enables MPU by default.

  NOTE  

4.1.2.3 Select the next ready task

After storing the context of the current task, the program will jump to the select_next_task stage to search for the task with the
highest priority in the task ready table, as shown in Figure 11.

Figure 11. Select next task

4.1.2.4 Restore the context of the next task

The process of context restoration and storation is similar. It is necessary to restore some non-secure context (xSecureContext,
PSPLIM, CONTROL, LR) first, and then judge whether the next task calls the NSC function according to the value of the variable
xSecureContext, that is, whether there is a secure context.

• If there is a secure context,

1. Restore the secure context.
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2. Restore the value of PSP_S and PSPLIM_S.

3. Return to the non-secure region to restore some non-secure context, xSecureContext, PSPLIM, CONTROL, LR.

4. Juddge whether the execution of the NSC function was interrupted or the execution of the non-secure function was
interrupted according to the value of EXC_RETURN.

— If the execution of the non-secure function is interrupted, users need to continue to restore the value of the r4
– r11 registers.

— If the execution of the NSC function is interrupted, just exit PendSV interrupt, because the secure context has
been restored.

• If there is no secure context, users only need to restore the non-secure context.

Figure 12. Restore next task context

4.1.3 Run freertos_tzm example
In this example, two user tasks are created.

• prvSecureCallingTask

This task calls the NSC function to increase ulSecureCounter by 1 and then call the non-secure callback to increase
ulNonSecureCounter by 1. Assert whether ulSecureCounter and ulNonSecureCounter are both increased by 1, and then
toggle the Green LED once. The workflow is as shown in Figure 5. This task is executed once every second.

• prvLEDTogglingTask

Toggle Blue LED once. This task is executed once every second.

After running the program, we can find that the Green LED and Blue LED flash alternately, and the flashing period is 1 second.

4.2 A safer way to use FreeRTOS
In some cases, placing the FreeRTOS kernel and user tasks in the non-secure region is not enough to meet the security
requirements of the system. At this time, we can consider placing the FreeRTOS kernel and some important tasks in the secure
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region and others in the non-secure region, thus ensuring that the operating system is protected from non-secure attacks and
improving the security of the system.

This section introduces a new method to support TrustZone in FreeRTOS: place the FreeRTOS kernel and important tasks in the
secure region and other user tasks in the non-secure region, as shown in Figure 13.

Figure 13. A safer way to use FreeRTOS

For the details, see Method to support TrustZone-M in FreeRTOS. Users can refer to this method to make their system
more secure.

5 Reference
• User Guide for MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG)

• LPC55S6x/LPC55S2x/LPC552x User manual (document UM11126)

• TrustZone technology for ARMv8-M Architecture

• Method to support TrustZone-M in FreeRTOS
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