AN13094

Using FreeRTOS on LPC55Sxx Series Microcontrollers with

TrustZone

Rev. 0 — January 15, 2020 Application Note
by: NXP Semiconductors

. Contents
1 Introduction 1 Introduction..........ccceeeeeiieceeesiieennnns 1
The LPC55Sxx series MCU is a microcontroller based on the Arm® 2 Features of TrustZone technology
Cortex®-M33 core, using the ARMv8-M architecture with TrustZone enabled. 3 SecurltyenVIronmentconflguratlon 1
LPC55569 is one of the high-performance MCUSs, including two Cortex-M33 = 7 2
cores, and CPUO supports the security extension of TrustZone-M. FreeRTOS 31 TEE toOl. oo 2
is a lightweight embedded operating system. It has the characteristics of open 3.2 Secure/Non-secure state switch
source code, portability, tailorability, and flexible scheduling strategy. It can 3
be easily transplanted to various embedded controllers and has been widely 4 FreeRTOS usage with TrustZone... 4
used in various embedded products. This document takes an LPC55S69 as 41 FreeRTOS example with
example to describe how to use FreeRTOS in an ARMv8-M processor that TrustZone in SDKv2.8................. 5
supports TrustZone. 4.2 A safer way to use FreeRTOS... 11
5 Reference.........ccoveeeeniceenniieenienns 12

2

Features of TrustZone technology

TrustZone technology has the following features:

Allows users to divide memory map into Secure and Non-Secure regions.
Blocks the debugging of secure code/data when not authenticated.

CPU includes Security Attribution Unit (SAU) as well as a duplication of NVIC, MPU, SYSTICK, core control registers, etc.
Secure/Non-Secure codes have access to their own allocated resources.

Stack management expands from two-stack pointers in original Cortex-M, Main Stack Pointer (MSP) and Process Stack
Pointer (PSP), to four, providing the above pairs individually to both Secure and Non-Secure.

Introduces the concept of Secure Gateway opcode to allow secure code to define a strict set of entry points into it from a
Non-secure code.

TrustZone technology address some of the following security requirements of embedded systems directly.

Data protection

Sensitive data are stored in Secure memory spaces and are only accessed by Secure software. Only after security check or
authentication, non-secure software can access to Secure APlIs providing services to the Non-secure domain.

Firmware protection

The pre-loaded firmware is stored in Secure memories to prevent it from being reverse engineered and compromised by
malicious attacks. TrustZone technology for ARMv8-M can work with extra protection techniques. For example, device level
read-out protection, a technique that is commonly used in the industry today, can be used with TrustZone technology for
ARMv8-M to protect the completed firmware of the final product.

Operation protection

Software for critical operations can be pre-loaded as Secure firmware and the appropriate peripherals can be configured
to permit access from the Secure state only. In this way, the operations can be protected from intrusion from the
Non-secure side.

Secure boot

h
P

NXP Semiconductors

Security environment configuration

The Secure boot mechanism enables the confidence in the platform, as it will always boot from Secure memory.

3 Security environment configuration

This section introduces how to configure the security environment to use TrustZone technology to protect the important resources
of the system. LPC55S69 provides two levels of protection: CPU-level protection and system-level protection. TrustZone is
located inside CPUO and belongs to CPU-level protection. In addition, LPC55S69 uses secure AHB controller to provide a layer
of system-level protection, as shown in Figure 1.

¥ other
Cortex-M33 DMAD DMAT bus ves
masters
SAU
| | |
u] | usw| MSW | MSW | Multilayer AHB Matrix
CPU-level protectiol o (implemen(s data gating)
=
o /
" C ey ———————— Y - T
(o Flash
I- = Memol
o] ROM
L] § Memol
PRIV =]
' HNOSEC] H
i & H SRAM
= Memo
—
M £ SRAM
= Memo

Bridg

E

3

.
.
3

=3
[

Ti

e

3
2
L]

Figure 1. Two-level protection of LPC55S69

The configuration of the LPC55S69 security environment includes two parts: the configuration of TrustZone and the configuration
of the Secure AHB controller. The configuration of TrustZone is mainly the configuration of SAU.

3.1 TEE tool

The configuration of the security environment can be implemented by manually configuring the corresponding registers, or by
using NXP’s Trusted Execution Environment (TEE) tool. It is recommended that developers use TEE tool to quickly implement
the configuration of TrustZone and secure AHB controller. Figure 2 shows the GUI interface of TEE tool.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020
Application Note 2/13

NXP Semiconductors

Security environment configuration

@8 workspace - IpoxpressoS5s6Q_hello_world/source/hello_world.c - MCUXpresso IDE

Fle Edit Source Refactor Navigate Search Project ConfigTools TEE Run Window Help

BRI ccRiOsDemo vi#

5& User Memory Regions | % Security access configuration
SAU|MPC| Masters/Slaves| Interrupts Pins Miscellaneous

Options
[l Enable SAU N

i B Update Code ¥ os

(] Generate sources for disabled regions

SAU Memory Regions

Index Enable Address Size End address Secuity Level
0 M 0x00000000 0x10000000 OxOFFFFFFF NS
1 =4 0x20000000 0xE0000000 OFFFFFFFF NS
2 & 0x1000FEO0 0x00000200 0x1000FFFF NSC

Figure 2. GUI interface of TEE tool

evavesy vl
1 Memory attribution map
Core 0] Other masters

[JFiter access for

(/] Show details [] Merged SAU+IDAU [] Show Code [Show Data [_] Show Peripherals

RAM 4 (alias)

RAM 3 (alias)

RAM 2 (alias)

RAM 1 (alias)

RAM 0 (alias)

RAM 4
RaM 3 ||

RAM 2

RAM 1

RAM 0

SRAM X (alias)

Boot-ROM (alias)

FLASH (alias)

SRAM X

Boot-ROM

SAU+IDAU MPC/PPC Resulting security le...

s NS-User s
s NS-User s
s NS-User s
s NS-User s
s NS-User s
s S-priv s
NS NS-User NS
NS NS-User NS
NS NS-User NS
NS NS-User nNs
NS NS-User NS
NS NS-User NS
NS S+Priv ns
s NS-User s
s NS-User s
s NS-User s

NSC SPriv NSC
s S-priv s
NS NS-User NS
NS NS-User nNs

Ox30043FFF

x30040000
ex3083FFFF
x30030000
ex3002FFFF

ex30020000
ex30@1FFFF

x30010000
ex3000FFFF
0x30008000
0x30007FFF
x30000000
x20843FFF
0x20042000
OX2003FFFF
0x20033000
8x20832FFF
0x20030000
©x2082FFFF

ex20020000
©x2001FFFF

ex20010000
©X2000FFFF
©x20808000
©x20807FFF
ex20000000
ex14807FFF
x14000000
x1381FFFF

©x13600000
@x1089FFFF

ex10010000
@x1000FFFF
©x1000FE0Q
©@x1000FDFF
ex10000000
x8480T7FFF
x04000000
€x3B1FFFF

x03000000
©x00BIFFFF

- >
Quick EIPT TN
B Code Preview

tzm_config.c@Cortex-M33 (Core #0) tzm configh@Cortex-M33 (Core #0) @ Qi 7

MCUXpr

o Config Tools
Uxpresso Config Too

SETTING FOR TOOLS =**=sxswssxmssusnss

BD100

0.1
FYING THIS COMMENT SETTINGS FOR

* BE C IT IS YAML
clang-format on *

16

17#include "fsl_common.h”

]Sa(ure Stacka o
13#tinclude "tam_config.h”
13

SAU region boundaries
25 #tdefine REGION_O_BASE 8
26 #idefine REGION_O_END @x8FFFFFFFU

Non-secure St.
28#define REGION_L_END @XFFFFFFFFU
29#define REGION_2_BASE @x1000FEGOU

3@#define REGION_2_END @x1@@eFFFFU

clang-format off *
TEXT BELOW IS USED AS SETTING FOR TOOLS
e

& Problems L
Veneer Table lterten
Level Issue Origin Target R
Secure Code . .
Warnir Memory region overla... TEE s
1 Inform Ending address is not .. TEE U

For details on using TEE tool, see User Guide for MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG).

3.2 Secure/Non-secure state switch

After configuring the security environment of LPC55S69, users can use some special functions in the actual project to switch
between secure and non-secure states. Here are two special functions: Non-secure Callable (NSC function/Entry function) and

Non-secure function.

* NSC function

NSC functions are the secure functions that can be called by non-secure functions. NSC function needs to be defined with
the attribute ((cmse nonsecure entry)) attribute. The example is as below.

__attribute ((cmse nonsecure entry)) void vToggleGreenLED (void)

{

/* Toggle the on-board green LED.
LED_PORT,

GPIO_ PortToggle (GPIO,

* Non-secure function

*/

(10 << GREEN LED PIN));

Non-secure functions are the functions that can be called by secure functions. Non-secure function needs to be defined with
the attribute ((cmse nonsecure call)) attribute. The example is as below.

Typedef void attribute ((cmse nonsecure call))

Nsfunc *FunctionPointer;

FunctionPointer
If
FunctionPointer () ;

cmse_nsfptr create ((nsfunc *)
(cmse_is nsfptr (FunctionPointer))

NOTE

nsfunc (void) ;

(0x21000248u)) ;

Non-secure functions must be called by the way of function pointers.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note

3/13

https://www.nxp.com/docs/en/user-guide/GSMCUXCTUG.pdf

NXP Semiconductors

FreeRTOS usage with TrustZone

For more details about secure/non-secure state switching, see documents on TrustZone technology for ARMv8-M Architecture.

4 FreeRTOS usage with TrustZone

This section describes how to run FreeRTOS in LPC55S69 with TrustZone enabled. Officially FreeRTOS provides FreeRTOS
examples that support TrustZone to run on LPC55S69. FreeRTOS can be downloaded from Free RTOS. The path of LPC55S69
example is FreeRTOS/Demo/CORTEX_MPU_M33F_NXP_LPC55569_MCUXpresso, as shown in Figure 3.

s

Name

CORTEX_MPU_LM3Sxxxx_Rowley
CORTEX_MPU_LPC1768_GCC_RedSuite
CORTEX_MPU_LPC54018_MCUXpresso
CORTEX_MPU_M3_NUCLEO_L152RE_GCC
CORTEX_MPU_M7_NUCLEQ_H743712_GCC_IAR_...
CORTEX_MPU M23 Nuvoton NuMaker PFM M...
CORTEX_MPU_M33F_NXP_LPC55569_MCUXpre...
CORTEX_MPU_M33F_Simulator_Keil GCC
CORTEX_MPU_Simulator_Keil GCC

CORTEX_MPU Static Simulator Keil GCC

Figure 3. LPC55S69 FreeRTOS example

Date modified

2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59
2020/11/17 19:59

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

2(C) » my_project » LPC_NPI » Niobed > FreeRTOSv202011.00 » FreeRTOSv202011.00 > FreeRTOS » Demo

Size

FreeRTOS provide documents about this demo. The documents can be downloaded from RTOS.

NXP's LPC55S69 SDK also provides a FreeRTOS example that supports TrustZone. The project name is freerfos_tzm and
the path of the example is /SDK_2.8.2_LPCXpresso55S69_IAR/boards/lpcxpresso55569/rtos_examples/freertos_tzm . The

freerfos_tzm project is as shown in Figure 4.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note

4/13

https://developer.arm.com/documentation/100690/latest/
https://www.freertos.org/a00104.html
https://www.freertos.org/RTOS-Cortex-M33-LPC55S69-MCUXpresso-GCC.html

NXP Semiconductors

FreeRTOS usage with TrustZone

@ freertos_tzm - 1AR Embedded Workbench IDE - Arm 8.40.2
File Edit View Project CMSIS-DAP Tools Window Help

NOR@ = %I DC < Q>%r2< B> A®=0" 05
Waorkspace * 0 X | mainsc x
freertos_blinky_ns - debug ~
. 112
Files oo 113 /% Secure main(). */
B Fireertos_tzm 114 B #41
@ freertos_blinky_s - debug v 115 T * @brief Main function
L& @ treertos_blinky_ns - debug v 116 i
M board 117 int main(void)
B CMSIS e H {
H component 118 /* Init board hardware. */
i device 120 /% set BOD VBAT level to 1.5V
-— doc 121 BOWER_SetBodVbatLevel (KPOWER BodVbatLevelléSOmv, KPOWER BodHystLevelSimv, false);
i drivers igg gpio_pin config t xledConfig = {.pinDirection = kGPIC0 DigitalOutput, .cutputlogic = l};
= M freertos P)« Tnitialize GPIO for LED
— /% Initialize GPIO for LEDs. *;
freenosfkernel 125 GBIO_PortInit(GPIO, LED PORT);
Fa 126 GEIO_PinInit(GEI0, LED_FORT, GREEN LED PIN, &(xLedConfig)];
127 GPIO_PinInit{GPI0, LED_PORT, BLUE LED PIN, s({xLedConfig)):
128
Event_groups.c 129 /% S=t non re vector t
list.c 130 SCB_NS->VTOR = mainlONSECURE_APP START_ADDRESS:
ueuec 130
[£] stream_huffer.c 132 /% attach main clock divide to FLEXCOMMO (debug console) &/
[tasks.c 133 CLOCK_AttachClk (BORRD DEBUG_UART CLK ATTACH) :
[& timers.c 134
B secure_context 135 BOARD InitBootPins();
M nsc_functions 138 BORRD_InitBootClocks():
B source 137 BORRD InitDebugConscle():
M startup .
i utilities 139 /* Boot the non-secure code. */
B Output 140 BootNonSecure (mainNONSECURE RFF STRRT ADDRESS) ;
141
142 /* Non-secure software does not return, this code is not executed. */
143 for (::)
144 [{
145 1
148 1
147 I o

IDverview freertos_blinky_sl freertos_blinky_nsl <

Figure 4. LPC55S69 freertos_tzm example in SDK v2.8

4.1 FreeRTOS example with TrustZone in SDK v2.8

This section takes the freerfos_tzm project in SDK v2.8 as an example to introduce the workflow of FreeRTOS supporting

TrustZone. The workflow of freerfos_tzm example is as shown in Figure 5.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note

5/13

NXP Semiconductors

FreeRTOS usage with TrustZone

Secure World Non—secure World

Non—secure callable Non—secure Task
Function

>~
-

Non—secure Callback

: o Non—secure Counter Increment

e
-

Secure Counter Increment @

-
L

® Assert Both Counters Incremented
" Toggle LED

Figure 5. Workflow of the freertos_tzm demo

The memory partition of this project is as shown in Figure 6.

Non-secure

FreeRTOS

Secure

Non-secure tasks

ucHeap
Non-secure task
stacks

ucHeap

Figure 6. Memory partition in freertos_tzm example

Users can store some important resources in a secure region. FreeRTOS kernel is stored in a non-secure region, and the task
creation and scheduling process is also completed in the non-secure region. These non-secure tasks can access some specific
resources in the secure region by calling NSC functions, and secure functions can call the non-secure function to jump to the

non-secure region.

4.1.1 Create user task

In the freertos_tzm example, two user tasks are created, as shown in Figure 7.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note 6/13

NXP Semiconductors

FreeRTOS usage with TrustZone

144 static void prvCreateTasks (wvoid)

145 {

146 /% Create the secure calling task. */

147 {void) xTaskCreate (prvSecureCallingTask, W

148 "SeCall™, &

149 [configMINIMAL STACK SIZE + 100, / o allocate for
150 -k

151 NULL, /% The t 15 not being used. */

152 portPRIVILEGE BIT | tskIDLE_PRIORITY, / t which the task being created will run. */
153 | HULL) ;

154

155 /% Create the LED toggling task. */

156 [{void) xTaskCreate (prvLEDTogglingTask,

157 E "LedToggle", /

158 [configMINIMAL STACK SIZE + 100, /

159 the t

1&0 NULL,

161 portPRIVILEGE BIT | tskIDLE_PFRIORITY, / £/
162 HULL) ;

163 “ }

Figure 7. Create user tasks in non-secure world

When the user using the xTaskcreate () function to create a task in the non-secure region, a non-secure task stack will be
allocated. When the task is switched, the non-secure context can be stored in the non-secure task stack.

4.1.1.1 Allocate secure stack

Since the system memory is divided into a secure region and a non-secure region by TrustZone technology, it is possible to call
NSC functions when performing non-secure tasks. Therefore, it is also necessary to allocate a secure stack for the non-secure
task that call NSC functions to store the secure context. The allocation of the secure stack is completed when the non-secure task
is executed for the first time, as shown in Figure 8.

175 static void prvSecureCallingTask(void *pyParamesters)

176 H {

177 uint32_t ulLastSecureCounter = {, ulLastHonSecureCounter = 0;
178 uint32 t ulCurrent8ecursaCounter = 0;

179
1800 /% Thiz 3

181 A - £ - *

182 portALLOCATE SECURE CONTEXT (configMINIMAL SECURE STACE SIZE):
183
184 for (;;)
185 {

186 [
187
igs
1895
150
131
152
193
154
155 * Make sure th
1586 configASSERT (u
157 configASSERT (ulNonSscureCounter == ullastNonSecureCounter + 1) .'I

side funotions. So allocates a

Figure 8. Allocate secure stack

When calling the portALLOCATE SECURE CONTEXT () function, an SVC interrupt is triggered, the
SecureContext AllocateContext () function (NSC function) is called to allocate a secure space in the secure ucHeap array as
the secure stack for this non-secure task, and psp_s and pspLIM S is initialized.

4.1.1.2 Define NSC function

After creating the task, users need to define the task function. If the non-secure task need to call the NSC function, they also need
to define the corresponding NSC function. The NSC function is defined inthe nsc_functions.cfile of the secure project. The NSC
function required by the freertos tzm project is as shown in Table 1.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020
Application Note 7/13

NXP Semiconductors

FreeRTOS usage with TrustZone

Table 1. NSC functions

uint32_ t NSCFunction(Callback t pxCallback)

void vToggleGreenLED (void)
NSC function

void vToggleBlueLED (void)

uint32 t getSystemCoreClock (void)

4.1.2 Task switching

For MCUs supporting TrustZone, the context switch in FreeRTOS is different from the MCUs based on cortex-M3, M4, and M7
cores. This section introduces the task switching process of FreeRTOS supporting TrustZone. As it involves mutual call between
secure functions and non-secure functions, the CPU uses some banked core registers in the secure and non-secure region, such
as PSP, MSP, PSPLIM, MSPLIM, CONTROL registers, etc.. It makes the FreeRTOS task switching process more complex.

4.1.2.1 PendSV interrupt service process

The task switching process of FreeRTOS is completed in the PendSV interrupt service function. The task switching process of
FreeRTOS supporting TrustZone is as shown in Figure 9.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020
Application Note 8/13

NXP Semiconductors

FreeRTOS usage with TrustZone

Non-Secure world

Secure world

A 4

PendSV
Yes xSecureContext No
{ ==NULL?
The current

le

calls a NSC function and needs!
to store secure context. |

SecureContext_SaveContext

non-secure task

‘ Check EXC_RETURN value

|1

JX93UOD JUBLIND 31035

According to the bit & of EXC RETURN, judge

—r{ restore ns_context

whether the current taskis using a secure
stack or anon-secure stack when interrupted.
S stack is being uséd
when interrupted?
No
Yes ¥
| Store the complete | . Store xSecureContext,
> Store partial NS context i
PSPLIM, CONTROL, LR
Store {rd-r11), NS context * *
xSecureContext, PSPLIM, ¢
CONTROL LR
‘ select_next task }47
Yes XSecureConte No » SecureContext LoadContext
= ll-'f ==NULL? The new task has called the o ~
o NSC function,
@
E’: Restore xSecureContext, Restore partial non-secure context
(0] PSPLIM, CONTROL, LR B
=3
2 v
Fa
8 - Check EXC_RETURN value
=
] Continue to execute the
pa fonis NSC functi
- stack is being us No MNSC function is interrupted N uncuon
hen interrupted? =
|

Figure 9. Task switching process of FreeRTOS supporting TrustZone

Store PSP _S to xSecureContext

NOTE

The complete NS contextin Figure 9 contains 12 values: {R4-R11}, xSecureContext, PSPLIM, CONTROL, LR. The

partial NS context contains only four values

4.1.2.2 Store the context of the current task

: xSecureContext, PSPLIM, CONTROL, LR.

When performing task switching, users need to store the current task context first. The MCU based on CM33 core may call NSC
functions when performing non-secure tasks. Therefore, when storing the current task context, they need to judge whether the
current task calls NSC function firstly, that is, whether there is a secure context related to the current task (according to the value
of the variable xSecureContext to determine whether the NSC function is called, if the variable value is not 0, it means that the

secure function is called):

« If there is a secure context, the program must first jump to the secure region to store the secure context. Store the value of

the psp_s and pspLIM s to the corresponding s

ecure stack.

— After storing the secure context, it is necessary to judge whether the NSC function is interrupted or the non-secure
function is interrupted during the task switching. According to the value of bit 6 of Exc_RETURN/LR, if bit 6 is 1, it
means the execution of the NSC function is interrupted; and if bit 6 is 0, it means that the non-secure function

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note

9/13

NXP Semiconductors

FreeRTOS usage with TrustZone

is interrupted). If the NSC function is interrupted, because {r4 -r11} registers have been stored to the non-secure
stack before calling NSC function and the secure context has also been stored to the secure stack, only part of the

non-secure context (xSecureContext , PSPLIM, CONTROL, LR) needs to be stored.

— If the non-secure function is interrupted, users need to store the complete non-secure context including {r4-r11},

xSecureContext, PSPLIM, CONTROL, LR.

« If the current task does not call the NSC function, users only need to store the complete non-secure context, as shown in

Figure 10.
212 save ns_context:

Mo 213 ldr r3, =pxCurrentICs

/214 ldr =2, [r3]
215 #if (configENABLE FPU == 1)
216 tst lr, #0x10 i n e
217 it eqg
218 wstmdbeq rl tore the FPU re ters ars not sawvec tom 1
219 #endif /+ co . FPut &
220 #if (configENA _MET 11}
221 subs rl, rl, #48 ning registers on the sta
222 str zl, [z2]
223 adds rl, rl, F1&
224 stm rl, fr4-rll}
225 mrs r2, psplim
226 mrs r3, control
227 mov r4, 1lr
228 subs rl, rl, #16
229 stm xrl, [zl
230 felse
231 subs rl, #44 ters = stack
232 stx = [zz]
233 adds rl, rl, #12
234 stm rl, {r4-rll}
235 mrs ri, psplim
236 mow r3
237 subs rl
238 stmia rl
239 fendif /¢

Figure 10. Store completed non-secure context

NOTE
The freertos_tzm project enables MPU by default.

4.1.2.3 Select the next ready task

After storing the context of the current task, the program will jump to the select_next task stage to search for the task with the

highest priority in the task ready table, as shown in Figure 11.

241 select next task:

242 mov r0, #configMAX SYSCALL INTERRUPT PRIORITY

243 msr basepri, r0 #*% Disable interrupts upto configMAX SYSCALL INTERRUPT PRIORITY. +/
244 dsb

245 isb

246 bl vTaskSwitchContext

247 mov rd, #0 St ro =0, *

248 msr basepri, r0 /* Enable interrupts. *

249

250 1dr r2, =pxCurrentICB e & (prCurrentTCB } *
251 1dr r3, [r2] Sk

252 1dr rl, [r3] e task top of stack

Figure 11. Select next task

k. rl now points to the top of stack. #/

4.1.2.4 Restore the context of the next task

The process of context restoration and storation is similar. It is necessary to restore some non-secure context (xSecureContext,
PSPLIM, CONTROL, LR) first, and then judge whether the next task calls the NSC function according to the value of the variable

xSecureContext, that is, whether there is a secure context.
« If there is a secure context,

1. Restore the secure context.

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note

10/13

NXP Semiconductors

FreeRTOS usage with TrustZone

2. Restore the value of psp_s and PSPLIM s.
3. Return to the non-secure region to restore some non-secure context, xSecureContext, PSPLIM, CONTROL, LR.

4. Juddge whether the execution of the NSC function was interrupted or the execution of the non-secure function was
interrupted according to the value of ExC_RETURN.

— If the execution of the non-secure function is interrupted, users need to continue to restore the value of the r4
—r11 registers.

— If the execution of the NSC function is interrupted, just exit PendSV interrupt, because the secure context has
been restored.

« If there is no secure context, users only need to restore the non-secure context.

280

281

RRELE MPU == 1 }
{x0, r2-rdj

282 =ar poplim, 2

283 msr control, r3d

234 mov 1z, 4

285 ldr r2, =xSecurefontext et

286 str £0, [£2]

287 ckz r, Iestore O3 CONText I the task, restore the mon-secure context. *

288 push [zl,z4) Determine whether there is a secure context according to xSecureCorftext
285 bl SecureContext_LoadContest " Restore the secure context. ¢

250
291

282 isla r2, rd, #25

293 | bpl restore ns context

284 BAF pBp, FI 7 eF

238 Ex,frPend.S‘l/dfrecrﬂf

28€ telse onf. 0

257 ldmis rl! , £2-£3) R = LR
288 mar paplim, r2

255
300
301
302

303 push [21,E3)
04 bl SecureContext LoadContext

305 pop (rl,r3}

308 mov 1lr, 3 IR =3, *

307 lals r2, r3, #25 ame
308 bpl restore_ns_cORTENT

305
310
311
312

b k) Teatore_na_context:

314 ldmia rl!, {ré-ril} Restove the registers that are not automatically restored. *

315 #if { configENRBLE_FFU == 1 }

316 ©at 1r, #0xlo L
317 it eq

31s wldmiaeqg !

319 #endil n

320 BAr DEp,

321 bx 1r

Figure 12. Restore next task context

4.1.3 Run freertos_tzm example
In this example, two user tasks are created.
* prvSecureCallingTask

This task calls the NSC function to increase ulSecureCounter by 1 and then call the non-secure callback to increase
ulNonSecureCounter by 1. Assert whether ulsecurecounter and ulNonSecureCounter are both increased by 1, and then
toggle the Green LED once. The workflow is as shown in Figure 5. This task is executed once every second.

* prvLEDTogglingTask
Toggle Blue LED once. This task is executed once every second.

After running the program, we can find that the Green LED and Blue LED flash alternately, and the flashing period is 1 second.

4.2 A safer way to use FreeRTOS

In some cases, placing the FreeRTOS kernel and user tasks in the non-secure region is not enough to meet the security
requirements of the system. At this time, we can consider placing the FreeRTOS kernel and some important tasks in the secure

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020
Application Note 11/13

NXP Semiconductors

Reference

region and others in the non-secure region, thus ensuring that the operating system is protected from non-secure attacks and
improving the security of the system.

This section introduces a new method to support TrustZone in FreeRTOS: place the FreeRTOS kernel and important tasks in the
secure region and other user tasks in the non-secure region, as shown in Figure 13.

Non-secure

Secure
FreeRTOS

Non-secure tasks

stacks

Non-secure task

Figure 13. A safer way to use FreeRTOS

For the details, see Method to support TrustZone-M in FreeRTOS. Users can refer to this method to make their system
more secure.

5 Reference

» User Guide for MCUXpresso Config Tools (Deskfop) (document GSMCUXCTUG)
o LPC5556x/LPC5552x/L PC552x User manual (document UM11126)

» TrustZone technology for ARMv8-M Architecture

» Method to support TrustZone-M in FreeRTOS

Using FreeRTOS on LPC55Sxx Series Microcontrollers with TrustZone, Rev. 0, January 15, 2020

Application Note 12/13

https://priorart.ip.com/IPCOM/000258757
https://www.nxp.com/docs/en/user-guide/GSMCUXCTUG.pdf
https://www.nxp.com/webapp/Download?colCode=UM11126
https://developer.arm.com/documentation/100690/latest/
https://priorart.ip.com/IPCOM/000258757

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: January 15, 2020
Document identifier: AN13094

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Features of TrustZone technology
	3 Security environment configuration
	3.1 TEE tool
	3.2 Secure/Non-secure state switch

	4 FreeRTOS usage with TrustZone
	4.1 FreeRTOS example with TrustZone in SDK v2.8
	4.1.1 Create user task
	4.1.1.1 Allocate secure stack
	4.1.1.2 Define NSC function

	4.1.2 Task switching
	4.1.2.1 PendSV interrupt service process
	4.1.2.2 Store the context of the current task
	4.1.2.3 Select the next ready task
	4.1.2.4 Restore the context of the next task

	4.1.3 Run freertos_tzm example

	4.2 A safer way to use FreeRTOS

	5 Reference

