1 Introduction

This application note supports Power Estimation on S32G2. It describes the basic components and lists steps to configure and estimate the power consumption on different voltage rails of the S32G2.

This document is provided to enable embedded system designers to gain insights and design energy-efficient automotive gateway applications. It will help the developer to estimate and design an optimal power supply scheme for their application use case.

The document leverages power consumption data from the device datasheet and additional real measurements or design estimates depending on the availability. These estimates are provided "as is" and are not guaranteed within a specified precision. Power consumption depends on electrical parameters, silicon process variations, environmental conditions, and use cases running on the processor during operation. Actual power consumption should be verified in the real and complete system. The user must always cross verify the latest numbers from the device data sheet.

2 Common terms used

Static consumption – this is the minimum consumption when the device is powered. It is always present irrespective of any activity.

Dynamic consumption – this depends on the usage of S32G2 in the application and is on top of the static consumption

HDG – This refers to S32G2 Hardware Design Guideline document


3 Attachments with the document

S32G2_PowerEstimator_v2.0 – the sheet provides estimation of loads on various power rails of the PMIC. The details on its usage are covered in S32G2-VR5510 power budgeting.

S32G2_IOpower_estimator – helps in configuring the IO activity and in estimating the dynamic current for the different IO-supply rails. The details on its usage are covered in S32G2 IO power estimation.

4 S32G2 power tree

The S32G2 device has multiple supply pins for the cores, I/O, fuses and analog supplies. All such pins must be connected to the proper supply voltage for proper operation. NXP recommends to use the VR5510 PMIC for S32G2 power requirements. The HDG provides further details on power connection recommendations.

An example power tree using S32G2 and VR5510 is shown below.
When designing an application, the power requirements of the application need to be derived to ensure the functional as well as thermal feasibility of the application. The below sections are provided to help the system designer to work out an optimal power topology for their application.

5 S32G2-VR5510 power budgeting

The VR5510 PMIC is capable of meeting the S32G2 power requirements. The different power rails between the two devices are capable of handling different amount of currents and hence need to be optimally used.

The S32G2_PowerEstimator_v2.0 (see attached) supports quick sanity check of power distributions of the S32G2 based applications and provides an idea of the loads on various PMIC (VR5510) power rails. Below are the further details on the S32G2_PowerEstimator_v2.0 excel sheet usage.

The 'S32G2 Silicon Power' sheet in S32G2_PowerEstimator is populated with inputs from the device datasheet and is used as a reference in the 'S32G2 Power budget example' sheet. Since this sheet contains static values from the datasheet, it is not intended to be modified and hence is configured as a protected sheet. This sheet groups the S32G2 supply pins as per their applicable voltage level. This sheet only uses maximum values since these are the ones that need to be taken into account when designing a system.

The ‘S32G2 Silicon Power’ sheet in S32G2_PowerEstimator is populated with inputs from the device datasheet and is used as a reference in the ‘S32G2 Power budget example’ sheet. Since this sheet contains static values from the datasheet, it is not intended to be modified and hence is configured as a protected sheet. This sheet groups the S32G2 supply pins as per their applicable voltage level. This sheet only uses maximum values since these are the ones that need to be taken into account when designing a system.

The ‘S32G2 Power budget example’ sheet is user configurable and can be used to estimate load on various power rails of the PMIC. The sheet groups power supplies as per the VR5510 output rails because the constraint on available power comes from the PMIC side. Application designers need to configure the ‘Conditions’ column from the available drop down menu wherever applicable. The ‘Power Max’ column accordingly gets updated with the corresponding data referenced from the S32G2 Silicon Power sheet.
The 'S32G2 Power Budget example' sheet can also be observed to see if some of the power rails of the PMIC can be used for supplying power to components other than the S32G2. This sheet already shows examples of adding LPDDR4, QSPI flash and USB phy on the PMIC power rails. Additional external component's power consumption can be accommodated through the 'Additional components' rows. The designer must sum up the consumption of external components and provide this as an input in the relevant row. Each of the ‘total’ rows should be reviewed to confirm that the power limits of the PMIC voltage rail outputs are not breached.

Low power mode requirements must also be kept in mind when using this sheet to design the power tree of the system. Refer to S32G2HDG for further details.

In case a user is not using the VR5510 with the S32G2, they can still use this sheet to estimate the load and predict any overload condition. The limits on each of the power rails should be kept as per the power solution used.

6 S32G2 IO power estimation

The S32G2_IOpower_Caluclator (see attached) can be used to estimate dynamic IO current for the different IO rails. This can then be added to the static power specifications as provided in the device datasheet to estimate total power on any of the IO rails. The ‘Overview’ sheet provides a summary of the different specified or calculated current parameters and also specifies the IO power estimator use case.

The ‘1.8 V’, ‘3.3 V’, ‘3.3 VSTB’ sheets detail all the IOs available in their respective voltage domains. The green fields in these sheets are modifiable and require the user to fill in the inputs as per the activity expected on these IOs. Enabling an IO turns the row blue in the sheet. The dynamic consumption estimate of an IO is calculated based on the activity filled in a row. The total current consumption and total power consumption of all IOs in a VDDx domain is calculated and populated at the bottom right of the sheet.
Additionally some of the IOs can be configured for both 1.8V and 3.3V operations. These are grouped in ‘dual(VDD_IO_SDHC)’, ‘dual(VDD_IO_GMAC0)’, ‘dual(VDD_IO_GMAC1)’ and ‘dual(VDD_IO_USB)’ sheets. These sheets also need to be used in a similar way to the fixed voltage sheets, however these sheets need an additional input in the form of the operational voltage which needs to be filled at the bottom left of the sheet. The total power consumption is accordingly calculated in the sheet.

Figure 3. IO power estimator fixed voltage snapshot

Figure 4. Operational voltage selection in dual voltage sheets

7 Additional considerations
7.1 SVS (Static Voltage Scaling)

The S32G2_PowerEstimator_v2.0 sheet considers the Core voltage supply to be 0.8 V, however certain devices are specified for 0.77V operation. Such devices can be identified by reading the DIE_PROCESS[1:0] fuse bits. The PMIC/regulator output should be regulated accordingly. The maximum power numbers remain the same. Refer to the device RM, DS and HDG for more implementation specific information on Static Voltage Scaling (SVS).

7.2 Power impact for unused module

A system use case may not require each of the modules powered by the 0.8 V supply. In such cases, additional granularity may be required to find the reduced load on the respective power rail. The S23G2 does not offer power gating of modules, but there is the possibility to clock gate certain modules using the MC_ME. This means that the dynamic component of the power consumption for these modules would be saved when not using them. Below are the estimates for major modules on the 0.8 V rail based on the module running at full speed with Tj at 125 deg C.

Table 1. Module power estimates

<table>
<thead>
<tr>
<th>Core / Module</th>
<th>Dynamic Power mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A53 Cluster (2 cores active)</td>
<td>130</td>
</tr>
<tr>
<td>A53 Cluster (1 core active)</td>
<td>90</td>
</tr>
<tr>
<td>M7 Cluster (1 lock step instance)</td>
<td>30</td>
</tr>
<tr>
<td>DRAM Controller</td>
<td>400</td>
</tr>
<tr>
<td>PFE</td>
<td>320</td>
</tr>
<tr>
<td>LLCE</td>
<td>10</td>
</tr>
<tr>
<td>PCIe (per module)</td>
<td>80</td>
</tr>
</tbody>
</table>

It should be noted here that the figures provided in the Table 1 are design estimates based on simulations and very limited bench testing. As such these should only be used for guidance purpose and must not be treated as a specification. These values are for the 0.8 V VDD domain only and do not take into consideration any analog or I/O impact of the modules. These should be calculated separately. The Core values take into account the core/cluster only and do not account for the corresponding savings in traffic across the bus fabric etc.

7.3 Power impact for reduced operation frequency

The impact of operational frequency on dynamic power should be assumed to be linear for further estimation. For example, if one Cortex-A53® cluster running at 1 GHz is estimated to consume 90 mW then the same cluster when running at 500 MHz would consume about 45 mW.

7.4 Power profile with temperature

Power consumption of a module can be broadly divided into dynamic and static consumption. The dynamic component remains stable across temperature, however the static consumption varies with temperature. The graph below shows the leakage power (static component) on the 0.8 V VDD power domain across temperature for a device taken from the worst case leakage corner of the process. The graph is derived from limited bench experiments and hence should be taken as guidance only and should not be treated as a specification. The power shown in below graph is for the 0.8 V VDD domain only and does not take into consideration any analog or I/O leakage power.
Figure 5. 0.8 V Leakage power vs temperature

8 References

• S32G274 Hardware Design Guidelines (S32G2HDG)
• S32G2RM
• S32G2 DS