
AN13956
Power Manager Framework Usage for MCU Class of Devices
Rev. 1 — 10 August 2023 Application note

Document Information
Information Content

Keywords AN13956, MCUXpresso SDK, power optimizations

Abstract This document describes how to leverage the power manager framework to optimize power
consumption in an application.

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

1 Introduction

MCUs feature different low-power states for static power optimizations. Multiple states such as ON, retention
(for memories), or OFF are defined for each MCU low-power state, peripheral, memory, or clock. Each of these
states can be specific to a device.

The NXP MCUXpresso SDK includes the power manager component. This component is a software framework
for BareMetal code and RTOS applications. The power manager component aims to speed up the development
of these applications. By abstracting the SoC architecture, the developer can easily integrate the management
of low-power states in the application and speed up the time to market. The SDK power manager uses low-
level drivers to offload the entire comprehension of the device by providing the resources and operating modes
constraints mechanism. The SDK power manager also optimizes the power consumption by shutting down the
resources not required by the application.

2 Acronyms

Table 1 defines the acronyms used in this document.

Acronym Description

BareMetal Application/driver code without an operating system

EVK Evaluation kit/ evaluation board

MCU Microcontroller unit

SDK Software development kit

SoC System on chip

Table 1. Acronyms

3 SDK power manager

This section explains the features and architecture of the SDK power manager.

3.1 Features
SDK power manager consists of the following features:

• Manages the transition for different operating modes by seamlessly modifying the registers based on resource
constraints:
– SDK power manager turns OFF all the resources by default, except the ones required by the application.

• Eases the management of wake-up sources.
• Notifies the upper layer. For example, the SDK power manager notifies the application about power transitions

or wake-up events.
• Gathers constraints and/or finds the lowest-power state achievable depending on application constraints or

timing (if declared):
– The application can specify the low-power state to enter and the resource constraints. If the resource

constraints or timings do not match the constraints of the low-power state, the SDK power manager
identifies a lighter low-power state that satisfies these requirements.

– The application prompts the user to enter a low-power state. The SDK power manager turns OFF all the
possible resources satisfying the low-power states.

– The application can set resource constraints. The SDK power manager identifies the deepest low-power
state to enter that satisfies the resource constraints.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
2 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

3.2 Architecture
The SDK power manager is composed of two parts as follows:

• "Core" part: This part is generic across devices and provides APIs to be called in the application. This part is
composed of different submodules:
– Policy module: Gathers all the constraints and identifies the deepest power state allowed.
– Wake-up-source manager module: Configures the wake-up sources and processes registered wake-up-

source handler callbacks.
– Notification module: Notifies the upper layer of specific power transitions and events.

• "Device" part: This part is specific for each device and describes the entry/exit sequences of the power
modes, called the sequencer. There is also a description of all the resource constraints available: the pre-
defined constraints for the low-power states. This translation, extracted from the device reference manual,
shows whether clocks and peripherals are available or not for each low-power state. The user cannot modify
this part. Instead, the application defines the resource constraints to be kept enabled for a given low-power
state. Each device has a constraint for each power mode in terms of resources. For example, for RT500 in
Deep Power-down mode, SYS PLL must be OFF while RTC must be powered ON. This is the translation
of what is available or not in terms of clock/peripherals for each low-power state, that is, taken from the
reference manual.

ApplicationApplication

Stacks and
components

Stacks

Power, clock setting

To IPC

OSLP WAKEUP SOURCE
manager

Configure wakeup source
Check wakeup source

Process wakeup source

LP policy
Compute next even time

Compute Minimal allowed low power mode

Components
SOC

Configure power
clock rest

LP mode configuration Timer wakeup event

LP timersWakeup unit Low-level power related drivers

LP SEQUENCER

Init

before lp entryRegister callbacks
SetLowPowerConstraint
SetWakeupLatencyConstraints

Request for check wakeup source
Process wakeup source

Set Wakeup Sources:
pin, serial, etc

C
al

l w
ak

eu
p

so
ur

ce
 h

an
dl

er

R
eg

is
te

r L
P

 p
er

ip
he

ra
l c

al
lb

ac
k

Lo
w

 p
ow

er
 d

riv
er

s
co

nf
i g

ur
at

io
n

a n
d

re
st

o r
e

Get next event time

Set low power mode Set next wakeup event

LP peripheral board

Svstick save/restore

LP peripheral entry/exit sequences

LOWPOWER
Module

Drivers

Hardware

Peripherals drivers

Figure 1. SDK power manager architecture diagram

NXP defines and develops the framework, exposing the pre-defined constraints and easy-to-use APIs to the
user for application development.

To use the SDK power manager, consider the examples of APIs, as shown in Table 2 that are to be called in the
application:

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
3 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

Name Mandatory/Optional in the
application

Description

PM_CreateHandle Mandatory Initializes the power manager handler, to be called before using
other power manager APIs

PM_RegisterNotify Optional Registers a notify element into the selected group. The callback
of the group is called before the entry to the low-power state and
after the exit from the low-power state.

PM_InitWakeupSource Optional Initialize the wake-up source

PM_RegisterTimerController Optional Register a timer as a wake-up source, to be called with PM_Init
WakeupSource

PM_SetConstraints Mandatory Set constraints to the power manager defined by the user, and/
or for a low-power state. To define constraints easily, the user can
define a macro.

PM_EnablePowerManager Mandatory Enable/disable power manager functions

PM_EnterLowPower Mandatory Finds the ideal low-power state available based on registered
constraints, then notifies groups, and enters/exits the low-power
state.

Table 2. Example of APIs

The user can modify the macros given in Table 3 depending on the requirement, available in
fsl_pm_device_config.h:

Name Description

FSL_PM_SUPPORT_NOTIFICATION Allows the power manager to notify created notification groups of power transitions, that is, the entry/
exit of a state. It can be useful to re-enable a peripheral just after exiting the low-power state.

FSL_PM_SUPPORT_WAKEUP_SOURCE_MANAGER Allows the power manager to manage wake-up sources entirely: create, disable, handle, trigger

FSL_PM_SUPPORT_LP_TIMER_CONTROLLER Allows the power manager to control timers

FSL_PM_SUPPORT_ALAWAYS_ON_SECTION Allows the power manager to store variables in an always-on RAM

Table 3. Macros

For more details on APIs available and description, see fsl_pm_core files.

4 Application example

The example used in this document is a BareMetal application based on the i.MX RT500 EVK. This example
demonstrates low-power transition by using the SDK power manager. The code is running in SRAM partition
16 at address 0x2010 0000 with a size of 256 kB (0x40000). The code is stored in external Octal flash using
FlexSPI0.

Partition number Size M33code/DSP code address Fusion DSP data address All other AHB controllers and GPU/LCD address

16 256 kB 0x0010 0000 0x0090 0000 0x2010 0000 (AHB P7)

Table 4. Application example

The first step defines the resources that the user wants to keep ON or retain for a specific low-power state.
Each resource-constraint definition is already defined in the file fsl_pm_device.h.

#define PM_RESC_ACMP_ACTIVE PM_ENCODE_RESC(PM_RESOURCE_FULL_ON, kResc_ACMP)
#define PM_RESC_PQ_SRAM_ACTIVE PM_ENCODE_RESC(PM_RESOURCE_FULL_ON, kResc_SRAM_PQ)
#define PM_RESC_FLEXSPI0_SRAM_ACTIVE PM_ENCODE_RESC(PM_RESOURCE_FULL_ON, kResc_SRAM_FLEXSPI0)
#define PM_RESC_FLEXSPI0_SRAM_RETENTION PM_ENCODE_RESC(PM_RESOURCE_PARTABLE_ON1, kResc_SRAM_FLEXSPI0)

For example, using PM_RESC_ACMP_ACTIVE ensures that the resource ACMP remains active during a low-
power state if it complies with the pre-defined constraints.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
4 / 16

https://github.com/nxp-mcuxpresso/mcux-sdk/tree/main/components/power_manager/core
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

For Deep Sleep mode, which is specified later as a power mode constraint, only the mandatory resources are
ON. Therefore, the example application is declared as follows:

#define APP_DEEP_SLEEP_CONSTRAINTS \
2U, PM_RESC_SRAM16_256KB_RETENTION, PM_RESC_FLEXSPI0_SRAM_RETENTION

In Deep Sleep mode, only the defined SRAM partition and the FlexSPI0 SRAM are retained, that is, the memory
is retained but not accessible. All the other resources are turned OFF.

For the Sleep low-power state, the following resources are kept ON:

#define APP_SLEEP_CONSTRAINTS
7U, PM_RESC_MAIN_CLK_ON, PM_RESC_SYSXTAL_ON, PM_RESC_LPOSC_ON, PM_RESC_SYSPLLLDO_ON, PM_RESC_SYSPLLANA_ON,
 PM_RESC_FLEXSPI0_SRAM_ACTIVE, \ PM_RESC_SRAM16_256KB_ACTIVE

The application must first create the PM handle as follows:

PM_CreateHandle(&g_pmHndle);

To declare wake-up sources, the application must first call the PM API, and then declare the wake-up-source
parameter. This example uses the SW2 button on the EVK as a wake-up source.

The example application calls the PM API with the corresponding parameter:

PM_InitWakeupSource(&g_UserkeyWakeupSource, (uint32_t)PIN_INT0_IRQn, NULL, true);

Then the user defines the GPIO parameter using the MCUXpresso SDK driver APIs:

gpio_pin_config_t gpioPinConfigStruct;

/* Set SW pin as GPIO input. */

gpioPinConfigStruct.pinDirection = kGPIO_DigitalInput;

GPIO_PinInit(APP_USER_WAKEUP_KEY_GPIO, APP_USER_WAKEUP_KEY_PORT, APP_USER_WAKEUP_KEY_PIN, &gpioPinConfigStruct);

/* Configure the Input Mux block and connect the trigger source to PinInt channel. */

INPUTMUX_Init(INPUTMUX);

INPUTMUX_AttachSignal(INPUTMUX, kPINT_PinInt0, APP_USER_WAKEUP_KEY_INPUTMUX_SEL); /* Using channel 0. */

INPUTMUX_Deinit(INPUTMUX); /* Turnoff clock to inputmux to save power. Clock is only needed to make changes */

/* Configure the interrupt for SW pin. */

PINT_Init(PINT);

PINT_PinInterruptConfig(PINT, kPINT_PinInt0, kPINT_PinIntEnableFallEdge, pint_intr_callback);

PINT_EnableCallback(PINT); /* Enable callbacks for PINT */

Next, the application sets the defined constraints, with the following functions:

PM_SetConstraints(PM_LP_STATE_DEEP_SLEEP, APP_DEEP_SLEEP_CONSTRAINTS);

There are two types of constraints that can be set:

• Constraints on the low-power mode.
• Constraints on the resources.

Consider the following example:

PM_SetConstraints(PM_LP_STATE_NO_CONSTRAINT, APP_DEEP_SLEEP_CONSTRAINTS);

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
5 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

The command line above specifies no low-power mode. The power manager identifies the deep power state
that satisfies the resource constraints set in APP_DEEP_SLEEP_CONSTRAINTS.

Consider another example as follows:

PM_SetConstraints(PM_LP_STATE_DEEP_SLEEP, APP_DEEP_SLEEP_CONSTRAINTS);

The command line above sets a constraint on the low-power mode and the resources. The power manager
compares the resource constraints to the pre-defined ones for the low-power mode. If an incompatibility occurs,
the power manager identifies a lighter low-power mode that satisfies the resource constraints set by the user.
For example, with the i.MX RT500, if the power manager cannot meet the resource constraints using Deep
Sleep mode, it next tries to meet these constraints using Sleep mode.

For the other cases in the above example, Deep Sleep mode is reached with the resources specified in
APP_DEEP_SLEEP_CONSTRAINTS kept ON.

Another example is as follows:

PM_SetConstraints(PM_LP_STATE_DEEP_SLEEP, 0);

The command line above sets only a low-power mode constraint without resource constraints. Therefore,
the power manager turns everything OFF in this state, except the pre-defined resource constraints for this
low-power mode. This case is rarely used, as resources are always required for RAM retention to wake the
device in sleep and deep sleep properly. For lower low-power states where a reset is required, use this type of
constraint.

Constraints on the low-power mode are a priority. In other words, if there are two constraints on the low-power
mode, the power manager selects the lighter one.

Next, the application enables the SDK power manager framework and enters the low-power mode:

PM_EnablePowerManager(true);

To enter in a low-power mode, the following power manager function must be used:

PM_EnterLowPower(durationTicks);

When an exit latency is declared for a low-power state, the durationTicks parameter can be used. If the
specified duration is less than the exit latency of the low-power state, it influences the low-power state entered.

The power manager component defines the exit latency of each device for a low-power state. For
example, in the i.MX RT500, Deep Sleep mode has an exit latency of 250 μs and is declared as follows in
fsl_pm_device.c:

/* Deep Sleep */
 {
 .exitHwLatency = 250U, /* 250 us */

When the power manager tries to identify the deep state reachable, it compares the exit latency of the low-
power state exitHwLatency with the durationTicks specified by the application. Even if the resource
constraints are satisfied, the Deep Sleep state is unreachable if the durationTicks variable is less than or
equal to 250 μs. A lighter low-power state is reached, satisfying the resource constraints and durationTicks.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
6 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

The application can also set constraints on resources and low-power mode following a similar mechanism.
Consider the following example for Sleep mode:

PM_SetConstraints(PM_LP_STATE_SLEEP, APP_SLEEP_CONSTRAINTS);

The power manager enters the lightest low-power mode by having two low-power mode constraints: Sleep
and Deep Sleep. In this example, the Sleep state is entered, as no exit latency exists in this state. In other
words, the framework compares the time passed as a parameter to PM_EnterLowPower(), that is, the
amount of time to spend in the low-power state, with the minimum exit time of the low-power mode. This
time is the minimum time spent in this low-power state. Therefore, if durationTicks > exitHwLatency,
then the low-power state can be reached. If not, the framework tries a lighter low-power mode. The resource
constraints that must be maintained are the sum of the previous ones with the newly defined ones, that is,
APP_DEEP_SLEEP_CONSTRAINTS + APP_SLEEP_CONSTRAINTS.

To unset resource constraint and/or low-power mode constraint, the following function must be used:

PM_ReleaseConstraints(PM_LP_STATE _SLEEP, APP_DEEP_SLEEP_CONSTRAINTS);

Here, the Sleep state is no longer registered in the power manager. If the durationTicks exceeds the
exit latency of the Deep Sleep state, the Deep Sleep state is entered with the corresponding constraints.
The APP_DEEP_SLEEP_CONSTRAINTS resource constraints are also unregistered, therefore the resource
constraints to maintain are APP_SLEEP_CONSTRAINTS. In other words, the user can define resources that
must be ON for a given low-power state with the help of macros. In this example, there are two constraints
in the low-power mode: Sleep and Deep Sleep, each with respective constraints. If the user unregisters the
Deep Sleep state, then the constraints for the Deep-Sleep mode are also unregistered. Therefore, the resource
constraints to be maintained only apply to the Sleep state.

Note: If a low-power mode constraint or resource constraint is set multiple times through
PM_SetConstraints, call the PM_ReleaseConstraints function as many times as required to remove the
constraint completely from the SDK power manager. This behavior is useful where multiple peripherals set a
constraint in a low-power mode.

Finally, disable the power manager with the following function when it is not required anymore in the application:

PM_EnablePowerManager(false);

5 APIs references

This section describes the API references used in this application note as follows:

1. PM_CreateHandle
2. PM_EnablePowerManager
3. PM_EnterLowPower
4. PM_RegisterTimerController
5. PM_GetLastLowPowerDuration
6. PM_RegisterCriticalRegionController
7. PM_RegisterNotify
8. PM_UpdateNotify
9. PM_UnregisterNotify

10. PM_InitWakeupSource
11. PM_EnableWakeupSource
12. PM_DisableWakeupSource
13. PM_HandleWakeUpEvent

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
7 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

14. PM_TriggerWakeSourceService
15. PM_SetConstraints
16. PM_ReleaseConstraints
17. PM_GetResourceConstraintsMask
18. PM_GetAllowedLowestPowerMode

5.1 PM_CreateHandle

void PM_CreateHandle (pm_handle_t * handle);

Description

This function initializes the power manager handle. This function must be invoked before using other power
manager APIs.

Note: By default, the power manager is disabled.

Parameters

handle: Pointer to the pm_handle_t structure, upper-layer software must pre-allocate the handle-global
variable.

Returns

None

5.2 PM_EnablePowerManager

void PM_EnablePowerManager (bool enable);

Description

This function enable/disables the power manager functions.

Parameters

enable: Used to enable/disable the power manager functions.

Returns

None

5.3 PM_EnterLowPower

void PM_EnterLowPower (uint64_t duration);

Description

This API is a power manager core API. If using an RTOS, call this API in the Idle task.

This function contains the following steps:

1. Compute the target power state based on the policy module.
2. Notify the upper layer software of the power mode transitions.
3. Enter into the targeted power state.
4. Exit from the low-power state if the wake-up event occurs.
5. Notify the upper layer software of the power mode exiting.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
8 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

The target power state is determined based on two factors:

• The input parameter must be larger than the exitHwLatency attribution of the state.
• resConstraintsMask logical AND lossFeature of the state must be equal to 0.

Parameters

duration: The time (μ) in low-power mode.

Returns

None

5.4 PM_RegisterTimerController

void PM_RegisterTimerController
 (pm_handle_t * handle,
 pm_low_power_timer_start_func_t timerStart,
 pm_low_power_timer_stop_func_t timerStop,
 pm_low_power_timer_get_timestamp_func_t getTimestamp,
 pm_low_power_timer_get_duration_func_t getTimerDuration);

Description

If a low-power timer is a wake-up source, ensure to register it into the power manager using the
PM_InitWakeupSource function.

Parameters

handle: Pointer to the pm_handle_t structure.

timerStart: Low-power timer start function. This parameter can be NULL. It means that the low-power timer
is not set as the wake-up source.

timerStop: Low-power timer stop function. This parameter can also be set as NULL.

getTimestamp: Low-power timestamp function. This parameter can also be set as NULL.

getTimerDuration: Get timer duration function. This parameter can also be set as NULL.

Returns

None

5.5 PM_GetLastLowPowerDuration

void PM_GetLastLowPowerDuration (uint64_t duration);

Description

This API gets the actual low-power state duration.

Parameters

None

Returns

None

5.6 PM_RegisterCriticalRegionController

void PM_RegisterCriticalRegionController

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
9 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

 (pm_handle_t * handle,
 pm_enter_critical criticalEntry,
 pm_exit_critical criticalExit);

Description

This API registers critical region-related functions to the power manager.

Note: There are multiple methods to implement critical regions. For example, interrupt controller, locker, and
semaphore.

Parameters

handle: Pointer to the pm_handle_t structure.

criticalEntry: Enter critical function to register.

criticalExit: Exit critical function to register.

Returns

None

5.7 PM_RegisterNotify

status_t_PM_RegisterNotify
 (pm_notify_group_t groupId,
 const pm_notify_element_t * notifyElement);

Description

This API registers to notify elements into the selected group.

Parameters

groupId: The group of the notified list. This parameter affects the execution sequence.

notifyElement: Pointer to the pm_notify_element_t.

Returns

status_t: The status of the register notifies object behavior.

5.8 PM_UpdateNotify

void PM_UpdateNotify
 (void * notifyElement,
 pm_notify_callback_func_t callback,
 void * data);

Description

Update the notify callback function of the element and application data.

Parameters

notifyElement: Pointer to the notify element to update.

callback: The callback function to be updated.

data: Pointer to the callback function private data.

Returns

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
10 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

None

5.9 PM_UnregisterNotify

status_t PM_UnregisterNotify (void * notifyElement);

Description

This API removes the notify element from its notify group.

Parameters

notifyElement: Pointer to the notify element to remove.

Returns

None

5.10 PM_InitWakeupSource

void PM_InitWakeupSource
 (pm_wakeup_source_t * ws,
 uint32_t wsId,
 pm_wake_up_source_service_func_t service,
 bool enable);

Description

This API initializes the wake-up source object.

Parameters

ws: Pointer to the pm_wakeup_source_t variable.

wsId: Used to select the wake-up source, the wsId of each wake-up source can be found in
fsl_pm_device.h or the device description file.

service: The function to be invoked when the wake-up source is asserted.

enable: Used to enable/disable the selected wake-up source.

Returns

None

5.11 PM_EnableWakeupSource

status_t PM_EnableWakeupSource (pm_wakeup_source_t * ws);

Description

This API enables wake-up source.

Parameters

ws: Pointer to the wake-up source object to be enabled.

Returns

status_t: The status of the enable wake-up source behavior.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
11 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

5.12 PM_DisableWakeupSource

status_t _PM_DisableWakeupSource (pm_wakeup_source_t * ws);

Description

This API disables the wake-up source.

Parameters

ws: Pointer to the wake-up source object to be disabled.

Returns

status_t: The status of the disable wake-up source behavior.

5.13 PM_HandleWakeUpEvent

status_t_PM_HandleWakeUpEvent (void);

Description

This API checks if any enabled wake-up source is responsible for the last wake-up event. If it has been
registered, it calls the wake-up source callback. It is likely to be called from the wake-up unit IRQ handler.

Parameters

None

Returns

status_t: The status of handling the wake-up event.

5.14 PM_TriggerWakeSourceService

status_t_PM_TriggerWakeSourceService (pm_wakeup_source_t * ws);

Description

If the specific wake-up event occurs, invoke this API to execute its service function.

Parameters

ws: Pointer to the wake-up source object

Returns

status_t: The status of the trigger wake-up source behavior.

5.15 PM_SetConstraints

status_t_PM_SetConstraints (uint8_t powerModeConstraint, int32_t rescNum, ...);

Description

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
12 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

This API is used to set constraints including power mode constraints and resource constraints. For example, if
the board supports three resource constraints, such as PM_RESC_1, PM_RESC_2, and PM_RESC3, the function
is as follows:

PM_SetConstraints(Sleep_Mode, 3, PM_RESC_1, PM_RESC_2, PM_RESC_3);

Parameters

powerModeConstraint: The lowest power mode allowed. The power mode constraint macros can be found
in fsl_pm_device.h.

rescNum: The number of resource constraints to be set.

Returns

status_t: The status of the set constraints behavior.

5.16 PM_ReleaseConstraints

status_t_PM_ReleaseConstraints (uint8_t powerModeConstraint, int32_t rescNum, ...);

Description

This API is used to release constraints including power mode constraints and resource constraints. For
example, if the board supports three resource constraints, such as PM_RESC_1, PM_RESC_2, and PM_RESC3,
the function is as follows:

PM_ReleaseConstraints(Sleep_Mode, 1, PM_RESC_1);

Parameters

powerModeConstraint: The lowest power mode allowed. The power mode constraint macros can be found
in fsl_pm_device.h.

rescNum: The number of resource constraints to be released.

Returns

status_t: The status of the set constraints behavior.

5.17 PM_GetResourceConstraintsMask

pm_resc_mask_t PM_GetResourceConstraintsMask (void);

Description

This API gets the current system resource constraints.

Parameters

None

Returns

Current system constraints.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
13 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

5.18 PM_GetAllowedLowestPowerMode

uint8_t_PM_GetAllowedLowestPowerMode (void);

Description

This API gets the current system-allowed power mode.

Parameters

None

Returns

Allowed lowest power mode.

6 Conclusion

The power manager is a great option to reduce power consumption in low-power states by managing all the
resources seamlessly for the user. By abstracting the overall power architecture and providing easy-to-use
APIs/macros, this framework speeds up the time to market and application development.

7 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE

8 Revision history

Table 5 summarizes revisions to this document.

Revision number Release date Description

1 10 August 2023 Initial public release

Table 5. Revision history

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
14 / 16

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

9 Legal information

9.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

9.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

9.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
i.MX — is a trademark of NXP B.V.

AN13956 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 10 August 2023
15 / 16

mailto:PSIRT@nxp.com

NXP Semiconductors AN13956
Power Manager Framework Usage for MCU Class of Devices

Contents
1 Introduction ... 2
2 Acronyms ...2
3 SDK power manager ...2
3.1 Features ...2
3.2 Architecture ..3
4 Application example ... 4
5 APIs references ...7
5.1 PM_CreateHandle ... 8
5.2 PM_EnablePowerManager 8
5.3 PM_EnterLowPower .. 8
5.4 PM_RegisterTimerController9
5.5 PM_GetLastLowPowerDuration9
5.6 PM_RegisterCriticalRegionController 9
5.7 PM_RegisterNotify ... 10
5.8 PM_UpdateNotify ...10
5.9 PM_UnregisterNotify ..11
5.10 PM_InitWakeupSource 11
5.11 PM_EnableWakeupSource 11
5.12 PM_DisableWakeupSource 12
5.13 PM_HandleWakeUpEvent 12
5.14 PM_TriggerWakeSourceService 12
5.15 PM_SetConstraints .. 12
5.16 PM_ReleaseConstraints 13
5.17 PM_GetResourceConstraintsMask13
5.18 PM_GetAllowedLowestPowerMode14
6 Conclusion ...14
7 Note about the source code in the

document ... 14
8 Revision history .. 14
9 Legal information ..15

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 10 August 2023
Document identifier: AN13956

	1 Introduction
	2 Acronyms
	3 SDK power manager
	3.1 Features
	3.2 Architecture

	4 Application example
	5 APIs references
	5.1 PM_CreateHandle
	5.2 PM_EnablePowerManager
	5.3 PM_EnterLowPower
	5.4 PM_RegisterTimerController
	5.5 PM_GetLastLowPowerDuration
	5.6 PM_RegisterCriticalRegionController
	5.7 PM_RegisterNotify
	5.8 PM_UpdateNotify
	5.9 PM_UnregisterNotify
	5.10 PM_InitWakeupSource
	5.11 PM_EnableWakeupSource
	5.12 PM_DisableWakeupSource
	5.13 PM_HandleWakeUpEvent
	5.14 PM_TriggerWakeSourceService
	5.15 PM_SetConstraints
	5.16 PM_ReleaseConstraints
	5.17 PM_GetResourceConstraintsMask
	5.18 PM_GetAllowedLowestPowerMode

	6 Conclusion
	7 Note about the source code in the document
	8 Revision history
	9 Legal information
	Contents

