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1.1 LPC5500 Flash performance

The on-chip flash of LPC5500 series contains up to 640 kB on-chip flash program memory with flash accelerator and 512 byte
page for erasing and writing.

Figure 1 shows some key Flash parameters.

Table 23. Flash characteristics[2
Tamp = —40 “C to +105 T, unless otherwise specified.

Symbol |Parameter Conditions Min Typ Max Unit
Nendu endurance Page erase/program, 111 | 100000 |- - cycles
Tamb =—40°C to +85°C
Mass erase/program, 100000 |- - cycles
Tamb = —40°C to +85°C
Page erase/program 10000 |- - cycles
Tamb =—40°C to +105 °C,
Mass erase/program 10000 |- - cycles
Tamb =—40°C to +105°C,
frat retention time | < 1k erase/program cycles 25 - - years
z 1k erase/program cycles 15 - - years
ter erase time 1 page or multiple pages - 20 - ms
tprog programming - 1.09 - ms
time

[11 Number of erase/program cycles.

[2] Flash operations (erase, blank check, program) and reading single word can only be performed for CPU
frequencies of up to 100 MHz. Cannot be performed for frequencies above 100 MHz.

Figure 1. LPC5500 flash parameters
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As shown in Figure 1, compared to LPC54000 series, the page erase and page programming time are very fast.

1.1.1 Flash APl in SDK

The Flash operation is via In Application Programming (IAP) API which is defined in MCUXpresso SDK. The SDK package can
be download from MCUXpresso SDK Builder.

For detailed Flash API description, see Chapter 9 FLASH APls in LPC55S6x/L PC55S2x/LPC552x User manual
(document UM11126).

SDK provides examples of how to use flash API to operate Flash.
Flash example is in the SDK driver example folder:
ISDK_2 X X_LPCXpresso55569|boards|lpcxpresso55s69\driver_examples|flashiap

If you are not familiar with LPC5500 series flash operation, go to Chapter 9 FLASH APIs and the £1ashiap example of SDK. Also,
SDK provides a unified API across all LPC5500 series. When migrating from one chip to another inside LPC5500 series, there is
no extra work. This application note uses LPC55S69 as an example and experiment platform.

2 Porting FlashDB on LPC5500 series

2.1 FlashDB introduction

FlashDB is an ultra-lightweight embedded database. It provides data storage solutions for embedded products. Different from
traditional database based on file system, FlashDB combines the features of Flash. It has strong performance and reliability.
Under the premise of ensuring low resource occupation, extend the service life of Flash as much as possible.

Home page: https://github.com/armink/FlashDB
Documentation: https://armink.github.io/FlashDB/#/
The FlashDB supports two database modes:

» Key-Value Database (KVDB): It is a non-relational database that stores data as a collection of key-value pairs. In KVDB,
the key is used as a unique identifier. KVDB has simple operations and strong scalability.

» Time Series Database (TSDB): It stores data in time sequence. TSDB data has a timestamp, a large amount of data
storage, and high insertion and query performance.

2.2 Environment setup

2.2.1 Hardware setup
Hardware: LPCXpresso55S69EVK.
Make sure you are familiar with this board. Find the getting stared tutorial from:

https://www.nxp.com/document/guide/get-started-with-the-Ipc55s69-evk: GS-LPC55S69-EVK
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Figure 2. LPC55S69 EVK

2.2.2 Software setup

Download FlashDB source from the github page. The folder structure of FlashDB is simple, as shown in Figure 3.

demos ‘

docs

. 4~ include file
pot © low level driver

samples #—— examples :
sc @ flashDB sources °

tests :
D gitattributes ‘
D gravis.yml ¢
[] uicense :
** README.md ‘
** README_zh.md ‘

Figure 3. FlashDB folder structure

In the IDE setting, add the inc folder in the include path setting and add src, samples, and port into project, as shown in Figure 4.
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al.c

al_partition.c
al_flash_lpc55s69.c
lashDB
db.c
db_kvdb.c
fdb_tsdb.c
_] fdb_utils.c
J flashDB_samples
0 J kvdb_basic_sample.c
4[] kvdb_type_blob_sample.c
1 | ] kvdb_type string_sample.c
@ tsdb_sample.c
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Figure 4. Adding FlashDB source file to your project

NOTE
fal flash 1pc55s69.c must be created by users.

2.3 Implementing flash driver interface

The most important step for porting FlashDB stack is to implement low-level Flash operation API. In FlashDB, fa1, a simple
flash abstraction layer, manages the low-level Flash operation. To define specific flash device objects, implement the operation
functions of init, read, write, and erase according to their own Flash conditions.

2.3.1 Init

static int init (void)

To define a global Flash configuration instance and initiate LPC on-chip Flash, call FLass Init.

flash_config_t flashInstance;

init

FLASH_Init(&flashInstance);

Figure 5. Init

2.3.2 Read

static int read(long offset, uint8 t *buf, size t size)
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Figure 6. Read

NOTE
To read Flash data, use FLASH_Read API not AHB reading. Thus, when AHB reads an erased (empty) page of
Flash, the Hardfault issue is prevented.

2.3.3 Erase

static int write(long offset, const uint8 t *buf, size t size)

Figure 7. Erase

2.3.4 Write

static int erase(long offset, size t size)
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Figure 8. Write

The minimum program/erase unit of LPC5500 series is one page. It equals to 512 bytes. Before programming, make sure that the
page is erased. We use FLASH varifyErase to verify whether the current page is an erased page. If the current page is not an
erased page, perform a read-modify-write operation on that page.

2.4 Testing

FlashDB provide simple example test code to demonstrate basic usage of flashDB.

Add test code in main.c:

Figure 9. Defining FlashDB instance and test KV data

Inmain.c, initialize FlashDB instance and test FlashDB function with kv example.
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result = fdb_kvdb_init - r Fdb_kvdbl™, &default_ kv, NULL);

result != FDB_I

Figure 10. Testing FlashDB using kvdb_basic sample

The code can be found in the \FlashDB\demos folder. After adding the code, build/compile project and download to MCU. Open

UART terminal software and reset the board. There is log output.

When the board is reset, the variable, boot count, increase every time. The reason is that the example code read boot_cnt

variable from database, increase by one, and save to database, as shown in Figure 11.

[D/FAL] (fal flash_init:65) Flash deviee |
0:00000200 |initialized fimish
O[32;22m[I/FAL] =———————— FAL partition table =—————2"[0n
| name | flash_dev ﬁ offzet | length |O[0m

0O[32;22m [T/FAL)

O[32;22m[I/FAL) O [Om
O [32;22m[I/FAL)] ‘ fdb_tsdbl | lpc_omchip | 0x0001a000 | 0x00002000 |O[Om
O[32;22m[1/FAL)] fdb_kvdbl | lpc_onchip | 0x0001¢000 | 0x00004000 |O[Om
O[32:22m[T/FAL] 0 [Om

0O[32;22m[I/FAL] Flash Abstraction Layer (¥0.5.0) initialire success. [J[Om
FlashDB][kv] (env] (.. /FlashDB/src/fdb_kvdb. o:1608) KVDB size is 16384 bytes.
FlashDB)] FlashDE V1.0.99 is initialize suocess.

FlashlB] You can get the latest version on https://github. com/armink/FlashDB .
FlashDB][sample] [kvdb] [basic] === kvdb_bas] ample
FlashDB][sample] [kvdb] [basic] get the 'boot_count’ value is
FlashDB][sample] [kvdb] [basic] set the "boot_count’ value tof33

FlashDB ] [sample] [kvdb] [basie]
FlashDB][sample] [kvdb] [string] === kvdb_type_string_sample
FlashDB][sample] [kvdb] [string] create the ' temp’ string KV, value is: 36C
FlashDB][sample] [kvdb] [string] get the "temp’ value is: 36C
FlashDB][sample] [kvdb][string] set " temp’ value to 38C

FlashDB ] [sample] [kvdb] [string] delete the ' temp” finish

FlashDB][sample] [kvdb] [string]
FlashDB][sample] [kvdb] [blob] === kvdb_type_blob_sample
FlashDB][sample] [kvdb] [blob] create the ' temp’ blob KV, value is: 36
FlashDB][sample] [kvdb] [bleb] get the " temp’ value is: 36
FlashDB][sample] [kvdb][blob] set *temp’ value to 38

FlashDB][sample] [kvdb] [blob] delete the " temp’ finish

FlashDB][sample] [kvdb] [blob]

Done!

Figure 11. FlashDB example log

lpe_onchip | addr: 0x00000000 | len: 0x00080000 | blk_size:

3 Summary

This application note summarizes Flash performance and key parameter of LPC5500 series. It describes how to port the FlashDB

stack on to LPC5500 series.
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