AN13542

Porting Tiny Flash Database Stack on LPC5500 Series

Rev. 0 — 10 February 2022 Application Note

. Contents
1 Introduction

1 Introduction...........ccceeeerinnninnnnn, 1
1.1 LPC5500 Flash performance....... 1

Wh igrating fi LPC54 toLP i f the bi t
en migrating from LPC54000 to LPC5500 series, one of the bigges 2 Porting FlashDB on LPC5500 series

obstacles is the lack of real EEPROM memory in LPC5500 series. Several

software emulation layers exist to address this issue. However, while providing 21 FlashDB introduction

a seamless emulation of the EEPROM interface, they all have significant 29 Environment setup......................
drawbacks. For example, the wear on the underlying Flash memory is 23 Implementing flash driver interface
excessive and data may lose if the power interrupts while the write is ongoing.

This document introduces a better approach. This approach upgrades Flash 2.4

EEPROM concept and makes Flash into a tiny database. Use a simple 3

Key-Value (KV) Paris to read and write user data (parameters). At the same g

time, the software considers the wear leveling and power loss protection.

This open source software requires minor changes to the application flow. It yields a robust application parameter management
solution with minimal wear of the MCU Flash memory.

1.1 LPC5500 Flash performance

The on-chip flash of LPC5500 series contains up to 640 kB on-chip flash program memory with flash accelerator and 512 byte
page for erasing and writing.

Figure 1 shows some key Flash parameters.

Table 23. Flash characteristics[2
Tamp = —40 “C to +105 T, unless otherwise specified.

Symbol |Parameter Conditions Min Typ Max Unit
Nendu endurance Page erase/program, 111 | 100000 |- - cycles
Tamb =—40°C to +85°C
Mass erase/program, 100000 |- - cycles
Tamb = —40°C to +85°C
Page erase/program 10000 |- - cycles
Tamb =—40°C to +105 °C,
Mass erase/program 10000 |- - cycles
Tamb =—40°C to +105°C,
frat retention time | < 1k erase/program cycles 25 - - years
z 1k erase/program cycles 15 - - years
ter erase time 1 page or multiple pages - 20 - ms
tprog programming - 1.09 - ms
time

[11 Number of erase/program cycles.

[2] Flash operations (erase, blank check, program) and reading single word can only be performed for CPU
frequencies of up to 100 MHz. Cannot be performed for frequencies above 100 MHz.

Figure 1. LPC5500 flash parameters

h
P

NXP Semiconductors

Porting FlashDB on LPC5500 series

As shown in Figure 1, compared to LPC54000 series, the page erase and page programming time are very fast.

1.1.1 Flash APl in SDK

The Flash operation is via In Application Programming (IAP) API which is defined in MCUXpresso SDK. The SDK package can
be download from MCUXpresso SDK Builder.

For detailed Flash API description, see Chapter 9 FLASH APls in LPC55S6x/L PC55S2x/LPC552x User manual
(document UM11126).

SDK provides examples of how to use flash API to operate Flash.
Flash example is in the SDK driver example folder:
ISDK_2 X X_LPCXpresso55569|boards|lpcxpresso55s69\driver_examples|flashiap

If you are not familiar with LPC5500 series flash operation, go to Chapter 9 FLASH APIs and the £1ashiap example of SDK. Also,
SDK provides a unified API across all LPC5500 series. When migrating from one chip to another inside LPC5500 series, there is
no extra work. This application note uses LPC55S69 as an example and experiment platform.

2 Porting FlashDB on LPC5500 series

2.1 FlashDB introduction

FlashDB is an ultra-lightweight embedded database. It provides data storage solutions for embedded products. Different from
traditional database based on file system, FlashDB combines the features of Flash. It has strong performance and reliability.
Under the premise of ensuring low resource occupation, extend the service life of Flash as much as possible.

Home page: https://github.com/armink/FlashDB
Documentation: https://armink.github.io/FlashDB/#/
The FlashDB supports two database modes:

» Key-Value Database (KVDB): It is a non-relational database that stores data as a collection of key-value pairs. In KVDB,
the key is used as a unique identifier. KVDB has simple operations and strong scalability.

» Time Series Database (TSDB): It stores data in time sequence. TSDB data has a timestamp, a large amount of data
storage, and high insertion and query performance.

2.2 Environment setup

2.2.1 Hardware setup
Hardware: LPCXpresso55S69EVK.
Make sure you are familiar with this board. Find the getting stared tutorial from:

https://www.nxp.com/document/guide/get-started-with-the-Ipc55s69-evk: GS-LPC55S69-EVK

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022
Application Note 2/9

https://mcuxpresso.nxp.com/en/dashboard
https://www.nxp.com/webapp/Download?colCode=UM11126
https://github.com/armink/FlashDB
https://armink.github.io/FlashDB/
https://www.nxp.com/document/guide/get-started-with-the-lpc55s69-evk:GS-LPC55S69-EVK

NXP Semiconductors

Porting FlashDB on LPC5500 series

T ks

Figure 2. LPC55S69 EVK

2.2.2 Software setup

Download FlashDB source from the github page. The folder structure of FlashDB is simple, as shown in Figure 3.

demos ‘

docs

. 4~ include file
pot © low level driver

samples #—— examples :
sc @ flashDB sources °

tests :
D gitattributes ‘
D gravis.yml ¢
[] uicense :
** README.md ‘
** README_zh.md ‘

Figure 3. FlashDB folder structure

In the IDE setting, add the inc folder in the include path setting and add src, samples, and port into project, as shown in Figure 4.

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022
Application Note 3/9

https://github.com/armink/FlashDB

NXP Semiconductors

Porting FlashDB on LPC5500 series

al.c

al_partition.c
al_flash_lpc55s69.c
lashDB
db.c
db_kvdb.c
fdb_tsdb.c
_] fdb_utils.c
J flashDB_samples
0 J kvdb_basic_sample.c
4[] kvdb_type_blob_sample.c
1 |] kvdb_type string_sample.c
@ tsdb_sample.c
-1 cfg
_] fal_cfg.h
_] fdb_cfg.h

ha
(3]
@]
]
£

f
fal_flash.c
f
f

-

i
A f
&l

{3 e R =S R | L 2 o = = R | L

L

Figure 4. Adding FlashDB source file to your project

NOTE
fal flash 1pc55s69.c must be created by users.

2.3 Implementing flash driver interface

The most important step for porting FlashDB stack is to implement low-level Flash operation API. In FlashDB, fa1, a simple
flash abstraction layer, manages the low-level Flash operation. To define specific flash device objects, implement the operation
functions of init, read, write, and erase according to their own Flash conditions.

2.3.1 Init

static int init (void)

To define a global Flash configuration instance and initiate LPC on-chip Flash, call FLass Init.

flash_config_t flashInstance;

init

FLASH_Init(&flashInstance);

Figure 5. Init

2.3.2 Read

static int read(long offset, uint8 t *buf, size t size)

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022
Application Note 4/9

NXP Semiconductors

Porting FlashDB on LPC5500 series

Figure 6. Read

NOTE
To read Flash data, use FLASH_Read API not AHB reading. Thus, when AHB reads an erased (empty) page of
Flash, the Hardfault issue is prevented.

2.3.3 Erase

static int write(long offset, const uint8 t *buf, size t size)

Figure 7. Erase

2.3.4 Write

static int erase(long offset, size t size)

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022
Application Note 5/9

NXP Semiconductors

Porting FlashDB on LPC5500 series

Figure 8. Write

The minimum program/erase unit of LPC5500 series is one page. It equals to 512 bytes. Before programming, make sure that the
page is erased. We use FLASH varifyErase to verify whether the current page is an erased page. If the current page is not an
erased page, perform a read-modify-write operation on that page.

2.4 Testing

FlashDB provide simple example test code to demonstrate basic usage of flashDB.

Add test code in main.c:

Figure 9. Defining FlashDB instance and test KV data

Inmain.c, initialize FlashDB instance and test FlashDB function with kv example.

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022
Application Note 6/9

NXP Semiconductors

Summary

result = fdb_kvdb_init - r Fdb_kvdbl™, &default_ kv, NULL);

result != FDB_I

Figure 10. Testing FlashDB using kvdb_basic sample

The code can be found in the \FlashDB\demos folder. After adding the code, build/compile project and download to MCU. Open

UART terminal software and reset the board. There is log output.

When the board is reset, the variable, boot count, increase every time. The reason is that the example code read boot_cnt

variable from database, increase by one, and save to database, as shown in Figure 11.

[D/FAL] (fal flash_init:65) Flash deviee |
0:00000200 |initialized fimish
O[32;22m[I/FAL] =———————— FAL partition table =—————2"[0n
| name | flash_dev ﬁ offzet | length |O[0m

0O[32;22m [T/FAL)

O[32;22m[I/FAL) O [Om
O [32;22m[I/FAL)] ‘ fdb_tsdbl | lpc_omchip | 0x0001a000 | 0x00002000 |O[Om
O[32;22m[1/FAL)] fdb_kvdbl | lpc_onchip | 0x0001¢000 | 0x00004000 |O[Om
O[32:22m[T/FAL] 0 [Om

0O[32;22m[I/FAL] Flash Abstraction Layer (¥0.5.0) initialire success. [J[Om
FlashDB][kv] (env] (.. /FlashDB/src/fdb_kvdb. o:1608) KVDB size is 16384 bytes.
FlashDB)] FlashDE V1.0.99 is initialize suocess.

FlashlB] You can get the latest version on https://github. com/armink/FlashDB .
FlashDB][sample] [kvdb] [basic] === kvdb_bas] ample
FlashDB][sample] [kvdb] [basic] get the 'boot_count’ value is
FlashDB][sample] [kvdb] [basic] set the "boot_count’ value tof33

FlashDB] [sample] [kvdb] [basie]
FlashDB][sample] [kvdb] [string] === kvdb_type_string_sample
FlashDB][sample] [kvdb] [string] create the ' temp’ string KV, value is: 36C
FlashDB][sample] [kvdb] [string] get the "temp’ value is: 36C
FlashDB][sample] [kvdb][string] set " temp’ value to 38C

FlashDB] [sample] [kvdb] [string] delete the ' temp” finish

FlashDB][sample] [kvdb] [string]
FlashDB][sample] [kvdb] [blob] === kvdb_type_blob_sample
FlashDB][sample] [kvdb] [blob] create the ' temp’ blob KV, value is: 36
FlashDB][sample] [kvdb] [bleb] get the " temp’ value is: 36
FlashDB][sample] [kvdb][blob] set *temp’ value to 38

FlashDB][sample] [kvdb] [blob] delete the " temp’ finish

FlashDB][sample] [kvdb] [blob]

Done!

Figure 11. FlashDB example log

lpe_onchip | addr: 0x00000000 | len: 0x00080000 | blk_size:

3 Summary

This application note summarizes Flash performance and key parameter of LPC5500 series. It describes how to port the FlashDB

stack on to LPC5500 series.

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022

Application Note

7/9

NXP Semiconductors

Reference

4 Reference

1. https://github.com/armink/FlashDB
2. https://armink.github.io/FlashDB/#/

5 Revision history

Rev. Date Description

0 10 February 2022 | Initial release

Porting Tiny Flash Database Stack on LPC5500 Series, Rev. 0, 10 February 2022
Application Note 8/9

https://github.com/armink/FlashDB
https://armink.github.io/FlashDB/

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 February 2022
Document identifier: AN13542

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 LPC5500 Flash performance
	1.1.1 Flash API in SDK

	2 Porting FlashDB on LPC5500 series
	2.1 FlashDB introduction
	2.2 Environment setup
	2.2.1 Hardware setup
	2.2.2 Software setup

	2.3 Implementing flash driver interface
	2.3.1 Init
	2.3.2 Read
	2.3.3 Erase
	2.3.4 Write

	2.4 Testing

	3 Summary
	4 Reference
	5 Revision history

