AN13465

S32K3xx Secure Boot
Rev. 1.0 — 2 January 2026

Application note

Document information

Information Content
Keywords S32K3xx, secure boot
Abstract

This application note provides a technical overview of the S32K3 security architecture, providing

the background information needed to understand the use cases and processes described in this
document.



https://www.nxp.com

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

1 Overview

In this application note the secure boot process of S32K3xx is explained. In the document “startup” is the phase
that is initiated after a reset at device level, “secure boot” is the process to ensure the integrity and authenticity
of one or several application images being executed by one or several application CPU subsystems within the
application domain. For a given application image, the secure boot process results in a PASS or FAIL response.
A PASS response allows the application image to be executed by its targeted application CPU subsystem. A
FAIL response triggers a sanction at device level.

HSE executes the secure boot. It is configured by (one of) the application CPU subsystem essentially to define
where the application images should be fetched, how they should be verified, and what sanctions should apply
in the event of a FAIL response to one or more images.

This document and related demo projects are valid for HSE-FW(FULL_MEM) version 0.0.8.3 and RTD version
0.9.0 only.

For more details, refer to the device reference manual.

1.1 Chip reset and boot flow

Figure 1 shows a high-level representation of the chip startup sequence. This sequence consists of several
reset stages based on the occurrence of a particular reset event. The SBAF (Secure Boot Assist Flash) is the
first code to run on HSE_B secure core after reset, which completes necessary system initialization, parses the
IVT (Image Vector Table), executes secure boot and starts the application core.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
2/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

Chip power up
Keep chip in POR
No
Power-on reset ¢

Yes

FIRC powers on .
Wait for FIRC stabilzation FIRC:21.5 ps
Destructive reset J Destructive reset
l sequence proceeds FIRC: ~0.5 ps (~25 FIRC cycles)
Functional reset J Functional Flash memory initialization
CTEITIE TEE Flash memary scanning
sequence proceeds Trim loading FIRC: 84 us
Chip out of reset in normal Run mode

Yes Security functions disabled

FIRC: 0.5 ps (Register read only)

No | Secunty functions enabled

— Change FIRC_DIV to DIV1
SBAF inifialization code Enable FXOSC, PLLDIG (configurable)

Boot header parsing
HSE_FW verification
CAAM_RNG initialization

XRDC configurations
Secure Yes OS initialization
RUN { boot? HSE FWboo! | HsE_Fw initalization code

CAAM_RNG initialization
Application boot

Debug authorization
Standby recovery inifialization  |+—
App core VTOR change
sBAF enabling application core

| HSE_FW enabling application core |

FIRC: 4 ms (HSE_B at 48 MHz)
PLLDIG: & ms (HSE_B at 80 MHz)

FIRC: 30 ms (HSE_B at 48 MHz)
PLLDIG: 19 ms (HSE_B at 80 MHz)

FIRC: 66 ms (HSE_B at 48 MHz)
PLLDIG: 38 ms (HSE_B at 80 MHz)

No

FIRC: 9.5 ps (HSE_B at 48 MHz)

FIRC: 200 ps (HSE_B at 48 MHz)
PLLDIG: 80 ps (HSE_B at 80 MHz)

Trigger
self-test?

Yes Execute self-test Legend:

| Hardware | | HSE_B sBAF |

Move to application | HSE_B firmware

Note: HSE_FW and application sizes are considered as 128 KB each

Application cere
software

Figure 1. Chip reset and boot overview

1.2 The HSE interface

In Figure 2, the Messaging Unit (MU) is the communication interface between the host and the HSE subsystem.
It is used by the host to trigger service requests and receive service responses. It is used by the HSE to receive
service requests, return service responses and provide several HSE status information relevant to the host.

The MU has two sides, referred to as MUA and MUB. One side (MUA) is under the exclusive control of the
HSE, the other side (MUB) is controlled by the host. A value written in a transmit register (TRi) on one side can
be read in the corresponding service register (RRi) on the other side. Similarly, select control registers on one
side (e.g. FCR) interact with status registers on the other side (e.g. FSR).

Each of the MU instance available in the system has:

* A set of 32-bit readable and writable transmit registers (TRi), to provide the address of the service descriptors
to process by the HSE

» A set of 32-bit read-only receive registers (RRi), to retrieve the responses to the service requests

* Two 32-bit read-only status registers (FSR and GSR), to log HSE status and system events

» Control and status registers to manage the access to the transmit and receive registers, and the related
interrupt signals

The number of available MU instances and TRi / RRi registers is device (host) dependent.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
3/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

1
Application space | HSE space
|
MUB | MUA
Application | HSE
4 Tx reg | 4 Tx reg.
Bus master 4 Rxreg | 4 Rx reg. K _Bus master )|
APP FF——-F-FF———— o el e -k~ _
COREO [ |————|— |- |- <.~ — 17—z - —1-=-—-_"
Interugts Status l Status Infterupts |~
and control | | |and control NN
registers | registers \
I 1
| HSE
MUB | MUA CORE
|
/
4 Tx reg. 4 Tx reg. <::> 7/
Bus master 4Rxreg. 4Rxreg. Bus mastir > ///
APP |-~ |————— i i 11 " _-
COREl1 - |———F | a2 — il el -
Interupts Status Status Inferupts |
and control and contro
registers registers
|
|
Memory
(SRAM DTCM)
1
Figure 2. lllustrating the Messaging Unit (MU) in S32K3

1.3 Data synchronization with the HSE core

It can be seen from the Figure 2 that the HSE service structure is passed between S32K3xx and HSE through
MU, and HSE will execute the service according to the service ID and parameters (which can be values or
addresses) in the structure.

For the data transferred between the dual cores, will be modified by at least one of the cores, when D-cache is
enabled, the data synchronization issue will occur.

To solve this issue, users can choose to simply turn off the D-cache although will lose performance or put the
data that may have data synchronization issue in a non-cacheable memory area.

For the global variables, there are two types: with initial value and without initial value. Through the precompiled
directives(#prama section) defined in MemMap file, assign the two type global variables to the non-cacheable
data segment or non-cacheable bss segment as shown in the following figure.

#define CRYPTO START SEC VAR IHNIT UHSPECIFIED HO CACHEABLE
#include "Crypto_ HemMap.h'

uint3iz_ t hashTestoutputlength [ HUMBER OF ASYHC BREQ] = {BUFFER STZE,
BUFFER SIZE, BUFFER S5IZE}:;

static uintiz_t sigeRlen = ABRBAY STZE (signR):
static uintiz t signSlen = ARBAY STZE (signs):

#define CRYPTO STOP SEC VAR THIT UHSPECIFIED HO CACHEABLE
#include "Crypto_HMNemMap.h"™

Figure 3. Assign the global variables into non-cacheable memory

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
4/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

S32K3xx Secure Boot

For the temporary variables, as they are temporarily allocated on the stack, the Cortex-M7 stack can only be
placed in the non-cacheable area shown in the following figure. By modifying the cache policy (though MPU
module) of the stack area to solve this problem.

248 int_sram stack (NOLOALD)
249 {
250 . = ALIGH (18] ;
251 _int_sra.m_stack_cﬂ_start = .;
Z5z . = ALIGH (18] ;
253 . += STLCKE SIZE:
54 _ int_sream stack cl_end = .;
255
256 _int_sra.m_stack_cl_st,art = .:
257 . = ALIGH (18] ;
ZE58 . += STLCE SIZE:
259 _ int_sram stack cl end = .;
280 } > int_sram no_cacheable
ZE1
293 _ Stack end cO = _ int sram stack cO_start;
294 _ Stack start_cO = _ int_sram stack c0_end;
295 _ Stack end cl _ int_sram stack cl_start;
296 _ Stack_start_cl _ int_sram stack cl_end;
297
Figure 4. Set Cortex-M7 core stack to non-cacheable area

If there is a memory management program, the user can also use a non-cacheable memory pool to allocate the
space for the temporary variables.

1.4 Image Vector Table (IVT)

The image vector table (sometimes referred to as “boot header”) is shown in Figure 5. It is the main entry point
for the system to operate after reset.

VT Header Identifier ‘4— Several fixed location in Applicationflash.

Internal

Flash
[«<—— Non-Secure Boot Configuration parameter as

‘ Boot configuration
IVT File is located at the
address 0x0040_0000
L -— 0x0050_0000 , 0x0060_0000
‘ CM7_0 Application reset Address } ~~~~~ N CM7—0 start address 0x0070_0000, 0x10000000,

in Application flash

CM7_1 Applicationreset Address } ~~~~~ R CM7—1 start address Ty

Pointer to XRDC Configuration F—— XRDC configuration Image

B

N LC
Configuration

o] HSE FW

‘ Pointer to LC configurationc Fm,—,prin;Ver to LC configurationc

sobew| j00g

Pointer to NXP Supplied HSE FW || Pointer to Singed an_d E!lcryp'té'(?'HSE' e
Image <+ FW Image (used during installation

ofthe HSEFW)
— ,,App”BiVn image

Pointer to AppBL

(include App code)

‘ S AppBL

‘ Reserved
| Authentication TAG

|<—— Authentication tag

Figure 5. Image Vector Table

It contains:

* The storage location of Apps(executable) and HSE firmware(encrypted), configuration location of LC and
XRDC.

* The Boot Configuration Word (BCW) that configures the start-up behavior (BOOT_SEQ); among other
parameters, it defines BOOT_TARGET.

© 2026 NXP B.V. All rights reserved.
Document feedback
5/39

All information provided in this document is subject to legal disclaimers.

Rev. 1.0 — 2 January 2026

AN13465
Application note



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

H

IVT Header Identifier

Boot configuration

(CM7_1_ENABLE)

(CM7_0_ENABLE)

BOOT_TARGET

CM7_0 Application reset Address

Reserved
Reserved
SWTO0_ENABLE
PLL_ENABLE
BOOT_SEQ
Reserved
BOOT_TARGET

CM7_1 Applicationreset Address

BOOT_TARGET(CM7_0 ENABLE)
Pointer to XRDC Configuration *  M7_0 start address

BOOT_TARGET(CM7_1_ENABLE)
M7_1 start address

Pointer to LC configurationc

BOOT_SEQ
Pointer to NXP Supplied HSE FW «  Set 1, use secure boot
Image * Set 0, use non-secure boot
) SWT
Pointer fo AppBL Boot target watchdog enable

PLL_ENABLE

Reserved +  PLL enabled by HSE

| Authentication TAG |

r

Figure 6. Boot Configuration Word

The BOOT_SEQ in Boot configuration (BCW) as shown in Figure 6, needs to be set “1” to change boot flow and
enable secure boot flow.

The IVT can hold an optional authentication tag that guarantees its integrity and authenticity. It is calculated by
the HSE on demand from the host via one specific administration service (REF02 section 8.2) and verified by

the HSE at start-up providing it is configured to do so (see IVT_AUTH). The storage location of IVT is fixed by
design.

1.5 AppBL

The contents of the AppBL (sometimes referred to as “App header”) are shown in the following figure.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
6/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

S32K3xx Secure Boot

Offset(Bytes)

0x00 .
Magic humber

AppBL header tag (0xD5)

b

0x01

0x03

Magic number

AppBL version (0x60)

0x04

0x08

App content start addres

Start address (Pointer)

L

0x0C

App content Size

AppBL size (N
ppBL size (N) (32-bit integer)

0x10 )
<« Coreid value

Core identifi
ore iaentier (for S32K344 set to “0”)

Ox14

0x40

<+—— App Executable code

N+
0x40 |

«——— Authentication tag

r

Authentication TAG

Figure 7. AppBL structure

In the basic secure boot mode, the HSE can authenticate the AppBL header and content by using AES-GMAC
algorithm and ADK/P SHA256 hash key. It also parse the AppBL header to determine the starting address and
size of the AppBL code.

Note:

The HSE does not need to parse or verify the AppBL header when using the advanced secure boot mode
implemented by SMR and CR.

The user can write the start address and length of the AppBL directly to the SMR service structure to complete
the configuration. For reducing the coupling between different projects, the starting address and length of the
AppBL code can also be obtained from the AppBL header to configure the SMR.

1.6 Secure boot modes

For application images, three mechanisms are available for configuring the secure boot and are shown in the
following table.

Table 1. Secure boot modes

Mode Key Scheme SMR use Number of protect regions Proof location
BSB ADKP GMAC No 1 Application NVM
ASB Sym or Asym key | MAC or Sign Yes Upto 8 Secure NVM
(igs) BOOT MAC_KEY | CMAC | Yes (only SMR #0) 1 Secure NVM

The following figure shows the procedures of configuring the three secure boot mode.

AN13465

All information provided in this document is subject to legal disclaimers.

© 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 2 January 2026

Document feedback
7139


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

S32K3xx Secure Boot

Provision ADK/P SHAZ256 hash key

Format NVM and RAM key catalogs

Format NVM and RAM key catalogs

v

v

v

Calculate the GMAC of AppBL

Load Symmetric or asymmetric keys

v

v

Load SHE BOOT_MAC_KEY

v

Write the tag appended to Flash

Install SMR and CR tables

v

v

Install SMR #0 and CR #0

v

Set BOOT_SEQ=1in BCW

Set BOOT_SEQ=1in BCW

v

v

Set BOOT_SEQ=1in BCW

v

Issue a functional reset

Issue a functional reset

Issue a functional reset

v

v

v

Verify the AppBL

Verify all SMR

Verify SMR #0

v

v

v

Enable the application core if
authenticate successfully

Apply the crSanction

Apply the crSanction according to
SHE Spec

(a) Basic Secure Boot

(b) Advanced Secure Boot

(c) SHE based Secure Boot

Figure 8. Three Secure Boot modes

1.6.1 Basic Secure Boot (BSB)

This secure boot mode is implemented based on the application header and ADKP, and the HSE firmware
enables only one application core at a time. Application header length is of 64 bytes and application code
address starts from application header start address + application header length.

To realize the basic secure boot, the suggested operation flow for host is shown in Figure 8(a).

1.6.2 Advanced Secure Boot (ASB)

In the advanced secure boot, the HSE firmware can boot multiple application cores which use Secure

Memory Regions (SMR) entries that are linked with Core Reset (CR) entries configuration that together define
application cores behavior. These configurations are done via HSE firmware services and are stored in internal
data flash memory.

To realize the advanced secure boot, the host must implement the steps shown in Figure 8(b).
Pre-requisites that needs to be executed before secure boot are:

* The host shall be granted with Super User (SU) rights.
* LC should be CUST_DEL and subsequent SMRs and CRs should be empty.

1.6.3 SHE Secure Boot (based on ASB)

Since HSE firmware also does the SHE based secure boot operation by using SMR/CR tables. This secure
boot mode can be considered as a special use case of ASB, the only difference between them is that only SMR
#0 and SHE keys shall be used to implement the SHE based secure boot.

To realize the SHE based secure boot mode, the sequence shown in Figure 8(c) must be implemented by the
host.

© 2026 NXP B.V. All rights reserved.
Document feedback
8/39

AN13465 All information provided in this document is subject to legal disclaimers.

Application note Rev. 1.0 — 2 January 2026



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN13465

S32K3xx Secure Boot

2 Preparation

2.1 Installing HSE FW

Before using any services of the HSE, the user needs to install the HSE firmware. There is FULL_MEM or

AB_SWAP firmware image which can be installed, depending upon the device configuration. The HSE FW
installation is a one-time process and once HSE FW is in the system, it can only be updated and cannot be
uninstalled.

HSE FW installation with IVTull mem)
S32K3

Programming PFLASH HSE subsystem

Entity
Seucre BAF
/ AY
i \
1
\
\ Application
Application Gl
HSE subsystem

@ |
—
Decrypt
Authenticate)
program
UTEST

T the HSE FW installati
hse fw feature flag e nstatiation

Figure 9. HSE FW installation with IVT (FULL_MEM)

SBAF parse IVT and Decrypt,
Authenticate, Program the HSE FW
pink image to HSE subsystem

N —m— -

HSE
Firmware

-x..

Firmware feature flag “HSE FW feature flag” in the UTEST area must be enabled before installing the firmware.
HSE FW can be installed in the system using two methods:

* Program the encrypted image of HSE FW at start location of code flash area i.e. 0x00400000 and give a
reset. SBAF installs the HSE FW after reset.

* Program the address encrypted image of HSE FW in IVT and program the encrypted HSE FW image at the
provided address. After programming, provide a reset.

In the delivery demo package, user need an HSE-FW installation project to install the HSE-FW, as shown in
Figure 9.

2.2 Format catalogs

The NVM and RAM key catalogs as shown in the following figure must be formatted before any
keys can be provisioned, handled via the key catalog formatting service, defined by the structure
hseFormatKeyCatalogsSrv_t. This service is only available to the host when LC is CUST_DEL.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
9/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

MUO | MU1 | MU2 | MU3

- X X
N
ROM/NVM/RAM key catalog
Ny Key group #0 )
OWNER_CUST | MU masﬂ Key ownerl Key type | Nb of slots | Max key size
OWNER_OEM +— |
— Sl Attribut Ki |

OWNER ANY (RAM) il /oL#ﬁ/ ributes ey values

,/,,,////” Slot #1 Attributes Key values
AES 1 : : :
SHE | Slot #n | Attributes | Key values
HMAC
SIP_HASH _
SHARED_SECRET Key group #1
RSA_PAIR | MU mask | Key ownerL Key type | Nb of slotsl Max key size |
RSA _PUB
ECC_PAIR Slot #0 Attributes Pointers (pub key and cert) + tag
ECC_PUB Slot Attributes Pointers (pub key and cert) + tag
DH_PAIR T T ;
DH_PUB p
RSA_PUB_EXT Key group #m )
ECC_PUB EXT Key slots can be erased (super user only) |
ECC keys on
* Prime field (GF (p))
» Any Weierstrass form
« Ed25519
* Curve25519

Figure 10. The key catalog, group, slot

The basic secure boot mode uses ADKP as the “authentication key”, the ADKP is an OTP attribute and not a
common key in the catalog.

» Key catalog: Keys are managed in three key catalogs, ROM, NVM, RAM. Each key catalog is identified by a
unique identifier and holds a set of key groups. The ROM key catalog is defined by NXP, the structure of the
NVM and RAM key catalogs is configured by the user.

The secure boot can only use non-volatile keys to verify the data, so the authentication key must be in
the NVM catalog.

» Key group: In the catalog the user could define serval key groups. It is a set of cryptographic keys of the
same type.

» Key slot: A key slot is a memory container that holds a single key, with its value(s) and attributes. Each slot is
identified by an index within the key group where it is declared.

The Figure 11 shows the relationship of the key catalog, group, and slot. The key handle is access by, Key
handle = CONCAT (0x00, catalog type, group index, slot index).

For more details, refer to HSE-RM [REF02].

2.3 Install keys

All cryptographic keys declared within the NVM and RAM key catalogs, except for the key type
HSE_KEY_TYPE_SHE, can be provisioned (i.e. initialized and updated) by the host via a key import service,
defined by the structure hselmportKeySrv_t.

The SHE keys is provisioned by the host via services hseSheLoadKeySrv_t or hseSheLoadPlainKeySrv_t.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
10/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

KEY IMPORT
KEY EXPORT

9

@ KEY IMPORT / EXPORT SERVICES

HOST
HSE

Imported / Exported Key
Authenticated / Signed Content K: (k or k;,.,) @nd/or ky,yy,

Key Handle
WRITE_PROT EXPORTABLE

Key Attributes

Encrypted Content EncryptionKey X,

(Tier1 or GEM)
Private Key Value (k or ki)

DECRYPT ENCRYPT
Public Key Part (kp,,) KEY_PROVISION KEY_PROVISION

[ mAC or RsA/ECC signature | Authentication Key K,

VERIFY
KEY_PROVISION KEY_PROVISION

Figure 11. Key import and export

The keys can be installed in plain or encrypted text as shown in the above figure, in the demo all keys are
installed in plain text.

2.3.1 Key attributes Usage flags

The key usage flags (Bit field) shown in the following table, is a set of flags that define how a key can
be used. In SMR table, the authentication key usage flag should be HSE_KF_USAGE_VERIFY, while
HSE_KF_USAGE_SIGN flag must not be set.

Table 2. Key usage flags

Enumerate Influence on the key when set

For RSA/ECC keys: the key can be used for signature generation (only applicable to the
HSE_KF_USAGE_SIGN |private key part).
For AES/TDES/HMAC keys: the key can be used for MAC generation.

For RSA/ECC keys: the key can be used for signature verification (only applicable to the
HSE_KF_USAGE_VERIFY |public key part).
For AES/TDES/HMAC keys: the key can be used for MAC verification.

2.3.2 Key attributes SMR verification map

The SMR verification map (bit field) as shown in the following table is a set of flags that defines
what secure memory regions (SMR) must be verified before the key can be used. SMR verification
map will take effect when the core reset table attributes “Sanctions on failed verification” is set to
“HSE_CR_SANCTION_DIS_INDIV_KEYS”.

Table 3. SMR verification map for key usage

Enumerate Influence on the key when set
HSE_KF_SMR_0 The key can be used only if the secure memory region #0 has been successfully verified.
HSE_KF_SMR_1 The key can be used only if the secure memory region #1 has been successfully verified.

HSE_KF_SMR_7 The key can be used only if the secure memory region #7 has been successfully verified.

For example, a key can be used only when the secure memory regions #2 and #5 are successfully verified, the
SMR verification map must be set to: HSE_KF_SMR_2 | HSE_KF_SMR_5.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
11/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

2.4 Modify link file

To use the secure boot also needs to modify the link file to determine the locations of IVT, AppBL, Cfg and App
flash code address. Also, some project configurations may need to change in the link file.

0x00400000 — ‘

0x00402000

0x00500000 —J— | fo—— oo

1 ! ! 0x00503FCO
| ] ! APPBL_ADDR -
0x00502000 —(— | W 0x00504000

0x00503FCO

0x00600000 _

int_flash_app_1
(backup app)

0x00600000

4

Figure 12. Link file map

The Figure 12 shows the main contents and relation of Cfg and App link file. For the detail of IVT and AppBL,
user can view the code directly and change the content if needed.

The App project binary file has been relocated and placed in the Cfg project link file, so both the App and Cfg
project code will download to FLASH in just one-time operation.

After the debugger downloading, the code of both the Cfg and App projects is on the FLASH, the “BOOT_SEQ”
in Boot Configuration Word (BCW) is “0” (non-secure boot), so the Cfg project program will be executed when
power on. The configuration of secure boot is done, “BOOT_SEQ” need to change to “1” (secure boot), the App
program will be executed after a reset.

2.41 IVT Cfg project

The following table is the content of Cfg project’s IVT, it needs to place at the start of a flash block. It stores the
address of Cfg project code address, App project code address, backup App project code address, and the
Boot Configuration Word (BCW) which needs to change after secure boot configuration. Although the IVT only
has 256 bytes size, it usually occupies one sector (for S32K344, erasing operation is done in sectors, and one
sector is 8KB, 0x2000B).

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
12/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

unsigned int _ attribute_ ((sectien(”._int_ivt_8"))) iviE flash[] =
1

/*eeh*/ SBAF_BOOT_MARKER /*
/* Boot configuration word *
J*eah*/

IVT marker */ ,

1 _ENABLE << CM7_1_ENABLE_SHIFT) /* Boot configuration word */ ,

27

/¥ CM7_1 Start address , lgckstep only run CM7_8 */
'* Reserved */ ,

v ADDR /* CM7_2 Start address , lgckstep only run CM7_@ */

* XRDC configuration pointer */ ,

* Lifecycle configuration pointer */

]

»

3

!
;
;
;
;
;
.
*
;
;
;
.
.
;
;
;

/* Reserved */,
/*2ch* RESERVED /* Reserved */,
/*38h* SECURE_BOOT_APP_ADDR ,
/*34h* RESERVED ,

/*38h* SECURE_BOOT BACKUP_ADDR ,
/*3ch* RESERVED ,

{*TBh* IVT c,

b

Figure 13. The content of Cfg project’s IVT

2.4.2 AppBL - App project

The following figure is the content of App project’s AppBL, it stores the App code start address and code size,
and some information which basic secure boot needed. The App code address needs alignment and usually
place at the start of a sector.

const app_header_t _ attribute ((section("._app_header™))) app header =

JhdrTag = @xDs ,

.reservedl = {8},

Jhdrversion = @xe@ |,
.pAppDestAddres = @x@8 ,
.pAppStartEntry = @xeesedesal ,
.codeLength = exeeasapessy ,
.coreld = @u ,

.reserved2 = {@}

i

Figure 14. The content of App project’s AppBL

3 Advance Secure Boot

This section describes how ensure both Advanced Secure Boot and SHE based Secure Boot modes which are
implemented through SMR and CR tables. It comprehends with HSE memory verification services. The secure
memory regions (SMR) managed by these services offer the possibility to apply different types of sanctions
when secure boot is failing. It supports a wide variety of authentication schemes (MAC, RSA/ECC signature)
to verity the application images and can accelerate the verification time at start-up by relying on authenticity
checks performed by the HSE. The following image shows the execution process of the memory verification
service based on SMR and CR tables.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
13/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN13465

S32K3xx Secure Boot

S32x (host)

HSE

SMR verification status (8 bits)
SYS-IMG

Application Memory

measures

addr
addr

verifies size config

authenticity proof I

size config

 wiir | e | cout |

SMR entries
SMR entries

authenticity proof

releases
from reset

Application ‘
CPU allows/restricts
usage

subsystem

Figure 15. lllustrating the memory verification service (SMR)

As shown in Figure 15, a secure memory region (SMR) is defined by a start address and a size, associated to a
proof of authenticity, either a MAC or an RSA/ECC signature, which authenticates the region’s content. The host
can define up to eight SMR clustered into the SMR table. It must also provide the proof of authenticity for each
memory region content except for SMR #0.

For all SMR that have been defined, the HSE verifies the authenticity of memory contents:

* During the device start-up phase (after reset).
* While the application(s) is(are) running on the host side (during run-time).

The SMR verification results translate into sanctions imposed on the system by the HSE:

» Unsuccessful verification can keep the selected subsystems on the host side in reset state, those subsystems
are referenced in the Core Reset (CR) table.

 Likewise, failing to verify certain SMR can render the selected keys within the HSE unusable, these
restrictions are defined individually for each key via the SMR verification map.

3.1 Secure Memory Region (SMR)

3.1.1 SMR table

The SMR table which stored in HSE secure data flash for devices with internal flash allows the host to define up
to 8 memory regions and associate each one with an installation and a verification method. Each SMR entry in
the SMR table holds a set of attributes listed in the following table.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
14739



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

Table 4. SMR verification map for key usage

Attribute Data field Description

A pointer to the secure memory region (SMR) to be verified in the application NVM

Source address pSmrSre area which HSE can directly read.

A 32-bit integer that provides the size in bytes of the secure memory region (SMR)

Size smrSize to be verified.
Destination address pSmrDest A pointer where the secure memory region (SMR) is copied before verification.
Initial Pointers to the initial value of a MAC or a RSA/ECC signature provided by the

pinstAuthTag[] |host, that can be used in the SMR verification process if the flag HSE_SMR _

authentication proof CFG_FLAG_INSTALL_AUTH is set.

The method used to authenticate the SMR including an authentication tag (i.e.
authScheme |Message Authentication Code (MAC)) or a public key signature scheme (i.e. RSA
or ECC signature).

Authentication
scheme

The handle which pointed to the authentication key in the NVM key catalog, which

must:

Authentication key keyHandle » Refer to a non-empty key slot having its key usage flag HSE_KF_USAGE_
VERIFY set, while HSE_KF_USAGE_SIGN must not be set.

» Refer to a key type that matches with the initial authentication scheme selected.

Verification method verifMethod | The verification method of the secure memory region (SMR) after its installation.

A 32-bit integer that defines the scaled number of system clock cycles between

Verification period checkPeriod . e
two consecutive verification process.

SMR ) A binary OR combination of configuration flags between a memory interface and
) . configFlags o P
configuration flags the authenticity proof used for verification.

3.1.1.1 Authentication strategy

The necessary preparations for the secure memory region (SMR) installation is to determine the authentication
scheme, authentication key and initial authentication proof.

CMAC

HMAC
v
= pIV
GMAC &
ivLength

XMAC(FW 0.0.8,3 not supported )

macScheme

authScheme

ecdsa

eddsa
hashAlgo

sigScheme /
rsaPss & saltLength
signSch
1saPkes1v1s

* Scheme: Multiple verification schemes shown in Figure 16 include MAC and signature are supported to verify
the SMR either during the installation or verification phase. The user needs to fill with the specific parameters
for each of the different scheme. For example, when using the GMAC or rsaPss scheme, the user needs to
manually configure the specific parameters as shown in the above figure.

» Key: The authenticity key must be stored in the NVM key catalog and its authentication key usage flag should
be HSE_KF_USAGE_VERIFY, while HSE_KF_USAGE_SIGN flag must not be set.

Figure 16. SMR authentication scheme

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
15/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

* Proof: The initial authenticity proof (pInstAuthTag[]) is an array of two pointers which point to the address of
MAC or SIGN. If the HSE_SMR_CFG_FLAG_INSTALL_AUTH flag is set, it specifies the address(es) where
the initial authentication TAG is located. If the HSE_SMR_CFG_FLAG_INSTALL_AUTH flag is cleared, this
data field is not used (an internal reference authenticity proof is used).

It should be noted that for MAC and RSA signature authentication schemes, only plnstAuthTag[0] is used, while
both pInstAuthTag[0] and plnstAuthTag[1] are used for ECDSA and EDDSA signatures(specified by (r,s), with “r’

atindex 0, and “s” at index 1).

The SMR verification based on the reference (Pre-Hash) authenticity proof calculated by the HSE is the default
verification process, designed to be as fast as possible. The SMR verification based on the initial authenticity
proof provided by the host can be enforced only when HSE_SMR_CFG_FLAG_INSTALL_AUTH is set in the
configFlags data field.

3.1.1.2 Configuration flags
The following table gives some details about the effect of configFlags in different conditions.

Table 5. SMR configuration flags

scheme configFlags effect on auth-proof
0 Pre-hash the data, then compute its MAC.
MAC HSE_SMR_CFG_FLAG_INSTALL_AUTH |Compute pure MAC of the data.
0 Return HSE_SRV_RSP_NOT_ALLOWED.
SHE Compute pure CMAC of the data, as HIS-SHE specification

HSE_SMR_CFG_FLAG_INSTALL_AUTH )
- - - - - required.

0 Pre-hash the data, then compute RSA/ECC private key
SIGN signature.

HSE_SMR_CFG_FLAG_INSTALL_AUTH |Not allowed, some error will occur if you set this value.

If the data field configFlags is set as HSE_ SMR_CFG_FLAG_INSTALL_AUTH, the authentication scheme and
proof provided during the installation phase will be also used during the verification phase.

If the data field configFlags is cleared, an internal hash digest (SHA2-256) and its MAC or SIGN will be
computed by HSE during SMR installation, which will be calculated again during SMR verification.

Take CMAC as an example: If configFlags is set as HSE_ SMR_CFG_FLAG_INSTALL_AUTH, HSE will use
the pure CMAC algorithm to verify the App image. If configFlags is cleared, HSE will compute the hash digest
(SHA256) of the App image firstly and then calculate the CMAC of this hash result.

Compared with SMR verification based on the App image, computing MAC or SIGN for the hash digest of the
App image will reduce a lot of calculation, so when configFlags is cleared, SMR verification will be much faster
than when configFlags is set as HSE_ SMR_CFG_FLAG_INSTALL AUTH.

3.1.2 SHE based Secure Boot (SMR #0)

The SMR #0 is the only SMR that can be associated to the SHE AES key BOOT_MAC_KEY (keyHandle) as
the SMR authentication key. In this case, the reference authentication tag is the CMAC (authScheme) value
referred to as BOOT_MAC which can be initialized and updated via the SHE key update protocol.

In addition, when host is granted with SU rights, BOOT_MAC can be automatically calculated as described
below.

On the first SMR #0 installation using BOOT_MAC_KEY, if BOOT_MAC is empty (i.e. not initialized) and
if BOOT_MAC_KEY has been provisioned, the reference authentication tag is calculated by the HSE and

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
16 /39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

saved in BOOT_MAC. When installing SMR #0 use the BOOT_MAC_KEY while the BOOT_MAC is already
initialized, the BOOT_MAC value must be updated through the SHE key update protocol prior to issuing the
SMR installation service.

In all the cases, the data field plnstAuthTagl[] is always discarded and should be set to NULL.

3.1.3 SMR installation

The host can request for SMR installation via the HSE service defined by the structure
hseSmrEntrylnstallSrv_t, the SMR installation service mainly takes in following inputs as shown in the below
table.

Table 6. Parameters of structure hseSmrEntryInstallSrv_t

Data field Description
entrylndex A SMR number between 0 and 7.
pSmrEntry A set of attributes that holds the SMR entry as listed in above Table.
accessMode Specifies the access mode (ONE-PASS, START, UPDATE, FINISH).
streamld Specifies the stream to use for START, UPDATE, FINISH access modes.
pSmrData The address where SMR data to be installed is located.
smrDatalLength The length of the SMR data.
pAuthTag The address where SMR Original authentication tag to be verify is located.
pAuthTagLength The address of the length of the SMR authentication Tag.

The first-time definition of a SMR entry can be performed when LC is set to CUST_DEL. In addition, most of the
data fields in the SMR entry can be modified only when the host is granted with SU rights.

The SMR installation via this service can be done in one-pass or streaming mode. The streaming mode is
useful when the SMR content to install is not entirely available in the system memory when the installation
starts (OTA use case). This service does not use a stream ID as HSE uses internal contexts when processing in
streaming mode.

3.1.3.1 One-pass installation mode

When the SMR content to install is fully available in Flash or RAM, the most convenient way to process it is to
run the service in one-pass mode, in this case:

* The data field accessMode must be set to HSE_ ACCESS_MODE_ONE_PASS.
The data field pSmrData must be equal to pSmrSrc, this is the start address of the SMR content.
The data field smrDatalLength must be equal to smrSize, this is the entire size of the SMR.

The data field *pAuthTagLength[0] (respectively *pAuthTagLength[1]) must be set with the size of the byte
array pointed by the data field pAuthTag[0] (respectively pAuthTag[1]).

3.1.3.2 Streaming installation mode

It is possible to process a SMR installation even if the entire content is not already programmed in Flash or
RAM. A typical example for such use case is an image (code or data) that is too big to fit in the available
application RAM entirely and is provided to the host in chunks via a communication interface. Each individual
chunk is then programmed in Flash, in this case:

* The SMR number (entrylndex), configuration (pSmrEntry) and decryption initialization vector (cipher.plV) must
be provided only in the START call.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
171/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

* For the START, UPDATE or FINISH calls, the data field pSmrData must point to the next SMR chunk to
process and the data field smrDatalLength is set with the size of that chunk. The minimum chunk size is 64
bytes.

* The START and FINISH calls are mandatory, the UPDATE call is optional.

The address (pAuthTag[]) and size (authTagLength[]) of the initial authenticity proof must only be provided
during the FINISH call.

3.2 Core Reset (CR)

3.2.1 CR table

The Core Reset (CR) table allows the host to associate each CPU-driven subsystem available in a device with
up to eight SMR. The sanctions are applied on those subsystems after the pre-boot and post-boot phases,
depending on the SMR verification status. For the devices with internal flash user can install maximum two core
reset entry. Each entry in the CR table holds a set of attributes listed in the following table.

Table 7. CR table entry attributes
Attribute Data field Description

Core identifier coreld A unique number that identifies a CPU-driven subsystem.

A set of flags that define which SMR, indexed from 0 to 7 (bit #i for SMR #i),
SMR verification map smrVerifMap must be verified before or after releasing from reset the associated subsystem;
cannot be 0.

A set of flags that define which SMR, indexed from 0 to 7 (bit #i for SMR #i),
altSmrVerifMap |must be verified before releasing from reset the associated subsystem when
one or more SMR specified in smrVerifMap failed the verification.

Alternate SMR
verification map

A pointer to the first instruction executed by the associated subsystem:

 After a successful verification of all SMR specified in the SMR verification
map, for which the verification method is set to HSE_SMR_VERIF_PRE_
BOOT_MASK.

Reset add PassReset
eset address prasshese * Or unconditionally if there are no SMR in the verification map to be verified
during the preboot phase (i.e. smrVerifMap refers to SMR with HSE_SMR _
VERIF_POST_BOOT_MASK verification method only).
* This address must lie within one of the verified SMR.
Alternate AltReset A pointer to the first instruction executed by the associated subsystem if all the

reset address P SMR defined in altSmrVerifMap pass the verification.

Sanctions on . The sanction that applies if the pre-boot or post-boot verification of one SMR

. e crSanction .

failed verification faile

3.2.1.1 Core identifier

Each CPU-driven subsystem is identified by a unique number (coreld). The following table lists the subsystems
and their respective core identifiers in S32K344 devices.

Table 8. Subsystem vs. core identifiers (coreld)

Core ldentifier S32K344
0 M7_0
1 M7_1

If a CPU subsystem is not listed in the Core Reset table, it is not released from reset by the HSE.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
18/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

3.2.1.2 Verification map

The association of a CPU subsystem with a set of SMR is realized via the data fields smrVerifMap and
altSmrVerifMap: when bit #i is set to 1, SMR #i is associated to that CPU subsystem. When the verification of
all the associated SMR is done, the status of the CPU subsystems at the end of the pre-boot phase depends on
several conditions as summarized in the following table.

Table 9. Status of the CPU subsystem (all SMR verified in pre-boot phase)

Conditions Status

pPassReset within a verified SMR Release from reset at address pPassReset.

Verify altSmrVerifMap if configured, otherwise the sanction is the same as if one

pPassReset not within a verified SMR SMR failed the verification (see below).

pAltReset within a verified SMR Release from reset at address pAltReset.

pAltReset not within a verified SMR Same as if one SMR failed the verification (see below).

The reset address provided in the data fields pPassReset and pAltReset can be an address within the on-chip
Flash. The address pPassReset must lie within one of the SMR listed in smrVerifMap. Similarly, the address
pAltReset must lie within one of the SMR listed in altSmrVerifMap.

3.2.2 Sanctions

The sanction taken by the HSE for a CR entry associated with SMR that failed verification depends on the
phase when it is applied (i.e. pre-boot or post-boot).

3.2.2.1 Pre-boot sanctions

The below following table summarizes the conditions and HSE behavior in terms of sanctions applied in the pre-
boot and booting phases. If the sanction is HSE_CR_SANCTION_DIS_ALL KEYS, disable all keys; otherwise,
key usage is individually disabled via the smrFlags key attribute.

Table 10. Sanction on a subsystem (at least one SMR in primary map not verified in pre-boot phase)

crSanction (xxx = HSE_CR_SANCTION) Conditions Sanction on subsystem
xxx_KEEP_CORE_IN_RESET altSmrVerifMap == Keep in reset.

OR :

Reset the device (all subsystems

xxx_RESET_SOC at least one SMR listed in altSmrVerif |impacted).

Map NOT verified

OR
xxx_DIS_ALL_KEYS ==

_Ulo_ALL_ pAltReset K . isable k

xxx_DIS_INDIV_KEYS OR eep in reset and disable key Usage.

pAltReset NOT within a verified SMR

3.2.2.2 Post-boot sanctions

The below Table 11 summarizes the conditions and HSE behavior in terms of sanctions applied in the post-boot
phase.

Table 11. Sanction on a subsystem (at least one SMR not verified in post-boot phase)

SMR verification status | crSanction (xxx = HSE_CR_SANCTION) Sanction on subsystem
All SMR verified N/A None (continue operation).
AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback

19/39


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

Table 11. Sanction on a subsystem (at least one SMR not verified in post-boot phase)...continued

SMR verification status | crSanction (xxx = HSE_CR_SANCTION) Sanction on subsystem
xxx_KEEP_CORE_IN_RESET None (continue operation).
xxx_RESET_SOC Reset the device (all subsystems impacted).

At least one SMR not 5
verified xxx_DIS_ALL_KEYS Disable all key usage.

Disable the usage of selected keys via the

xxx_DIS_INDIV_KEYS key attribute smrFlags.

3.2.3 CR installation

The host can request for installing an entry in the Core Reset (CR) table via the service defined by the structure
hseSmrCrEntrylnstallSrv_t. The CR table entry installation service mainly takes in the following inputs as shown
in the below table.

Table 12. Parameters of structure hseSmrCrEntrylnstallSrv_t

Data field Description
crEntrylndex A CR entry number between 0 and (HSE_NUM_OF_CORE_RESET_ENTRIES - 1).
pCrEntry A set of attributes that holds the CR table entry as listed in above Table.

The first-time definition of a CR entry can be performed when LC is set to CUST_DEL. Once defined, a CR
entry can be updated only when all the associated SMR have been successfully verified first. In addition,
to modify any of the values in a CR entry already defined, the host must be granted with SU rights. In
addition, it's noted that at least one SMR should be linked to the CR entry via pCrEntry.preBootSmrMap or
pCrEntry.postBootSmrMap.

3.3 SMR verification

3.3.1 One-time automatic SMR verification

When BOOT_SEQ equals 1 in IVT, HSE uses the configuration in SMR and CR tables to boot the application
cores securely. As such, the SMR linked with the CR table are automatically verified once by the HSE during
startup.

The automatic verification at start-up splits in three phases:

* The pre-boot phase, during which the SMR are verified before any CPU subsystem in the host is released
from reset; this is the first phase after start-up.

* The boot phase, during which the SMR are verified after the first CPU subsystem in the host has been
released from reset (when allowed); this is the second phase after start-up.

* The post-boot phase, during which the SMR are verified after all CPU subsystems in the host have been
released from reset (when allowed); this is the third phase after start-up.

The end of the pre-boot and boot phases can be monitored via the HSE_STATUS_BOOT_OK status flag and
the end of the post-boot phase can be monitored via the status flag HSE_STATUS_INIT_OK as illustrated in the
following figure.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
20/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

reset

| HSE operating

HSE_STATUS :BOOT OK ==

T Application CPU subsystems operating

THSE_STATUS_INIT_OK =

H 3 boot E H
i<— pre-boot phase —><——><—— post-boot phase ——><——— run-time phase

Figure 17. Pre-boot / post-boot phases (BOOT_SEQ = 1)

3.3.1.1 Pre-boot phase

During the pre-boot phase, HSE parses the CR table from the smallest entry index to the highest. For each CR
entry, SMR linked via pCrEntry.preBootSmrMap data field are verified first. If any of these SMR fails verification,
HSE verifies the SMR specified by pCrEntry.altPreBootSmrMap data field is configured.

If all the SMR are verified successful from either of the pre-boot SMR maps, HSE may release from reset the
CPU subsystem in the host depending on the core reset release strategy.

If both pre-boot SMR maps (including altPre-boot) have at least one SMR for which the verification fails, HSE
applies the sanction configured for that CR entry.

3.3.1.2 Boot phase and core reset release strategies

While the CR table is parsed in the pre-boot phase, HSE releases the associated CPU from reset according to
the core reset release strategy, configurable via hseAttrCoreResetRelease_t attribute:

* ALL_AT_ONCE, by which HSE parses first the entire CR table and verifies all the associated pre-boot SMR
entries and then releases from reset all CPU subsystems configured that passed the verification.

* ONE_BY_ONE, by which HSE releases from reset each CPU subsystem one by one, after the associated
CR entry and pre-boot SMR entries have been verified successfully.

The pre-boot phase ends when the first CPU subsystem is released from reset.

The end of both pre-boot and boot phases which implies all configured CPU subsystems being booted is
signaled by the HSE via the status flag HSE_STATUS BOOT_OK.

3.3.1.3 Post-boot phase

After all configured application CPU subsystems are released from reset and the booting phase is
over, HSE reiterates through the CR table and for each entry, it verifies the associated SMR linked via
pCrEntry.postBootSmrMap data field.

If any of the SMR verified during the post-boot phase fails verification, HSE applies the configured sanction for
the associated CR entry. In this case, HSE_CR_SANTCION_KEEP_CORE_IN_RESET is not applicable (i.e.
HSE can’t keep an booted application CPU in RESET phase).

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
21/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

3.3.1.4 Secure boot flow

The following figure details the SMR verification processes during pre-boot and post-boot phases and the
sanctions taken by the HSE at the end of each phase.

The red and blue lines represent the boot flow of the pure PRE_BOOT and POST_BOOT modes respectively.

altsmrVerifMap !=0 No
pAltReset 1=0?

Yes
Load and verify
PRE_BOOT SMR Load and verify
PRE_BOOT_ALT SMR

Secure boot

Load and verify
POST_BOOT SMR

i

Apply crSanction

(PRE_BOOT)
- PRIESjgggT SMR CR table parsing CR table parsing
from smrVerifMap?
l Apply crSanction
(POST

Is there
any POST_BOOT SMR
from smrVerifMap?

Load all POST_BOOT
SMR from smrVerifMap
All PRE_BOOT
SMR verified
and N
i o
Verification postponed pPaS§RSSel Wlt'glln
until post-boot verified SMR?

pPassReset within > Yes | Release coreld from Release coreld from Continue with normal HSE
verified SMR? pPassReset pAltReset operation flow
No

C

 —

Select PRE_BOOT_ALT _BOOT)

—

SMR from altSmrVerifiMap

All PRE_BOOT_ALT
SMR verified
and
pPassReset within
verified SMR?

Select POST_BOOT
SMR from smrVerifiMap
All POST_BOOT
[— been verified?

SMRs has

 I—

Yes

Legend:
| PRE_BOOT | | PREﬁBOOTﬁALTl

| BOOT | | POST_BOOT |

Figure 18. SMR verifications and sanctions for the Advanced Secure Boot mode

3.3.2 On-demand SMR verification

When the verification method is set to RUN_TIME, a SMR is unverified until the host triggers the verification via
the service defined by the structure hseSmrVerifySrv_t or until HSE triggers the verification automatically if the
data field checkPeriod is set to a value different from 0.

This service takes only one data field (entrylndex) that specifies the index of the SMR to verify.

This service can also be used to verify any SMR during run-time, irrespective of its verification method defined
in the SMR table. However, when the SMR to verify is in external Flash, it must be ensured that no concurrent
programming operation is triggered by the host while the verification takes place.

3.3.3 Recurrent automatic SMR verification

When its data field pSmrEntry.checkPeriod is set to a value different from 0, a SMR is automatically verified
recurrently by the HSE during run-time, i.e. during normal operating conditions, once the pre-boot and post-boot
phases are over.

The verification recurrence is defined by several system clock cycles, each unit corresponding to 10ms at
maximum frequency. For example, if smrEntry.checkPeriod = 200, a verification process is triggered every 2s
for a system clock frequency of 400 MHz, 4s at 200 Mhz etc.

It can be configured for any SMR that is loaded in RAM and for which the internal proof of authenticity
generated by HSE is used for verification (i.e. HSE_SMR_CFG_FLAG_INSTALL_AUTH is not set).

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
22/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

3.3.4 SHE secure boot mode (only use SMR #0)

The SMR #0 is the only SMR that can be associated to the SHE AES key BOOT_MAC_KEY as the SMR
authentication key. In this case, the reference authentication tag is the CMAC value referred to as BOOT_MAC.

If BOOT_SEQ = 1, authentication process started as mention in One-time automatic SMR verification. The
reference authentication tag is calculated by the HSE and compared with saved BOOT_MAC. If BOOT_SEQ =
0, authentication process started as mention in On-demand SMR verification.

The Figure 19 shows the SMR verification process of the SHE based secure boot mode which also uses SMR

and CR tables.

i==0
&& SMRYi].keyHandle
== SHE_BOOT_MAC_KEY_HANDLE
&& HSE_SHE_STATUS_SECURE_BOQ
not set?

Set HSE_SHE_STATUS_SECURE_BOOT bit

v

Generate BOOT MAC

v

Get BOOT MAC from SHE BOOT_MAC slot

v

Compare generated BOOT MAC with BOOT MAC in
SHE BOOT_MAC slot

Set HSE_SHE_STATUS_SECURE_BOOT_OK > Update SMR status as verified —

v

Set HSE_SHE_STATUS_SECURE_BOOT_FINISHED
&& clear HSE_SHE_STATUS_SECURE_BOOT_OK

> Update SMR status as not verified

Process non SHE baesd SMR verification

{ Return status to Host |«

Figure 19. SMR verifications for the SHE based Secure Boot mode

h 4

3.3.5 HSE status
By reading the values of bits 16 to 31 of FSR register in MU_O to get the status of HSE as below Table 13.

There are several secure boot related bits which needs to be noted:

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
23/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

Bits #26: HSE_STATUS_BOOT_OK; set to 1 when all the secure boot conditions (pre-boot phase) defined in
the HSE successfully pass.

Bits #24: HSE_STATUS_INIT_OK; set to 1 when the post-boot phase is successful.

Bits #17 to #20: in the HSE status relate to the SHE secure boot are not valid when using advanced secure
boot.

Bits #22: set to “1” when a host(S32K3xx) debug session is active and set to “0” when debugger
disconnected.

Table 13. HSE global status bits in FSR

Bit Description
31 |RFU
30 |RFU
29 |RFU

28 |HSE_STATUS_OEM_SUPER_USER; when set to 1, indicates that SU rights are granted to OWNER_OEM
27 |HSE_STATUS_CUST_SUPER_USER; when set to 1, indicates that SU rights are granted to OWNER_CUST

26 |HSE_STATUS_BOOT_OK; set to 1 when all the secure boot conditions (pre-boot phase) defined in the HSE
successfully pass

25 |HSE_STATUS_INSTALL_OK; set to 1 once the key catalogs have been successfully formatted; when cleared to 0,
indicates to the host that the key catalogs must be formatted

24 |HSE_STATUS INIT_OK; set to 1 when the HSE initialization is completed; when cleared to 0, no service request can
be made to the HSE (MU disabled)

23 |HSE_STATUS_HSE_DEBUGGER_ACTIVE; set to 1 when a HSE debug session is active
22 |HSE_STATUS_HOST_DEBUGGER_ACTIVE; set to 1 when a host debug session is active

21 |HSE_STATUS_RNG_INIT_OK; set to 1 when the RNG initialization is complete; when cleared to 0, any services using
random number is unavailable to the host

20 |HSE_SHE_STATUS_SECURE_BOOT_OK; set to 1 when SMR #0 successfully verified against BOOT_MAC
19 |HSE_SHE_STATUS_SECURE_BOOT_FINISHED; set to 1 when SMR #0 was not successfully verified

18 |HSE_SHE_STATUS SECURE_BOOT _INIT; set to 1 when SMR #0 has been installed and authenticated with BOOT _
MAC_KEY

17 |HSE_SHE_STATUS SECURE_BOOT,; set to 1 when SMR #0 has been installed and BOOT_SEQ equals 1
16 |RFU

3.3.6 SMR core status

HSE system attribute service "HSE_SMR_CORE_BOOT_STATUS" request the SMR verification status and
core boot status as shown in Table 14, from the HSE.

The structure "hseAttrSmrCoreStatus_t" of this service is provides following information:

* SMR verification status corresponding to the entries present in SMR table (refer to smrStatus[]).
* Provides Core Boot status (refer to coreBootStatus|]).

* In case BSB is performed, it provides the Core Boot status and the location of loaded application (primary/
backup, refer to coreBootStatus|]).

Table 14. SMR verification status and core boot status

‘ Type Name Description ‘
‘uint32_t smrStatus[2U] 0-31 bit will represent 32 SMR table entries (applicable when SMR is present/enabled). ‘
AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback

24739


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

Table 14. SMR verification status and core boot status...continued

S32K3xx Secure Boot

Type

Name

Description

* smrStatus[0].bit
* smrStatus[0].bit
e smrStatus[1].bit
e smrStatus[1].bit

: 0 - SMR Not Verified

:1- SMR Verified

: 0 - SMR verification fail

: 1 - SMR verification pass

uint32_t

coreBootStatus[2U]

0-31 bit will represent CORE-ID (0-31).

» coreBootStatus[0].bit : 1 - Core booted

» coreBootStatus[0].bit : 0 - Core Not booted
» coreBootStatus[1].bit : 1 - Core booted with pass/primary reset address

» coreBootStatus[1].bit : 0 - Core booted with alternate/backup reset address

3.4 PLL and FXOSC configuration for secure boot

Before enablingsecure boot, the system clock must be configured correctly. The FXOSC must be enabled and
stable before PLL configuration.

Table 15. Recommended PLL settings for secure boot

Device PLL VCO PLL_PHI_CLK DCF Value (PLLDIG.
PLLODIV_1[DIV])

S32K344 960 MHz 240 MHz 0001b

S32K358 960 MHz 160 MHz 0010b

S32K38x 960 MHz 320 MHz 0000b

Ensure HSE clock remains within 24—120 MHz range. Exceeding this may causeHSE MO core to fail and trigger

firmware erase via SBAF.

4 Basic Secure Boot

The basic secure boot is a simplified boot scheme, not like the advance secure boot base on secure memory
region(SMR). BSB can boot only one core (the booted core can start other cores) and based on the Boot Data
Sign service defined by the structure hseBootDatalmageSignSrv _t.

Also, the BSB cannot use any sanction, if verification failed the core goes into recovery mode and no program

will be executed.

4.1 Application debug key/password (ADKP)

The ADKP is an HSE OTP (one-time program) attribute, not like a normal NVM key can be erased. It is used
to calculate the GMAC is a 256-bit AES key resulting from SHA256 operation over the user-defined application
debug key/password (ADKP) as illustrated in the below Figure 20(a). Before using the “Boot Data Sign/verify”

service or debug protect must set the ADK/P first.

The debug key/password (ADK/P) is a 128-bit value than can be configured using

HSE_APP_DEBUG_KEY_ATTR ID attribute. ADK/P can be written only once (UTEST attribute), and the
operation is allowed only in CUST_DEL Life Cycle.

ADKP can be optionally diversified with the device UID before being provisioned in the HSE as shown in the
part (b) of the following figure. Hence, it makes the IVT / CFG authentication key device specific.

AN13465

All information provided in this document is subject to legal disclaimers.

© 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 2 January 2026

Document feedback
25/39


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

input to the “set attribute” service

Input
(ADKPm 128 bit)

ADKP
(saved in secure NVM) SHA256
l 128-bit input l Key (256 bit)

64 bit
SHA256 uiD SHA256 AES-ECB
i 256-bit output l

ADKP-extended ADKP
(for IVT / CFG authentication) (first 16 byte encrypted & saved in secure NVM)
(a)Non device-dependent ADKP (b) Device-dependent ADKP

Figure 20. Provisioning a device-dependent password / debug key

4.2 Configuration

The host(S32K344) can request for the calculation of an authentication tag (GMAC) over the host system
images via the service defined by the structure hseBootDatalmageSignSrv_t.

This service is available to host only when it is granted with Super User (SU) rights (LC can be CUST_DEL,
OEM_PROD or IN_FIELD) and the ADK/P is written.

Before sending the service request to HSE, user needs to make sure the header_tag of the AppBL is correct or
error will happen.

The Boot Data Sign Service needs a buffer to store the HSE outputs. The resulting GMAC (the authentication
tag), also the AppBL start address need to be provided.

After the service has been executed, the GMAC needs to write appended to the end of AppBL according to the
codelength in AppBL, as shown in the following figure.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
26/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

S32K3xx Secure Boot

Non-Secure Booting
(BOOT_SEQ==0)

App Bootloader File
Payload

Basic Secure Booting
(BOOT_SEQ==1)

App Bootloader File

Payload

Header Identifier Header Identifier

RAM Start Address

RAM Reset Address

| RAM Start Address |

Length of code Length of code

| RAM Reset Address |

Reserved

Application Bootloader
Code/Data

Application Bootloader
Code/Data

Authentication tag

GMAC

Figure 21. lllustrating non-secure boot and basic secure boot

To ensure the configuration above is completed and successful, the “Boot Data Verify” service defined by the
structure hseBootDatalmageVerifySrv_t can be called, the AppBL address needs to be provided.

Users needs to pay attention to that, the starting address of the application must be properly aligned (128byte
alignment is required in S32K3xx), otherwise it will not run normally and there is a 64-byte App header before
the App code. The user can set the linkfile of the App in this way, the App Header can set 0x005040C0 as the
starting address. After 64byte, the starting address of the App Code is 0x00504100. The compiled bin file starts
with the App Header and needs to be written to FLASH Address 0x005040C0.

4.2.1 Recovery from secure boot failure

In case of secure boot failure (for example, flash corruption during dealer update), configure altPreBootSmrMap
in CR table to boot a Flash Writer application.

Recommended CR configuration:

* altSmrVerifMap— SMR index of Flash Writer
* pAltReset— Reset address of Flash Writer
 crSanction—~HSE_CR_SANCTION_KEEP_CORE_IN_RESET

This allows recovery without bricking the ECU.

5 Enabling Secure Boot

5.1 Add mADKRP diversification

To enhance device-specific authentication, ADKP can be diversified using the device UID. This is mandatory for
failure analysis and secure IVT authentication.

Enable diversification by setting HSE_EXTEND_CUST_SECURITY_POLICY_ATTR_ID with enableADKm = 1.
Then provision the master ADKP using HSE_APP_DEBUG_KEY_ATTR_ID.

© 2026 NXP B.V. All rights reserved.
Document feedback
27139

AN13465 All information provided in this document is subject to legal disclaimers.

Application note Rev. 1.0 — 2 January 2026



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

5.2 Set BOOT_SEQ

To enable the secure boot, the bit fled BOOT_SEQ of the BCW in the IVT must set to "1" to change from the
default startup flow to the secure startup flow.

30].. |65 4]3]2]1]0

Boot configuration

(CM7_1_ENABLE)

BOOT_TARGET
(CM7_0_ENABLE)

BOOT_TARGET

Reserved
Reserved
SWTO0_ENABLE
PLL_ENABLE
BOOT_SEQ
Reserved

Figure 22. Boot Configuration Word
The data field BOOT_SEQ, effects on the boot sequence flow:

* When 0: releases the host from reset, then runs the HSE firmware
* When 1: keeps the host on reset and runs the HSE firmware first, must be set to run a pre-boot verification

5.3 Offline MAC Tag calculation

GMAC tags for IVT, AppBL, and SMR can be calculated offline on PC if theauthentication key (for example,
ADKP) is known.

This enables pre-programming during manufacturing and avoids runtime tag generation.

5.4 Update IVT

The IVT content stored in Flash needs to be updated, it is recommended to having a backup IVT to ensure that
the program can be running in case of data corruption of another IVT.

The IVT start address can be selected among one of the values provided in the following table. At reset, the
HSE searches for the first valid IVT header tag starting from the lowest address.

Table 16. SMR verification status and core boot status

Device Possible start addresses (FULL_MEM) Possible start addresses (AB_SWAP)
0x00400000
0x00500000 0x00400000
S32K344 0x00600000 0x00500000
0x00700000 0x10000000
0x10000000

This step can be done after the secure boot configuration is complete and successful, but it can also be done
before installing the SMRs and protect the IVT by the SMR like any other memory region.

The IVT can use BOOT_DATA_SIGN service to protect the IVT content against unauthorized changes, it works
like the BSB mode, the authentication tag is computed and appended to the end of the IVT. To enable IVT
authentication, the one-time programmable HSE system attribute IVT_AUTH must be set to 1.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 2 January 2026 Document feedback
28/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

6 Secure boot on AB swap

6.1 Partition swapping service

The OTA feature is enabled if the user has installed the HSE firmware AB_SWAP. This operation is irreversible,
the device which has installed AB SWAP firmware can no longer install full_mem firmware, and vice versa.

The FLASH space of S32K3xx will be equally divided into two partitions, active and passive. It can be switched
by executing service “HSE_SRV_ID_ACTIVATE_PASSIVE_BLOCK”, after reset, the active and passive
partitions will be swapped.

The user can program the passive partition by the S32K3 FLASH controller or debugger like the device with
full_mem installed, but the passive partition cannot execute the program code.

For more details, please refer to the HSE reference manual chapter 12 [REF02].

6.2 DCM status registers

The host (application) can read the DCM status register (DCMSTAT) to identify which partition is active and
which partition is passive. For more information refer to the following table.

Table 17. DCM status register (DCMSTAT)
Bit Number Function Description

31-18 Reserved

AB_SWAP Active Region (valid only when the value of the
DCMDONE field is 1)

Ob — Low address

1b — High address

AB_SWAP Active State (valid only when the value of the
DCMDONE field is 1)

0Ob — Inactive

1b — Active

15-0 Refer to S32K3-RM for more details.

17 DCMOTAR

16 DCMOTAA

6.3 IVT authentication with GMAC

To prevent unauthorized modification of IVT, enable IVT authentication using GMAC.
Following are the steps:

1. Set IVT_AUTH = 1usingHSE_ENABLE_BOOT_AUTH_ATTR_ID.
2. Use hseBootDatalmageSignSrv_t to compute GMAC over IVT.
3. Append the 16-byte GMAC tag to the IVT.

The GMAC key is derived from ADKP; GMAC_Key = SHA256(ADKP).

This ensures integrity of the boot configuration and prevents disabling secure boot.

6.4 Timing recommendations for BOOT_SEQ and lifecycle

Do not set BOOT_SEQ = 1 or advance lifecycle unless:

* HSE firmware is installed and keys are provisioned.
* VT authentication is enabled.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
29/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

* SMR and CR tablesare configured Power loss during these steps may brick the ECU. Ensure stablepower
and backup mechanisms.

6.5 Implement secure boot

To implement secure boot on the OTA enabled device, the users need to know that the SMR table is uniquely
stored in the S32K3 HSE secure NVM, and the area protected by each SMR and its auth-tag will also point to a
unique address.

Therefore, it is recommended to store the auth-tag in the same fixed address regardless of the active or passive
partition, otherwise you need to reinstall the SMR to avoid secure boot failure.

After Download demo Copy Cfgand App code 1o Install SMR and CR, write Perform AB swap,
program code passive block auth tag of App_v2 on After functional reset,
passive partition Run Cfg_v2
0400000 0x400000 0x400000 0¥600000
WT T T VT
running BOOT_SEQ =0 o BOOT_SEQ=0 o BOOT_SEQ=0 @ BOOT_SEQ =0 fos}
o o
o . <3 5 I+
= running = % b
Cfg_v1 o Cfg_v1 o running Cfg_wv1 o Cfg_v1 o
Active D000 tive DD e D000 o esive 0x700000
VT bockp T backer VT baciar
AuthTag_v1 @ AuthTag_v1 [o1] AuthTag_v1 o) AuthTag_v1 w
g g g s
= | oxs0a000 = | oxs040m0 = | oo -
HSE_IMG AB_SWAP HSE_IMG AB_SWAP HSE_IMG AB_SWAP HSE (MG AB_SWAP 0x704000
I —— DEFFFFE - e - DEFFFFF e DSFFFFE e = oarerer
0x500000 0x600000 0x500000 0x400000
T T T
o BOOT_SEQ -0 o BOOT _SEQ=0 @ running BOOT_SEQ=0 o]
S = 3 3
=
o cfg_v2 |o cfg v2 o cig vz |o
Passive — 0x700000  pagsived 700000 ccive ) 03700000 Active — 0x500000
VT backup IVT_backup T _backup
o AuthTag_v2 o @ @
S e g g
“ | oxosom “ | oosomo “ | ox7panon @ | oxspaoon
0x7FFFFF Ox7FFFFF Ox7FFFFF Ox5FFFFF
After the authtags on both After swap and resst,
The SMR and CR already !
sides are written, modify the run App_v1
Installed |, write auth tag of
App_vwl on passive partition BOOT_SEQinthe IVT to
enable secure boat flow
0xE00000 0600000 0x400000
VT
BOOT SEQ=0 os) m oy
S & 5
S o o
B % %
Cfg_wv1 o Cfg_v1 =) Cfg_v1 o
Passive — 0x700000  Passive — 0700000 Active | 0x500000
WT_backup IWT_backup IVT_hackup
@ o running o
S 5 I
S o o
kS = %
- I I
HSE_IMG AB_SWAP 704000 HSE_IMG AB_SWAP " HSE_IMG AB_SWAP
e Dy7FFFFF ~ OFFFFFF o OWEFFFFF
0400000 0400000 0x600000
T
BOOT_SEQ =0 o o
5 =
running Cf 2 = B
g_Vv e running "
Active 0E00000 ] 0500000 Passive 0700000
WT hackup WT hackup WT_backup
@
<)
o
=
0xE04000 0504000 “ | owrnanmn
DiEFFFFF x5FFFFF O:7FFFFF
Figure 23. lllustrating secure boot configuration on AB swap device
Figure 23 shows how to implement secure boot on the OTA enabled device in the demo:
AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback

30/39


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

1. After downloading the demo program code(Cfg_v1 and App_v1) on the active partition, the active region is
“low address(block 0,1 )", the S32K3xx will run the secure boot configuration program.

2. Detect that no valid program exists in the passive partition, copy the same data as the active partition to the
passive partition, which is Cfg_v1 and App_v1 program code.

3. Install the SMR to configure secure boot, write the AuthTag_v2 of the passive partition to the fixed location
before App_v2.

4. Perform AB swap, after functional reset, the active region is “high address(block 2,3)”, run Cfg_v2.

5. Like Cfg_v1 did in step3, Cfg_v2 will compute the authentication tag of App_v1 in the passive area and write
it into the AuthTag_v1 area.

6. After the authentication tags on both sides have been written, modify the BOOT_SEQ to “1” in the active
(block 0) and passive (block 2) IVT at the same time to enable secure boot flow. Since the start address in
the SMR has been set to the App code address, the device will run the App program directly instead of the
Cfg program.

Perform AB swap, after functional reset, the active region is “low address(block 0,1)”, run App_v1

7 Setup and test

7.1 Import project

First, the user needs to import the secure boot Cfg and App projects into S32 Design Studio as shown in the
following figure. The demo project is based on RTD-LLD driver pack (V 0.9.0).

File Edit Source Refactor Mavigate Search Project

MNew Alt+Shift+N >
Open File...
(2, Open Projects from File System...
Recent Files »
Close Ctrl+W
Close All Ctrl+Shift+W
Save Crl+5
Save As...
Save All Ctrl+5Shift+S
Revert
Move...
[ Rename.. F2
&' Refresh F5
Cenvert Line Delimiters To »
Print... Ctrl+P
[ Import.,
g Export..
Migrate...
Properties Alt+Enter
Switch Workspace >
Restart
Exit

5 §32K344_SecureBootApp_Example_090_34: Debug_FLASH
15 S32K344 SecureBootCfg_Example 090_34: Debug_FLASH

Figure 24. Import project

The demo package needs the HSE firmware (V0.0.8.3) interface files and encrypted pink image, the user needs
to copy it to project folder “HSE” as shown in the following figure.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
31/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

v '_,% = 532K344_SecureBootdpp_Example_090_34: Debo
q:;“‘ Binaries
) Includes
w8 s HEE
= framework
= interface
= service

= drivers

Figure 25. Copy HSE interface header file

7.2 Driver configuration

The demo is developed and tested on S32K3 White Board, and the user can change the configurations
of ConfigTools (CT) to adapt to any board as necessary. The following figure shows that the Pins, Clocks,
Peripherals..., which can be changed in ConfigTools.

ConfigTools = Pins Run  Window He
Pins

Clocks

Peripherals

VT -
DCo @
QuadSPl

DDR

>R emIS .

Coenfig Tools Overview

«| Update Code

Configuration Preferences

Data Manager

Drivers [+
C40 |p_1 Cache_lp_1 Hze 1
IntCtrl_lp_1 Lpuart_Uart_1 osif_1
Pit_1 POWER_1 Siul2_Dio_1
Siul2_lcu_1 Siul?2_Port_1

Figure 26. Config tools

In the Pins option as shown in Figure 27, user can change the pin-map according to their requirements.

Routed Pins for BOARD_InitPins 9 [ €3 v

#  Peripheral  Signal Routeto Label Identifier Direction  Slew Rate Output Buffer Enable  Safe Mode Control  Input Buffer Enable  Pull Select  Pullup Enable ~ Input Inversion Select  Pad keep en:
| HH €irg, 16 PC20 SW2/USER_BTNT . Not Specified _Jnpot Fastest seiting Disabled Disgble Engbled Pulidown  Disabied Don't invert Disabled
RIZ SIUL2 eirg, 17 PTC21 SW3/USER_BTNZ  Not Specified  Input Fastest setting  Disabled Disable Enobled Pulidown  Disabled Don't invert Disabled
D10 SIUL2 gpio, 168 PTFE Q2/LED1 Not Specified  Output Fastest setting  Enabled Disable Disobled Pulidown  Disabled Don't invert Disabled
BIS  SIUL2 gpio, 169 PTFO 03/LED2 Not Specified  Output Fastest setting Enabled Disable Disabled Pulidown  Disabled Don't invert Disabled
BI7  SUL2 gpio, 170 PTFIO O4/LED3 Not Specified  Output Fastest setting Enabled Disable Disobled Pulidown  Disabled Don't invert Disabled
HIT SuL2 gpio, 171 PTFII Q5/LED4 Not Specified  Output Fastest setting  Enabled Disable Disabled Pulidown  Disabled Don't invert Disabled
M2 LPUART.O  lpuarttx  PTA27 LPUART.0.TX  LPUART.OTX Output Fastest setting  Enabled Disable Disobled Pulidown  Disabled Don't invert Disabled
N2 LPUARTO  lpuartrx  PTA28 LPUART.ORX  LPUART.ORX Input Fastest setting  Disabled Disable Enabled Pulidown  Disabled Don't invert Disabled
A SR gpio, 13 PTAT3 10_TOGGLE I0_TOGGLE  Output Fastest setting  Enabled Disable Disobled Pullup Enabled Don't invert Disabled

Figure 27. Pin map

When the hardware configuration above is completed, users can click “Update Code” option to generate the
RTD configuration file based on ConfigTools.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
32/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

7.3 Test steps

7.3.1 Build project

The first step is to build (Debug_FLASH) the two projects above, as described in the previous chapter. The App
project binary file needs to be relocated in the link file of the Cfg project, it means that the App project should be
built before the Cfg project.

After building, connect the uart output@9600bps and download program to S32K344 white board.

7.3.2 Run secure boot Cfg project program

The uart outputs the information of the program running status as shown in Figure 28.

The secure boot Cfg project runs firstly, outputs the information of “HseStatus” and “smrCoreStatus” and
executes the secure boot configuration.

7.3.3 Run secure boot App project program

Once the configuration of the Cfg project is completed, press “reset” button to reset the MCU. Then the secure
boot App project runs and the output information of “HseStatus” and “smrCoreStatus” as shown in Figure 28.
The user can judge whether the verification is successful according to the changes of these parameters.

Finally, some crypto functions related to the keys installed in the secure boot Cfg project will be executed to test
that the keys are available. It proves that the secure boot has passed, and the sanctions have not been placed.

Advanced seucre boot (RSA), with SMR_#0

HSE status
[ Bits # [ Betore | Ater |

27

25

]

24
23
HSE_STATUS_HOST_

DEBUGGER_ACTIVE 2

21

20
19
HSE_SHE_STATUS |

17

ele ele ef= = ==
ol 2 @ @|/= @ & = al|=|=

16

SMR core status
[ | e Jeeore [aner |
e 0 0 1
s Status[2] o q

Core
Status Core 0 [ 1

Boot
Status[2] 1 ] 1

Figure 28. Verification status

7.3.4 Erase NVM

When the above tests are completed, the user can press SW2 button to erase all the keys and secure boot
configurations in the HSE NVM.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
33/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

7.4 Addition

7.4.1 Program ADKP

The ADKP is an HSE OTP (one-time program) attribute, it will not be installed as other NVM keys in the Cfg
project. User needs to manually program to test the basic secure boot.

7.4.2 Sanction in core reset table

The sanction is set to “HSE_CR_SANCTION_DIS_ALL_KEYS” by default. User needs to be careful when
changing it, or the core or SoC may stay in reset.

7.4.3 Inject error in App project (use Post_BooT)

User can test whether the secure boot is functional by modifying the data in the flash area protected by the
SMR after the secure boot configuration is completed.

The "Post_Boot" secure boot mode should be used, and SMR “verifMethod” needs to be set as
“HSE_SMR_VERIF_POST_BOOT_MASK” accordingly.

If the "Pre_Boot" secure boot mode is used, the verification failure will cause the MCU to enter the recovery
mode and cannot run any user programs.

After restarting, the MCU runs the APP program and perform the crypto function. As the protected flash memory
data has been modified, the secure boot verification will fail, which results in all keys being disabled and the
crypto program will not execute normally.

7.4.4 Choose the appropriate FLASH download algorithm

When using the PE micro debugger for program downloading and debugging, users need to select the
appropriate FLASH algorithm according to the type of HSE firmware installed as the Figure 29, otherwise it will
cause download errors.

type filter text [2) Main ([ PEmicro Debugger . > Startup | & Source | [7] Common | 1iti SVD Support| 8 OS Awareness
[€] C/C++ Application Software Begistration Advanced Options

[€] C/C++ Remote Application
© Eclipse Application
[] GDB Hardware Debugging
« [E 6DB PEMicro Interface Debugging fiashidata)
[ $32K344_SecureBootapp_Example_100_341_FW0110_Debug_FLASH PEMicro Interface Settings [rep_s32K324_1:32:936k_ab_swap.arp v
[ $32K344 SecureBootAppABSwap_Example_100_341_FWO110 Debtig FLASH PNE ||| |nerfaces USB Multlink, USB flulil | <p_s32K394_Tx321012K _hse_disabled.arp
[ $32K344 _SecureBootCfg_Example_100_341_FW0110_DebygFLASH_PNE nxp_s32k344_1x32x980k hse_enabled.arp
[ $32K344 SecureBootCfgABSwap_Example_100_341 10_Debug_FLASH_PNE Port: [T VTS (TVAEE Bl rxcp_s32k344_1x32x 936k _ab_swap.arp
[] GDB SEGGER J-Link Debugaing

Please register your software to ve/ Flash Algorithm Selection

Register now

Use the following flash algorithm when programming

Initialization Script Selection

@@ Launch Group Select Device  Vendor: NX|
® Launch Group (Deprecated) Specify a.mac script to run after connecting to the
5 o] | device.
#. Launch Group for S32 Debugger Core: M7 E"‘:“H - .
i

32 Debugger S nable initialization script

532 Debugger Flash Programmer

VLAB Simulator Debugging Additional Options

Browse. Variable:
[ Emergency Kinetis/Device Recovery by

Advanced Options JTAG Daisy Chain Settings

Use Daisy Chain llustration

Hardware Interface Power Control (Voltag

(¥ o e r TopNumber: 0 Pre-IR Bits: 0

Figure 29. Choose the FLASH download algorithm for PE micro

7.4.5 HSE clock limitations

The HSE Firmware is operational when HSE clock is between 24MHz and 120MHz. If the clock exceeds the
range, it may cause the HSE MO core to fail to start normally, or even a continuous watchdog reset and cause
SBAF to erase the HSE firmware. For more details, please refer to the HSE reference manual chapter 14.2.5
[REFO02].

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
34/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

8 Performance

Performance data is based on measuring the timing of the reset-pin (PTA5_MCU_RESETB) and toggle-pin
(PTA13_GPIO).

Togg P

Toggle Pin

HSE operating

T HSE_STATUS_ BOOT_OK ==
HSEboot&verify | ! !
PRE_BOOT + ) iyl E EI
calculate MAC or Sign T : E Application CPU subs&lstems operating

1
HSEbootdverify _ 1 0o 1 iate MAC or Sign—— >

FETERIET (Release CM7 core) :

1‘; HSE_STATUS INIT_OK ==
|

: ! boot | :
<— pre-boot phase —><——><—— post-boot phase ——><—— run-time phase

| Reset Pin | | POST_BOQT

Figure 30. Measure secure boot performance

Toggle Pin is controlled by software and toggles at the timing of Cortex-CM7° Core released (Pre_BOOQOT) or
SMR verification completed (Post_Boot). As shown in Figure 30, the toggle pin after the “PRE_BOOT” (pre-
boot-phase) and “POST_BOOT"(post-boot-phase).

For comparison, the time for Non-Secure Boot mode is 20.6 milliseconds.

The pre-boot performance data in milliseconds are measured when HSE_B is at 48 MHz, as shown in the
following table.

Table 18. Performance of secure boot (Pre-boot)

Algo CMAC-128 (ASB or SHE) HMAC-128 GMAC-128 RSA-2048 ECC-256
Size Normal Pre-Hash Normal Pre-Hash Normal | Pre-Hash | Pre-Hash Pre-Hash
64KB 37.48 27.89 28.04 27.60 29.18 27.84 27.94 27.90
128KB 48.20 29.28 29.40 28.99 32.36 29.25 29.30 29.30
256KB 69.94 32.10 32.24 31.75 38.18 32.05 31.88 31.82
512KB 113.7 37.70 37.85 37.75 49.55 37.45 37.76 37.78

The post-boot performance data in milliseconds are shown in the following table.

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback
35/39



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors AN1 3465

S32K3xx Secure Boot

Table 19. Performance of secure boot (Post-boot)

Algo Release CMAC-128 HMAC-128 GMAC-128 RSA- ECC

Size CM7* (ASB or SHE) 2048 -256
core Normal | Pre-Hash | Normal | Pre-Hash | Normal | Pre-Hash | Pre-Hash | Pre-Hash

64KB 11.36 1.79 1.94 1.50 3.08 1.74 1.84 1.80

128KB 22.28 3.18 3.30 2.89 6.26 3.15 3.20 3.20

256KB 2610 44.16 6.00 6.14 5.65 12.08 5.95 5.78 5.72

512KB 87.96 11.62 11.75 11.62 23.45 11.62 11.80 11.62

9 Reference

* HSE Service API Reference Manual (Rev.0 DRAFT J, 09/2020)

* HSE Firmware Reference Manual (Rev.0 DRAFT K, 11/2020)

* S32K3xx Reference Manual (Rev. 2 Draft B, 02/2021)

* SHE — Secure Hardware Extension Functional Specification (Version 1.1 01/04/2009)

10 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2026 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

11 Revision history

Table 20. Revision history

Document ID Release date Description

AN13465 v.1.0 02 January 2026 Initial release

AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 2 January 2026 Document feedback

36/39


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

Legal information

S32K3xx Secure Boot

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN13465

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 2 January 2026

Document feedback
37139


mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

S32K3xx Secure Boot

Tables

Tab. 1. Secure boot modes .........ccceeiiiiiie i 7 Tab. 11.  Sanction on a subsystem (at least one

Tab. 2. Key usage flags ......ccccooiiiiiiiiiiiees 11 SMR not verified in post-boot phase) .............. 19

Tab. 3. SMR verification map for key usage ................ 11 Tab. 12. Parameters of structure

Tab. 4. SMR verification map for key usage ................ 15 hseSmrCrEntrylnstallSrv_t ...........cccooiiiiie. 20

Tab. 5. SMR configuration flags .......ccccoecooeieiiiiiinnen. 16 Tab. 13. HSE global status bits in FSR ......................... 24

Tab. 6. Parameters of structure Tab. 14. SMR verification status and core boot
hseSmrEntrylnstallSrv_t ... 17 StatUS oo 24

Tab. 7. CR table entry attributes ............cccoociiieiiies 18 Tab. 15. Recommended PLL settings for secure

Tab. 8. Subsystem vs. core identifiers (coreld) ........... 18 DOOL e 25

Tab. 9. Status of the CPU subsystem (all SMR Tab. 16. SMR verification status and core boot
verified in pre-boot phase) .........cccccoociiieiiie 19 status .o 28

Tab. 10. Sanction on a subsystem (at least one Tab. 17. DCM status register (DCMSTAT) .....ccoceeeernee 29
SMR in primary map not verified in pre- Tab. 18. Performance of secure boot (Pre-boot) ........... 35
boot phase) .....cccueeveiii 19 Tab. 19. Performance of secure boot (Post-boot) ......... 36

Tab. 20. Revision history .........cccooiiiiiiiiiiee e 36

Figures

Fig. 1. Chip reset and boot overview .............c.c.......... 3 Fig. 17.  Pre-boot / post-boot phases (BOOT_SEQ =

Fig. 2. lllustrating the Messaging Unit (MU) in 1) oo 21
S32K3 e 4 Fig. 18. SMR verifications and sanctions for the

Fig. 3. Assign the global variables into non- Advanced Secure Boot mode ...........cccceeennee. 22
cacheable Memory ........ccccvvviiiienieenee e, 4 Fig. 19. SMR verifications for the SHE based

Fig. 4. Set Cortex-M7 core stack to non-cacheable Secure Boot mode ..o 23
=] Y- LSRR 5 Fig. 20.  Provisioning a device-dependent

Fig. 5. Image Vector Table .........ccccceeviiiiiiiiiiieieee 5 password / debug key ........ccccoiiiiiiiiiniinee 26

Fig. 6. Boot Configuration Word ...........cccceveiinienennenn. 6 Fig. 21. lllustrating non-secure boot and basic

Fig. 7. ApPpPBL Structure .......ccceeeeeiiieieeeee e 7 SECUre DOOL .....ovviiiiiiiiie e 27

Fig. 8. Three Secure Boot modes ..........ccceveeeviineennnn. 8 Fig. 22. Boot Configuration Word ...........ccccceevvieeeenns 28

Fig. 9. HSE FW installation with IVT (FULL_MEM) ...... 9 Fig. 23. lllustrating secure boot configuration on AB

Fig. 10.  The key catalog, group, slot ........c.ccccceevuerennee. 10 SWAP dEVICE ..oovviiiiieiiie et 30

Fig. 11.  Key import and export ..........ccccovvveeiiiiineeennne 11 Fig. 24.  Import project ........cccoeveeiiiieeieiiceee e 31

Fig. 12.  Link file Map ...ccccoeciiieeieeeee e, 12 Fig. 25. Copy HSE interface header file ....................... 32

Fig. 13.  The content of Cfg project’s IVT ..........ccceeenneee. 13 Fig. 26. Config tooIS .....c.cevviiiiiiiiiiiiieeee e 32

Fig. 14. The content of App project's AppBL ................ 13 Fig. 27.  Pin Map ..ot 32

Fig. 15.  lllustrating the memory verification service Fig. 28.  Verification status ..........ccccoeoeiiiieiiiieei 33
(SMRY) e 14 Fig. 29. Choose the FLASH download algorithm for

Fig. 16. SMR authentication scheme .............c............ 15 PE MICIO ..veiiiieiiiee et 34

Fig. 30. Measure secure boot performance ................. 35
AN13465 All information provided in this document is subject to legal disclaimers. © 2026 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 2 January 2026

Document feedback
381/39


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

NXP Semiconductors

AN13465

Contents

S32K3xx Secure Boot

| | JEE U N N L L IS (I (I Q' §
oMWl
WN =

NN
WN -~

2.31
23.2
24

241
242

3.1
3.1.1
3.1.11
3.1.1.2
3.1.2
3.1.3
3.1.31
3.1.3.2
3.2
3.2.1
3.2.11
3.21.2
3.2.2
3.2.21
3.2.2.2
3.23
3.3
3.3.1
3.3.11
3.3.1.2

3.3.1.3
3.3.14
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4

4.1
4.2

OVEIVIBW ... 2
Chip reset and boot flow ..., 2
The HSE interface ........ccccooiiiiiiiie 3
Data synchronization with the HSE core ............ 4
Image Vector Table (IVT) ....ccoevieiiiiiieeeee 5
APPBL . 6
Secure boot modes .........ccooiiiiiii 7
Basic Secure Boot (BSB) .......cccceeeiiiieeiiiiieenn. 8
Advanced Secure Boot (ASB) .......ccccceeviiienenn. 8
SHE Secure Boot (based on ASB) .................... 8
Preparation ...........cococciciiiirererrr s 9
Installing HSE FW ... 9
Format catalogs .........ccccoeiiiiiiiiiiiiiieeeee 9
Install KeYS ....oooiiiiiiie e 10
Key attributes Usage flags ........ccccoeiiieneeninnes 11
Key attributes SMR verification map ................ 11
Modify link file ......ccooeeeiiiiiiee e 12
IVT Cfg project .......eeevioiiiiiiee e 12
AppBL - App Project .......ccocveeiiiiiiie e 13
Advance Secure Boot ...........cccoiiieeiiiiiiiies 13
Secure Memory Region (SMR) .........cccccoeeiiie 14
SMR table ....ooocveieeiiee e 14
Authentication strategy ........cccccoviiiiiiiiiieen. 15
Configuration flags ........cccccoiiiiiiiiee 16
SHE based Secure Boot (SMR #0) ................. 16
SMR installation ..........ccccooiiiiiiii 17
One-pass installation mode .......................... 17
Streaming installation mode .............c.cocccee. 17
Core Reset (CR) ..ooooiiiiiiiiieeee e, 18
CR table ...oooeeeeeeeee e 18
Core identifier ..o 18
Verification map ......ccooceeeeeeeiiiis 19
SaNCHONS ....ceeiiieiiiiie e 19
Pre-boot sanctions ...........ccccccooiiiiiiiiiienees 19
Post-boot sanctions ...........ccccoiiiiiiiiei 19
CR installation .........cccoooiiiiii e 20
SMR verification ..o 20
One-time automatic SMR verification .............. 20
Pre-boot phase ..o, 21
Boot phase and core reset release

strategies ... 21
Post-boot phase ........cccccvieeiiiiiiiii 21
Secure boot oW ........cccoiiiiiiii 22
On-demand SMR verification .............ccccoeeeeee. 22
Recurrent automatic SMR verification ............. 22
SHE secure boot mode (only use SMR #0) ..... 23
HSE status .....cccoooeii e 23
SMR core status .......cccooooiiiiii e 24
PLL and FXOSC configuration for secure

DOOL . 25
Basic Secure Boot .........ccccooieiiiiniiiceeeaes 25
Application debug key/password (ADKP) ........ 25
Configuration ........ccooiiiiiii 26

4.21

5.1
5.2
5.3
54

6.1
6.2
6.3
6.4

6.5

71
7.2
7.3
7.3.1
7.3.2
7.3.3
73.4
7.4
741
742
743
744

745

10

11

Recovery from secure boot failure ................... 27
Enabling Secure Boot ..........cccoooceiiiriiicceennn. 27
Add mADKP diversification ...............ccccceeeeenne 27
Set BOOT_SEQ ... 28
Offline MAC Tag calculation ..............occoeeen. 28
Update IVT ..o 28
Secure boot on AB swap ........ccccceervmmmeennnnns 29
Partition swapping service ...........ccoccoceeeiinneen. 29
DCM status registers ........cocooviiiiiiiieniee. 29
IVT authentication with GMAC ........................ 29
Timing recommendations for BOOT_SEQ

and lifecyCle ... 29
Implement secure boot .........cccccceeeeiiiiiiinnnnn, 30
Setup and test ... 31
Import project ... 31
Driver configuration ...........cccccocciiiiiiiiiene. 32
Test steps ..oooiiiie s 33
Build project ... 33
Run secure boot Cfg project program .............. 33
Run secure boot App project program ............. 33
Erase NVM ... 33
Addition ..o 34
Program ADKP ... 34
Sanction in core reset table .....................c...... 34
Inject error in App project (use Post_BooT) ..... 34
Choose the appropriate FLASH download
algorithm ..., 34
HSE clock limitations ............ccccooiiiiiinnieeen. 34
Performance ... 35
Reference ... 36
Note about the source code in the

document ... 36
Revision history ... 36
Legal information ..........cccoooiiiiiiiiee 37

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2026 NXP B.V.

For more information, please visit: https://www.nxp.com

All rights reserved.

Document feedback

Date of release: 2 January 2026
Document identifier: AN13465


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN13465

	1  Overview
	1.1  Chip reset and boot flow
	1.2  The HSE interface
	1.3  Data synchronization with the HSE core
	1.4  Image Vector Table (IVT)
	1.5  AppBL
	1.6  Secure boot modes
	1.6.1  Basic Secure Boot (BSB)
	1.6.2  Advanced Secure Boot (ASB)
	1.6.3  SHE Secure Boot (based on ASB)


	2  Preparation
	2.1  Installing HSE FW
	2.2  Format catalogs
	2.3  Install keys
	2.3.1  Key attributes Usage flags
	2.3.2  Key attributes SMR verification map

	2.4  Modify link file
	2.4.1  IVT Cfg project
	2.4.2  AppBL - App project


	3  Advance Secure Boot
	3.1  Secure Memory Region (SMR)
	3.1.1  SMR table
	3.1.1.1  Authentication strategy
	3.1.1.2  Configuration flags

	3.1.2  SHE based Secure Boot (SMR #0)
	3.1.3  SMR installation
	3.1.3.1  One-pass installation mode
	3.1.3.2  Streaming installation mode


	3.2  Core Reset (CR)
	3.2.1  CR table
	3.2.1.1  Core identifier
	3.2.1.2  Verification map

	3.2.2  Sanctions
	3.2.2.1  Pre-boot sanctions
	3.2.2.2  Post-boot sanctions

	3.2.3  CR installation

	3.3  SMR verification
	3.3.1  One-time automatic SMR verification
	3.3.1.1  Pre-boot phase
	3.3.1.2  Boot phase and core reset release strategies
	3.3.1.3  Post-boot phase
	3.3.1.4  Secure boot flow

	3.3.2  On-demand SMR verification
	3.3.3  Recurrent automatic SMR verification
	3.3.4  SHE secure boot mode (only use SMR #0)
	3.3.5  HSE status
	3.3.6  SMR core status

	3.4  PLL and FXOSC configuration for secure boot

	4  Basic Secure Boot
	4.1  Application debug key/password (ADKP)
	4.2  Configuration
	4.2.1  Recovery from secure boot failure


	5  Enabling Secure Boot
	5.1  Add mADKP diversification
	5.2  Set BOOT_SEQ
	5.3  Offline MAC Tag calculation
	5.4  Update IVT

	6  Secure boot on AB swap
	6.1  Partition swapping service
	6.2  DCM status registers
	6.3  IVT authentication with GMAC
	6.4  Timing recommendations for BOOT_SEQ and lifecycle
	6.5  Implement secure boot

	7  Setup and test
	7.1  Import project
	7.2  Driver configuration
	7.3  Test steps
	7.3.1  Build project
	7.3.2  Run secure boot Cfg project program
	7.3.3  Run secure boot App project program
	7.3.4  Erase NVM

	7.4  Addition
	7.4.1  Program ADKP
	7.4.2  Sanction in core reset table
	7.4.3  Inject error in App project (use Post_BooT)
	7.4.4  Choose the appropriate FLASH download algorithm
	7.4.5  HSE clock limitations


	8  Performance
	9  Reference
	10  Note about the source code in the document
	11  Revision history
	Legal information
	Tables
	Figures
	Contents

