# AN14022 i.MX 93 Migration Guide from i.MX 8M Nano Rev. 1 – 7 August 2023

**Application note** 

#### **Document Information**

| Information | Content                                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Keywords    | i.MX 8M Nano, i.MX 93, Migration                                                                                                    |
| Abstract    | This application note introduces the i.MX 93 application processor by highlighting the differences from the i.MX 8M Nano processor. |



#### Introduction 1

This application note introduces the i.MX 93 application processor by highlighting the differences from the i.MX 8M Nano processor. The differences cover architecture, hardware, and power. When considering how to migrate, hardware and software are both covered.

The audiences of this document are users who want to upgrade from i.MX 8M Nano to i.MX 93. This document helps them to port their project to the i.MX93 platform.

#### Definitions, acronyms, and abbreviations 2

| Acronyms | Meanings                                                               |  |  |  |
|----------|------------------------------------------------------------------------|--|--|--|
| ADC      | Analog-to-Digital Converter                                            |  |  |  |
| ASRC     | Asynchronous Sample Rate Converter                                     |  |  |  |
| ATF      | Arm Trusted Firmware                                                   |  |  |  |
| BBSM     | Battery Backed Secure Module                                           |  |  |  |
| СААМ     | Cryptographic Acceleration and Assurance Module                        |  |  |  |
| ССМ      | Clock Controller Module                                                |  |  |  |
| CPU      | Central Processing Unit                                                |  |  |  |
| CSI      | CMOS Sensor Interface                                                  |  |  |  |
| CSU      | Central Security Unit                                                  |  |  |  |
| DAP      | Debug Access Port                                                      |  |  |  |
| DVFS     | Dynamic Voltage and Frequency Scaling                                  |  |  |  |
| ENET     | Ethernet                                                               |  |  |  |
| FPU      | Floating Point Unit                                                    |  |  |  |
| GPC      | General Power Controller                                               |  |  |  |
| GPIO     | General-Purpose I/O                                                    |  |  |  |
| GPMI     | General Purpose Media Interface                                        |  |  |  |
| GPU      | Graphics Processing Unit                                               |  |  |  |
| НАВ      | High-Assurance Boot                                                    |  |  |  |
| I2C      | Inter-Integrated Circuit                                               |  |  |  |
| IOMUX    | Input-Output Multiplexer                                               |  |  |  |
| ISI      | Image Sensing Interface                                                |  |  |  |
| JTAG     | Joint Test Action Group (a serial bus protocol used for test purposes) |  |  |  |
| LCDIF    | Liquid Crystal Display Interface                                       |  |  |  |
| LDO      | Low Dropout Regulator                                                  |  |  |  |
| LP       | Low Power                                                              |  |  |  |
| LVDS     | Low Voltage Differential Signaling                                     |  |  |  |
| MQS      | Medium Quality Sound                                                   |  |  |  |
| NPU      | Neural Processing Unit                                                 |  |  |  |

# i.MX 93 Migration Guide from i.MX 8M Nano

| Table 1. Acronyms and meaningsco |                                             |  |
|----------------------------------|---------------------------------------------|--|
| Acronyms                         | Meanings                                    |  |
| MU                               | Messaging Unit                              |  |
| OCOTP                            | On-Chip One-Time Programmable Controller    |  |
| OSC                              | Oscillator                                  |  |
| PDM                              | PDM Microphone Interface                    |  |
| PIT                              | Periodic Interrupt Timer                    |  |
| PLL                              | Phase-Locked Loops                          |  |
| PMIC                             | Power Management IC                         |  |
| ROM                              | Read Only Memory                            |  |
| POR                              | Power-On Reset                              |  |
| PWM                              | Pulse Width Modulation                      |  |
| РХР                              | Pixel Pipeline                              |  |
| RDC                              | Resource Domain Control                     |  |
| SAI                              | Synchronous Audio Interface                 |  |
| SDPIF                            | Sony Philips Digital Interface              |  |
| SJC                              | System JTAG Controller                      |  |
| SPI                              | Serial Peripheral Interface                 |  |
| SRC                              | System Reset Controller                     |  |
| SNVS                             | Secure Non-Volatile Storage                 |  |
| ТСМ                              | Tightly Coupled Memory                      |  |
| ТРМ                              | Timer/PWM Module                            |  |
| TRDC                             | Trusted Resource Domain Control             |  |
| TSTMR                            | Timestamp Timer                             |  |
| TZ                               | Trust Zone                                  |  |
| WDOG                             | Watchdog                                    |  |
| UART                             | Universal Asynchronous Receiver/Transmitter |  |
| USB                              | Universal Serial Bus                        |  |
| uSDHC                            | Ultra Secured Digital Host Controller       |  |
| XCVR                             | Audio Transceiver                           |  |

 Table 1. Acronyms and meanings...continued

## 3 General comparison between i.MX 8M Nano and i.MX 93

This section describes the general SoC differences between i.MX 8M Nano and i.MX 93. <u>Figure 1</u> and <u>Figure 2</u> shows features of i.MX 8M Nano and i.MX 93 in the top level. For more detailed comparison, see the following subsections.



i.MX 93 Migration Guide from i.MX 8M Nano



## 3.1 Architecture differences

The architecture differences cover the CPU architecture and SoC architecture. For CPU architecture, it describes the resources and performance of CPU, including the core number, cache size, frequency, and so on.

| Items |  |  |  |  |  |
|-------|--|--|--|--|--|
| _     |  |  |  |  |  |

Table 2. CPU architecture

| Items    |           | i.MX 8M Nano                                                         | i.MX 93                                                                                       |
|----------|-----------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Cortex-A | Cores     | A53 × 4                                                              | A55 × 2                                                                                       |
|          | Cache     | 32 kB L1 Instruction Cache<br>32 kB L1 Data Cache<br>512 kB L2 Cache | 32 kB L1 Instruction Cache<br>32 kB L1 Data Cache<br>64 kB L2 Cache<br>256 kB shared L3 Cache |
|          | Frequency | 1.5 GHz                                                              | 1.7 GHz                                                                                       |
|          | Others    | NEON, FPU                                                            | NEON, FPU                                                                                     |
| Cortex-M | Cores     | M7                                                                   | M33                                                                                           |

AN14022

#### Table 2. CPU architecture...continued

| Items |           | i.MX 8M Nano | i.MX 93                                              |
|-------|-----------|--------------|------------------------------------------------------|
|       | Memory    | 256 kB TCM   | 16 kB System Cache<br>16 kB Code Cache<br>256 kB TCM |
|       | Frequency | 750 MHz      | 250 MHz                                              |

For SoC architecture, it describes the distribution of all modules in SoC MIXs. i.MX 8M Nano and i.MX 93 share only a few of the same MIXs. For SoC in the i.MX 8M Nano, most modules are located in SUPERMIX including M7. However, in i.MX 93, most modules locate in AONMIX and WAKEUPMIX. The two MIXs still share some same kind of modules. M33 is located in AONMIX.

#### Table 3. SoC Architecture

|                  | i.MX 8M Nano                                                                        | i.MX 93      |                                                                                                                                                                                  |  |  |
|------------------|-------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CPU              | A53                                                                                 | A55MIX       | A55                                                                                                                                                                              |  |  |
| SUPERMIX         | M7, WDOG, UART, I2C, GPIO, PWM,<br>Timer, Quad SPI, OCOTP, IOMUX,                   | AONMIX       | M33, LPIT1, SAI1, MQS1, CAN-<br>FD1, WDOG12, IOMUX, LPI2C12,<br>LPSPI12, LPUART12, LPUART12,<br>MU1, I3C1, PDM, LPTMR1, TPM12,<br>TSTMR1, GPIO1                                  |  |  |
|                  | MU, RDC, CSU, ENET, uSDHC,<br>GPMI, eCSPI, SPDIF, PDM, SAI,<br>ASRC, CoreSight, DAP | WAKEUPMIX    | uSDHC, ENET, ENET_QoS, PDM,<br>GPIO24, FLEXIO12, MU2, WDOG3<br>5, FlexSPI1, TSTMR2, LPIT2, TPM36,<br>LPTMR2, I3C2, LPUART38, LPSPI3<br>8, LPI2C38, CAN-FD2, SAI23, MQS2,<br>XCVR |  |  |
| GPUMIX           | GC7000UL                                                                            | —            | —                                                                                                                                                                                |  |  |
| DISPLAYMIX       | MIPI CSI, ISI, LCDIF, MIPI DSI                                                      | MEDIAMIX     | MIPI CSI, ISI, PXP, LCDIF, MIPI DSI,<br>LVDS                                                                                                                                     |  |  |
| HSIOMIX          | USB                                                                                 | HSIOMIX      | USB                                                                                                                                                                              |  |  |
| —                | —                                                                                   | MLMIX        | NPU                                                                                                                                                                              |  |  |
| ANAMIX           | XTAL OSC, PLLs, Temp Sensor                                                         | ANAMIX       | ADC, XTAL OSC, PLLs, Temp Sensor                                                                                                                                                 |  |  |
| DDRMIX           | DDR                                                                                 | DDRMIX       | DDR                                                                                                                                                                              |  |  |
| CCMSRC<br>GPCMIX | GPC, SRC, CCM                                                                       | CCMSRCGPCMIX | GPC, SRC, CCM, TCU_CCM                                                                                                                                                           |  |  |
| SNVSMIX          |                                                                                     | BBSMMIX      |                                                                                                                                                                                  |  |  |
| NOC_WRAPPER      |                                                                                     | NICMIX       |                                                                                                                                                                                  |  |  |

## 3.2 Hardware differences

### 3.2.1 Clocking

i.MX 8M Nano shares most clock sources and PLLs as i.MX 93. However, i.MX 8M has extra clock sources (CCM\_EXT\_CLK[4:1]) and PLLs (SYSTEM PLL2, SYSTEM PLL3, M7 ALT PLL, GPU\_PLL). The SYSTEM PLL1 dividers of the two SoCs are also different. The maximum frequencies of PLLs with the same name are a little different. The SYSTEM PLL of i.MX 8M Nano is integer PLL, while the SYSTEM PLL of i.MX 93 is fractional PLL.

## i.MX 93 Migration Guide from i.MX 8M Nano

| Table 4. Clock source | es and PLLs       |            |                                   |  |  |
|-----------------------|-------------------|------------|-----------------------------------|--|--|
|                       | i.MX 8M Nano      |            | i.MX 93                           |  |  |
| CCM_EXT_CLK[4:1]      |                   | —          |                                   |  |  |
| OSC 24 MHz            |                   | OSC 24 MHz |                                   |  |  |
| OSC 32 kHz            |                   | OSC 32 kHz |                                   |  |  |
| Arm PLL               |                   | Arm PLL    |                                   |  |  |
|                       | SYSTEM_PLL1_CLK   |            |                                   |  |  |
|                       | SYSTEM_PLL1_DVI2  |            |                                   |  |  |
|                       | SYSTEM_PLL1_DVI3  |            | SYS_PLL_PFD0                      |  |  |
|                       | SYSTEM_PLL1_DVI4  |            | SYS_PLL_PFD0_DIV2                 |  |  |
| SYSTEM PLL1           | SYSTEM_PLL1_DVI5  | SYSTEM PLL | SYS_PLL_PFD1<br>SYS_PLL_PFD1_DIV2 |  |  |
|                       | SYSTEM_PLL1_DVI6  |            | SYS_PLL_PFD2                      |  |  |
|                       | SYSTEM_PLL1_DVI8  |            | SYS_PLL_PFD2_DIV2                 |  |  |
|                       | SYSTEM_PLL1_DVI10 |            |                                   |  |  |
|                       | SYSTEM_PLL1_DVI20 |            |                                   |  |  |
|                       | SYSTEM_PLL2_CLK   |            |                                   |  |  |
|                       | SYSTEM_PLL2_DVI2  |            |                                   |  |  |
|                       | SYSTEM_PLL2_DVI3  |            |                                   |  |  |
|                       | SYSTEM_PLL2_DVI4  |            |                                   |  |  |
| SYSTEM PLL2           | SYSTEM_PLL2_DVI5  | -          |                                   |  |  |
|                       | SYSTEM_PLL2_DVI6  |            |                                   |  |  |
|                       | SYSTEM_PLL2_DVI8  |            |                                   |  |  |
|                       | SYSTEM_PLL2_DVI10 |            |                                   |  |  |
|                       | SYSTEM_PLL2_DVI20 |            |                                   |  |  |
| SYSTEM PLL3           |                   | _          |                                   |  |  |
| AUDIO PLL1            |                   | AUDIO PLL  |                                   |  |  |
| AUDIO PLL 2           |                   | —          |                                   |  |  |
| DRAM PLL              |                   | DRAM PLL   |                                   |  |  |
| VIDEO PLL             |                   | VIDEO PLL  |                                   |  |  |
| M7 ALT PLL            |                   |            |                                   |  |  |
| GPU_PLL               |                   | —          |                                   |  |  |

### Table 5. PLL output frequency of i.MX 8M Nano

| PLL         | Туре    | VCO frequency<br>(MHz) | Post divider | Max.frequency | Use case                          |
|-------------|---------|------------------------|--------------|---------------|-----------------------------------|
| SYSTEM PLL1 | integer | 3200                   | 4            | 800           | Set to fixed frequency after boot |
| SYSTEM PLL2 | integer | 2000                   | 2            | 1000          | by ROM code.                      |

AN14022 Application note

| PLL         | Туре       | VCO frequency<br>(MHz) | Post divider     | Max.frequency | Use case                       |
|-------------|------------|------------------------|------------------|---------------|--------------------------------|
| SYSTEM PLL3 | integer    | 1600~3200              |                  | 1000          |                                |
| Arm PLL     | integer    | 1600~3200              | 2^s<br>0 ≤ s ≤ 6 | 2000          |                                |
| GPU PLL     | integer    | 1600~3200              |                  | 1000          |                                |
| VPU PLL     | integer    | 1600~3200              |                  | 800           | Fully configurable by software |
| DRAM PLL    | fractional | 1600~3200              |                  | 800           | various IP modules.            |
| Audio PLL1  | fractional | 1600~3200              |                  | 650           |                                |
| Audio PLL2  | fractional | 1600~3200              |                  | 650           |                                |
| Video PLL1  | fractional | 1600~3200              |                  | 650           |                                |

#### Table 5. PLL output frequency of i.MX 8M Nano...continued

#### Table 6. PLL output frequency of i.MX 93

| PLL         | Туре                       | VCO frequency<br>(MHz)        | PFD/DFS<br>MFI | PFD/DFS<br>MFN | Max.frequen | Use case                                       |     |                         |
|-------------|----------------------------|-------------------------------|----------------|----------------|-------------|------------------------------------------------|-----|-------------------------|
| SYSTEM PLL1 | Fractional with<br>PFD/DFS | actional with<br>D/DFS 4000 6 | 4              | 0              | 1000        |                                                |     |                         |
|             |                            |                               | 5              | 0              | 800         | Set to fixed frequency after boot by ROM code. |     |                         |
|             |                            |                               | 6              | 2              | 625         |                                                |     |                         |
| Arm PLL     | integer                    | 2500~5000                     |                |                | 2000        |                                                |     |                         |
| DRAM PLL    | fractional                 | 2500~5000                     | - N/A          |                | 1000        | Fully configurable by software                 |     |                         |
| Audio PLL1  | fractional                 | 2500~5000                     |                |                |             | IN/A                                           | 650 | for various IP modules. |
| Video PLL1  | fractional                 | 2500~5000                     |                |                | 594         |                                                |     |                         |

#### 3.2.2 Power management

The main difference is that i.MX 93 supports low-power run mode. In this mode, modules in AONMIX of i.MX 93 can run when other domains can be powered down. For more detailed information, see <u>Section 4.2.4</u>.

SNVS, IDLE, and suspend are referred as low-power mode for the chip. Suspend and Idle are the two typical low-power modes defined based on the use case of Linux kernel.

 Table 7. Power Modes

| i.MX 8M Nano | i.MX 93            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run mode     | Run mode           | No change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Low-power run mode | New:<br>This mode is defined as a low-power run mode with all external<br>power rails are ON. In this mode, all the unnecessary power domain<br>(MIX) can be off, except AONMIX and the internal modules required,<br>such as OSC24M/PLL. Cortex-M33 CPU in AONMIX handles all the<br>computing and data processing. Cortex-A55 is powered down and<br>DRAM can be in self-refresh/retention mode. All the modules in the<br>AONMIX, such as, SAI/CAN/LPUART, can be used directly. To use<br>modules in other power domains, such as, WAKEUPMIX, the user<br>can turn on other peripherals and related power by Cortex-M33 as<br>needed. |

#### Table 7. Power Modes...continued

| i.MX 8M Nano | i.MX 93      |                                                                |
|--------------|--------------|----------------------------------------------------------------|
|              |              | Updated:                                                       |
| Idle mode    | Idle mode    | <ul> <li>For the i.MX 8M Nano, L2 data is retained.</li> </ul> |
|              |              | For i.MX 93, L3 data is retained.                              |
| Suspend mode | Suspend mode | No change                                                      |
| SNVS mode    | BBSM mode    | Updated:                                                       |
|              |              | Replace SNVS with BBSM                                         |
| OFF mode     | OFF mode     | No change                                                      |

For different power modes, the power rails are different as below.

#### Table 8. Power supply states of i.MX 8M Nano

| Power rail        | OFF | SNVS | Suspend | Idle | Run |
|-------------------|-----|------|---------|------|-----|
| VDD_ARM           | OFF | OFF  | OFF     | ON   | ON  |
| VDD_SOC           | OFF | OFF  | ON      | ON   | ON  |
| VDDA_1P8          | OFF | OFF  | ON      | ON   | ON  |
| VDDA_0P8          | OFF | OFF  | ON      | ON   | ON  |
| VDD_DRAM          | OFF | OFF  | ON      | ON   | ON  |
| VDD_SNVS          | OFF | ON   | ON      | ON   | ON  |
| NVCC_SNVS         | OFF | ON   | ON      | ON   | ON  |
| NVCC_ <xxx></xxx> | OFF | OFF  | ON      | ON   | ON  |
| NVCC_DRAM         | OFF | OFF  | ON      | ON   | ON  |
| DRAM_VREF         | OFF | OFF  | OFF     | ON   | ON  |

#### Table 9. Power Supply States of i.MX 93

| Power rail                                                                 | OFF | BBSM | Low-power<br>SUSPEND (1.8<br>V analog OFF) | Suspend<br>(Analog ON) | ldle | Run/Low-<br>pPower Run |
|----------------------------------------------------------------------------|-----|------|--------------------------------------------|------------------------|------|------------------------|
| NVCC_BBSM_1P8                                                              | OFF | ON   | ON                                         | ON                     | ON   | ON                     |
| VDD_SOC                                                                    | OFF | OFF  | ON                                         | ON                     | ON   | ON                     |
| VDD2_DDR<br>VDDQ_DDR                                                       | OFF | OFF  | ON                                         | ON                     | ON   | ON                     |
| NVCC_ <xxx></xxx>                                                          | OFF | OFF  | ON                                         | ON                     | ON   | ON                     |
| VDD_ANAx_0P8<br>VDD_MIPI_0P8<br>VDD_USB_0P8                                | OFF | OFF  | ON                                         | ON                     | ON   | ON                     |
| VDD_ANAx_1P8<br>VDD_LVDS_1P8<br>VDD_MIPI_1P8<br>VDD_USB_1P8<br>VDD_USB_3P3 | OFF | OFF  | OFF                                        | ON                     | ON   | ON                     |

### 3.2.3 Reset and boot

As shown in Table 10, i.MX 93 has richer and more accurate reset sources than i.MX 8M Nano.

#### Table 10.Reset sources

| i.MX 8M Nano       | i.MX 93                                                                                             |
|--------------------|-----------------------------------------------------------------------------------------------------|
| POR                | POR                                                                                                 |
| CSU reset          | CSU reset                                                                                           |
| SRC_ONOFF          | SRC_ONOFF                                                                                           |
| WDOG reset         | WDOG1 M33 reset<br>WDOG2 M33 reset<br>WDOG3 wake-up mix reset<br>WDOG4 A55 reset<br>WDOG5 A55 reset |
| —                  | Temper sensor reset                                                                                 |
| —                  | M33 lockup reset                                                                                    |
| —                  | M33 system reset                                                                                    |
| SJC software reset | JTAG software reset                                                                                 |
| SJC_TRST_B         |                                                                                                     |

i.MX 93 supports single boot and low-power boot with two boot ROMs. In single boot, the Cortex-A55 ROM loads all containers and images, and then jumps to the A55 firmware. In low-power boot, only the Cortex-M33 ROM is running after Power-On Reset.

i.MX 8M Nano only supports boot from A53 with only one boot ROM. <u>Table 11</u> shows the supported boot modes.

| i.MX 8M Nano             | i.MX 93 (Single boot with A55 ROM) | i.MX 93 (Low-power boot with M33 ROM) |
|--------------------------|------------------------------------|---------------------------------------|
| From internal fuses      | From internal fuses                | From internal fuses                   |
| Serial download          | Serial download                    | Serial download                       |
| uSDHC (eMMC)             | uSDHC (eMMC)                       | uSDHC (eMMC)                          |
| uSDHC (SD)               | uSDHC (SD)                         | uSDHC (SD)                            |
| FlexSPI 3B read          |                                    | FlexSPI serial NOR                    |
| FlexSPI HyperFlash 3.3 V |                                    |                                       |
| FlexSPI serial NAND 2K   | FlexSPI serial NAND 2K             | FlexSPI serial NAND 2K                |
| FlexSPI serial NAND 4K   | —                                  | —                                     |
| eCSPI boot               | —                                  | -                                     |

#### Table 11. Boot modes

### 3.2.4 Security

Compared to i.MX 8M nano processors, i.MX93 processors enhanced the security in the following parts.

i.MX93 introduces EdgeLock Enclave (ELE), which i.MX 8M nano does not have. It is an independent security domain that provides security services, which include key management and execution of cryptographic services. The ELE provides a secure environment, which enables applications to execute secure cryptographic services.

Advanced High Assurance Boot (AHAB) is used in i.MX 93. It replaces the High Assurance Boot (HAB) which is used in the i.MX 8M nano. AHAB is responsible for authenticating the ELE firmware, which supplies the services for authenticating boot images of the application core signed by the user.

Trusted Resource Domain Controller (TRDC) replace the Resource Domain Controller (RDC) and Central Security Unit (CSU) which is used in i.MX 8M nano. It is responsible for the memory/peripheral resource sharing and isolation between the Cortex-A55 platform, Cortex-M33 core, and other bus masters. For more information, see <u>Section 4.2.3</u>.

i.MX 93 extends the secure debug features. It still supports the password-based authentication, and introduced a new asymmetric authentication function.

i.MX 93 supports tamper detection features, which i.MX 8M Nano does not support.

There are still some other differences in the security aspect, as described in <u>Table 12</u>.

Table 12. Security modules

| Item                | i.MX 8M Nano                     | i.MX 93                                                                                                                                                                                                                             |
|---------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDC                 | RDC                              | TRDC                                                                                                                                                                                                                                |
| TrustZone           | TrustZone<br>support Trustzone-A | TrustZone<br>support both Trustzone-A and Trustzone-M                                                                                                                                                                               |
| OCRAM secure region | OCRAM secure region              | Removed: There are 32 kB of OCRAM_s in i.MX 8M Nano<br>and it is controlled by IOMUXC_GPR_GPR11 and CSU_CSL_<br>59, while there are no OCRAM_s in i.MX 93. But there are<br>640 kB of OCRAM in i.MX 93 and it is managed by TRDC_N. |
| НАВ                 | НАВ                              | АНАВ                                                                                                                                                                                                                                |
| CAAM                | CAAM                             | ELE HSM                                                                                                                                                                                                                             |
| SNVS/BBSM           | SNVS                             | BBSM/BBNSM. Updated with tamper functions                                                                                                                                                                                           |
| Debug               | Password based secure debug      | Password and asymmetric authentication                                                                                                                                                                                              |

#### 3.2.5 Other module differences

The section describes the modules resources changes. It shows the changes of IP updates and instance numbers. It covers memory, multimedia, connectivity, timer, and system debug.

Table 13.Other modules

|           | i.MX 8M Nano              | i.MX 93                |
|-----------|---------------------------|------------------------|
| NPU       | N/A                       | NPU × 1                |
| MU        | MU × 1                    | MU × 2                 |
| OCRAM     | 544 kB                    | 640 kB                 |
|           | DDRC × 1                  | DDRC × 1               |
| DDRC      | Support DDR4/DDR3L/LPDDR4 | Support LPDDR4/LPDDR4x |
| SPI       | ECSPI × 3                 | LPSPI × 8              |
| GPMI/NAND | GPMI/NAND                 | N/A                    |
| uSDHC     | uSDHC × 3                 | uSDHC × 3              |
| FlexSPI   | FlexSPI × 1               | FlexSPI × 1            |
| ISI       | ISI × 1                   | ISI × 1                |
| GPU/PXP   | GPU                       | РХР                    |

|          | i.MX 8M Nano | i.MX 93                                       |
|----------|--------------|-----------------------------------------------|
|          |              | LCDIF × 1                                     |
| LCDIF    |              | i.MX 93 also support parallel display         |
|          | MIPLOSEX 1   | MIPI CSI-2 × 1                                |
|          |              | Different IP                                  |
| MIPI DSI | MIPI DSI × 1 | MIPI DSI × 1                                  |
|          |              | Different IP                                  |
| LVDS     | N/A          | LVDS Display × 1                              |
| CSI      | N/A          | Parallel Camera × 1                           |
| SAI      | SAL×5        | SAI × 3                                       |
|          |              | Fewer instances and different supported lanes |
| SPDIF    | SPDIF × 1    | SPDIF XCVR × 1                                |
|          |              |                                               |
| PDM      | PDM × 1      | PDM × 1                                       |
| ASRC     | ASRC         | N/A                                           |
| MQS      | N/A          | MQS × 1                                       |
| GPIO     | GPIO × 5     | GPIO × 4                                      |
|          |              | Different IP                                  |
| USB      | USB 2.0 × 1  | USB 2.0 × 2                                   |
| FlexCAN  | N/A          | FlexCAN × 2                                   |
| 13C      | N/A          | 13C × 2                                       |
| FlexIO   | N/A          | FlexIO × 2                                    |
| Ethernet | Ethernet x 1 | Ethernet × 1                                  |
|          |              | Ethernet_QoS × 1                              |
| 12C      | I2C × 4      | LPI2C × 8                                     |
| UART     | UART × 4     | LPUART × 8                                    |
| LPTMR    | N/A          | LPTMR × 2                                     |
| LPIT     | N/A          | LPIT × 2                                      |
| ТРМ      | N/A          | TPM × 6                                       |
| TSTMR    | N/A          | TSTMR × 2                                     |
| GPT      | GPT × 6      | N/A                                           |
| PWM      | PWM × 4      | N/A                                           |
| WDO      | WDOG × 3     | WDOG × 5                                      |
| ТМU      | TMU × 1      | TMU × 1                                       |
| ADC      | N/A          | SAR_ADC × 1                                   |

#### Table 13. Other modules...continued

## 3.3 Power difference

#### 3.3.1 Power architecture

There are a few differences of power architecture between i.MX 8M Nano and i.MX 93. The main difference is that i.MX 93 removes the  $VDD\_ARM$  and the cores are supplied with  $VDD\_SOC$ . For other differences, see Table 14.



## **NXP Semiconductors**

# AN14022

i.MX 93 Migration Guide from i.MX 8M Nano



| Tabla 1 | <b>A</b> | Dowor | architactura | difforences |
|---------|----------|-------|--------------|-------------|
| Table 1 | 4.       | Power | architecture | amerences   |

| ltem                       | i.MX 8M Nano                                                                                                                                                                                                       | i.MX 93                                                                                                                                                                                                                                                                               |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VDD_ARM/VDD_SOC            | The digital logic inside the chip is supplied with two supplies: VDD_ARM and VDD_SOC. The VDD_SOC can be nominal or overdrive voltage.                                                                             | The digital logic inside the chip is supplied with only one supply: VDD_SOC. The VDD_SOC can be nominal or overdrive or a low drive voltage.                                                                                                                                          |
| DRAM controller and<br>PHY | <ul> <li>The DRAM controller and PHY have three external power supplies:</li> <li>VDD_SOC supplies controller and PHY digital logic</li> <li>VDDA_DRAM for PHY analog circuit</li> <li>NVCC_DRAM for IO</li> </ul> | <ul> <li>VDD_ANAx_0P8/VDD_DDR_PLL_0P8 for PLL and PHY digital logic</li> <li>VDD_ANAx_1P8/VDD_DDR_PLL_1P8 for DRAM PLL and PHY analog circuitry</li> <li>VDD2_DDR for 1.1V DRAM PHY supply</li> <li>VDDQ_DDR for DRAM PHY IO supply (1.1V for LPDDR4 and 0.6V for LPDDR4X)</li> </ul> |

| ltem      | i.MX 8M Nano                                                                                                                                                                                                                                                                                                  | i.MX 93                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNVS/BBSM | The 0.8 V core logic supply, 1.8 V<br>IO pre-driver supply, and 1.8 V IO<br>pad supply are supplied externally.<br>If the PMIC does not have 0.8 V<br>output, external LDOs can be used to<br>generate the 0.8 V supply from 1.8 V.<br>The SVNS core logic can also be 0.9<br>V to support the existing PMIC. | The 1.8 V IO pre-driver supply and 1.8 V IO pad supply are supplied externally. The BBSM_LP core digital domain logic is supplied by an internal LDO. |

 Table 14. Power architecture differences...continued

#### 3.3.2 Power optimization

The overall system power consumption depends on the software optimization and the system hardware implementation. The following list of suggestions can help reduce system power consumption. i.MX 8M Nano and i.MX 93 shared power optimization plans.

 Table 15.
 Power optimization

| Optimization strategy                | i.MX 8M Nano | i.MX 93                                                             |
|--------------------------------------|--------------|---------------------------------------------------------------------|
| Run fast and idle                    | Y            | Y                                                                   |
| Clock gating                         | Y            | Y                                                                   |
| PLL number reduction                 | Y            | Y                                                                   |
| Core DVFS and system bus scaling     | DVFS         | VFS, not dynamic because core and SoC share same power rail VDD_SOC |
| Lower DDR frequencies                | Y            | Y                                                                   |
| DDR interface optimization           | Y            | Y                                                                   |
| Power gating of PHYs                 | Y            | Y                                                                   |
| Distribution of workloads            | Y            | Y                                                                   |
| Use OCRAM to minimize DDR accesses   | Y            | Y                                                                   |
| Thermal management to reduce leakage | Y            | Y                                                                   |
| Nominal or low drive mode            | Y            | Y                                                                   |

## 4 How to migrate

### 4.1 Hardware

#### 4.1.1 Board changes

The layers of the boards and the power up sequences are different.

| Item              | i.MX 8M Nano                      |                                   | i.MX 93                            |                                   |                                 |
|-------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|---------------------------------|
| Packages          | FCBGA 14 × 14 mm,<br>0.5 mm pitch | FCBGA 11 × 11 mm,<br>0.5 mm pitch | FCBGA 14 × 14 mm,<br>0.65 mm pitch | FCBGA 11 × 11 mm,<br>0.5 mm pitch | FCBGA 9 × 9 mm,<br>0.5 mm pitch |
| Minimum<br>Layers | 6                                 | 6                                 | 6                                  | 6                                 | 4                               |

Table 16. PCB Layers comparison of different packages

AN14022 Application note © 2023 NXP B.V. All rights reserved.

### i.MX 93 Migration Guide from i.MX 8M Nano





Figure 6. Power-up sequence for i.MX 8M Nano 11 × 11 mm package

## **NXP Semiconductors**

# AN14022

i.MX 93 Migration Guide from i.MX 8M Nano



Figure 7. Power-up sequence for i.MX 93

#### Table 17. Maximum current design requirement

| i.MX 8M Nano                          |                   | i.MX 93      |                   |  |
|---------------------------------------|-------------------|--------------|-------------------|--|
| Supply input                          | Max. current (mA) | Supply input | Max. current (mA) |  |
| VDD_ARM                               | 2200              | VDD_SOC      | 1500              |  |
| VDD_SOC, DRAM and GPU                 | 2000              | VDD2_DDR     | 500               |  |
| NVCC_DRAM 1000                        |                   | VDDQ_DDR     | 260               |  |
| · · · · · · · · · · · · · · · · · · · | ·                 |              |                   |  |

### 4.1.2 Board design considerations

i.MX 8M Nano and i.MX 93 contain different SoCs with different boards. For more details, see the Reference chapter in the hardware design guide of specific SoC.

## 4.2 Software

#### 4.2.1 U-Boot and kernel changes

From the view point of application, there are no special differences between i.MX 8M Nano and i.MX 93 in U-Boot and kernel. The references of the power domain in dts are also similar.

| Table 18. | U-Boot changes |
|-----------|----------------|
|           |                |

| Item          | i.MX 8M Nano                                                                                           | i.MX 93                                                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| config        | imx8mn*defconfig                                                                                       | imx93*defconfig                                                                                                       |
| dtb           | imx8mn*.dts                                                                                            | imx93*.dts                                                                                                            |
| Build command | For imx8mn_evk_defconfig, the default<br>value is imx8mn_evk.dtb.<br>make imx8mn_evk_defconfig<br>make | For imx93_11x11_evk_defconfig, the default<br>value is imx93-11x11-evk.dtb.<br>make imx93_11x11_evk_defconfig<br>make |

AN14022 Application note © 2023 NXP B.V. All rights reserved.

#### Table 19. Kernel changes

| ltem          | i.MX 8M Nano          | i.MX 93               |
|---------------|-----------------------|-----------------------|
| config        | imx_v8_defconfig      | imx_v8_defconfig      |
| dtb           | imx8mn*.dts           | imx93*.dts            |
|               | imx8mn-evk.dts        | imx93-11x11-evk.dts   |
|               | imx8mn-ddr3l-evk.dts  | imx93-9x9-qsb.dts     |
|               | imx8mn-ddr4-evk.dts   | imx93-14x14-evk.dts   |
|               |                       |                       |
| Build command | make imx_v8_defconfig | make imx_v8_defconfig |
|               | make                  | make                  |

#### Table 20. Power domain changes in kernel dts

| i.MX 8M Nano                 | i.MX 93                    |
|------------------------------|----------------------------|
| pgc_hsiomix                  |                            |
| pgc_otg1                     | —                          |
| pgc_gpumix                   | —                          |
| pgc_dispmix -> disp_blk_ctrl | mediamix -> media_blk_ctrl |
| pgc_mipi                     | —                          |
| _                            | mlmix                      |

### 4.2.2 SDK changes

#### Table 21. SDK changes

| i.MX 8M Nano                 | i.MX 93                      |                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOARD_InitMemory()           |                              | For i.MX 8M Nano, M7 has its local cache and is enabled by default. Set smart subsystems (0x28000000 ~ 0x3FFFFFF F) noncacheable before accessing this address region. No requirements for i.MX 93.                                                                                                                                                                 |
| BOARD_RdcInit()              |                              | For i.MX 8M Nano, move the M7 core to specific RDC<br>domain 1, then enable the clock gate of the IP/BUS/<br>PLL in domain 1 in the CCM. In this way, the clock of the<br>peripherals used by M core is not affected by A core which is<br>running at domain 0.<br>No requirements for i.MX 93 SDK. Most of RDC<br>configurations are done in Arm trusted firmware. |
| BOARD_InitBootPins()         | BOARD_InitBootPins()         | Common operation                                                                                                                                                                                                                                                                                                                                                    |
| BOARD_BootClockRUN()         | BOARD_BootClockRUN()         | Clocks are already configured by ROM or U-Boot. For i.MX<br>8M Nano, enable some other root clocks.                                                                                                                                                                                                                                                                 |
| BOARD_InitDebug<br>Console() | BOARD_InitDebug<br>Console() | Common operation                                                                                                                                                                                                                                                                                                                                                    |

#### 4.2.3 RDC changes

In i.MX 8M Nano, the name of the resource domain management module is RDC. Some simple configurations are done in ATF. Sometimes, extra configurations are required in <code>BOARD\_RdcInit</code> () of SDK.

In i.MX 93, the name of the resource domain management module is TRDC. ELE assigns different maters to a specific domain and no extra configurations are required in common cases.

|          | i.MX 8M Nano                                                                                                                                                                                                                                                                                                                        | i.M                                                                                                                                                                                                      | X 93                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| hardware | This device has only one RDC module. It manages<br>all the connected modules. The RDC supports up<br>to four domains.                                                                                                                                                                                                               | This device has six instanc<br>different MIX:<br>• TRDC AONMIX<br>• TRDC WAKEUPMIX<br>• TRDC MEGAMIX<br>• TRDC MEGAMIX<br>• TRDC NICMIX<br>• TRDC MEDIAMIX<br>• TRDC HSIOMIX<br>Each TRDC supports up to | es of the TRDC module in<br>16 domains. |
| software | <pre>ATF: imx8mn_bl31_setup.c static const struct imx_rdc_cfg rdc[] = {</pre>                                                                                                                                                                                                                                                       | ATF: trdc.c<br>trdc_config.h<br>Below is the default domair                                                                                                                                              | n ID of different masters.              |
|          | /* Master domain assignment<br>*/                                                                                                                                                                                                                                                                                                   | Master                                                                                                                                                                                                   | DEFAULT_DID                             |
|          | RDC_MDAn(RDC_MDA_M7, DID1),                                                                                                                                                                                                                                                                                                         | MTR_MSTR                                                                                                                                                                                                 | 1                                       |
|          | <pre>/* peripherals domain permission */ RDC_PDAPn(RDC_PDAP_UART4, D1R   D1W), RDC_PDAPn(RDC_PDAP_UART2, D0R   D0W), RDC_PDAPn(RDC_PDAP_RDC, D0R   D0W   D1R),      /* memory region */ RDC_MEM_REGIONn(16, 0x0, 0x0, 0xff), RDC_MEM_REGIONn(17, 0x0, 0x0, 0xff), RDC_MEM_REGIONn(18, 0x0, 0x0, 0xff), /* Sentinel */ {0}, };</pre> | M33                                                                                                                                                                                                      | 2                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | A55                                                                                                                                                                                                      | 3                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | Reserved                                                                                                                                                                                                 | 4                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | uSDHC1                                                                                                                                                                                                   | 5                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | uSDHC2                                                                                                                                                                                                   | 6                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | eDMA1/eDMA2                                                                                                                                                                                              | 7                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | CoreSight ETR/<br>TESTPORT                                                                                                                                                                               | 8                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | DAP AHB_AP_SYS                                                                                                                                                                                           | 9                                       |
|          |                                                                                                                                                                                                                                                                                                                                     | uSDHC3<br>ENET<br>ENET QOS<br>NPU<br>USB 2<br>ISI<br>PXP<br>LCDIF                                                                                                                                        | 10                                      |
|          |                                                                                                                                                                                                                                                                                                                                     | USB 1                                                                                                                                                                                                    | 11                                      |
|          | SDK: board.c<br>BOARD_RdcInit ()                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          | I                                       |

Table 22. RDC vs TRDC

#### 4.2.4 M core running when A core suspended

Both i.MX 8M Nano and i.MX 93 can make M core run when A cores enter suspend mode. But the required operations are slightly different to enable the feature.

For i.MX 8M Nano, if the Linux OS kernel runs together with M7, make sure that the correct *dtb* file is used. This *dtb* file reserves resources used by M7 and avoids the Linux kernel from configuring them. For both i.MX 8M

Nano and i.MX 93, if DDR memory is not required, add *clk-imx93.mcore\_booted* to *bootargs(mmcargs)* through uboot command as below.

| Table 23. | How to   | make | sure | root | clocks  | not gated |
|-----------|----------|------|------|------|---------|-----------|
|           | 11011 10 | mano | 0010 | 1000 | 0100100 | not gatoa |

|                  | i.MX 8M Nano                                         | i.MX 93                                             |  |
|------------------|------------------------------------------------------|-----------------------------------------------------|--|
|                  | For the DDR4 board:                                  |                                                     |  |
|                  | setenv fdtfile fsl-imx8mn-<br>ddr4-evk-rpmsg.dtb     | No requirements.                                    |  |
| Change dtb       | • For the LPDDR4 board:                              |                                                     |  |
|                  | setenv fdtfile fsl-imx8mn-<br>evk-rpmsg.dtb          |                                                     |  |
| Set mcore_booted | setenv mmcargs \$mmcargs clk-<br>imx8mn.mcore_booted | setenv mmcargs \$mmcargs clk-<br>imx93.mcore_booted |  |

If DDR memory is required in the M core application, below codes are necessary. ATF would read the value of ServiceFlagAddr to decide whether to disable all PLLs or not.

| ATF                    | <pre>#define M4_LPA_ACTIVE 0x5555 #define DSP_LPA_ACTIVE 0xD #define DSP_LPA_DRAM_ACTIVE 0x1D #define M4_LPA_IDLE 0x0 bool imx_m4_lpa_active(void) {     uint32_t lpa_status;     lpa_status = mmio_read_32(IMX_SRC_BASE + LPA_STATUS);     return (lpa_status == M4_LPA_ACTIVE            lpa_status == DSP_LPA_ACTIVE            lpa_status == DSP_LPA_DRAM_ACTIVE); }</pre> |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The M core application | <pre>#define ServiceFlagAddr SRC- &gt;GPR9 #define ServiceBusy (0xDU) #define ServiceIdle (0x0U) ServiceFlagAddr = ServiceBusy;</pre>                                                                                                                                                                                                                                          |

Table 24. Request ATF to let DDR active when A53 is suspended in i.MX 8M Nano

For i.MX 93, it is similar as i.MX 8M Nano to request ATF to let DDR active when A55 is suspended. ATF would read the value of M33\_ACTIVE\_FLAG to decide whether to disable all PLLs or not.

#### Table 25. Request ATF to let DDR active when A55 is suspended in i.MX93

|     | <pre>#define M33_ACTIVE_FLAG #define M33_ACTIVE /*</pre>                    | (IMX_SRC_BASE + 0x54)<br>U(0x5555) |
|-----|-----------------------------------------------------------------------------|------------------------------------|
| ATF | <pre>* M33 side need to raise this * A55 side enter low power mode */</pre> | flag it DDR is used when<br>e.     |
|     | <pre>static inline bool is_m33_activ {</pre>                                | e(void)                            |
|     | return mmio_read_32(M33_ACT                                                 | IVE_FLAG) == M33_ACTIVE;           |

© 2023 NXP B.V. All rights reserved.

#### Table 25. Request ATF to let DDR active when A55 is suspended in i.MX93...continued

|                        | }                                                                                                                                                                     |                                                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| The M core application | <pre>#define IMX_SRC_BASE #define M33_ACTIVE_FLAG #define M33_ACTIVE #define M33_DisACTIVE /* Request ATF to let DDR active */ *((uint32_t *)M33_ACTIVE_FLAG) =</pre> | 0x44460000<br>(IMX_SRC_BASE + 0x54)<br>(0x5555)<br>(0x0)<br>e when Cortex-A is suspended<br>= M33_ACTIVE; |

#### 4.2.5 Enable DVFS or VFS

i.MX 8M Nano can support dynamic VFS because VDD\_SOC and VDD\_ARM are supplied separated. i.MX 93 can only support NOT dynamic VFS. The setup flows are different, as shown in <u>Table 26</u> and <u>Table 27</u>. The section only covers the method in kernel.

| Table 26. How to enable or disable VFS in i.MX 8M N | lano |
|-----------------------------------------------------|------|
|-----------------------------------------------------|------|

| Target       | i.MX 8M Nano               |
|--------------|----------------------------|
| Enable DVFS  | cpufreq-set -g powersave   |
| Disable DVFS | cpufreq-set -g performance |

Unlike i.MX 8M family, there is no separate VDD\_ARM power rail for Cortex-A platform. A single VDD\_SOC power rail is used for the whole digital logic in the SoC. The VDD\_SOC can be nominal (ND) or overdrive (OD) or a Low Drive (LD) voltage. For LD mode, use imx93-11x11-evk-ld.dtb.

Table 27. How to enable or disable VFS in i.MX 93

| Target                                         | i.MX 93                                                                 |
|------------------------------------------------|-------------------------------------------------------------------------|
| Nominal drive mode,<br>ddr to half speed       | echo 1 > /sys/devices/platform/imx93-lpm/mode                           |
| Overdrive mode,<br>ddr to full speed           | echo 0 > /sys/devices/platform/imx93-lpm/mode                           |
| Low drive mode,<br>ddr to half speed           | imx93-11x11-evk-ld.dtb<br>echo 2 > /sys/devices/platform/imx93-lpm/mode |
| Low drive mode with SWFFC, ddr to lowest speed | imx93-11x11-evk-ld.dtb<br>echo 3 > /sys/devices/platform/imx93-lpm/mode |

## 5 Reference

- i.MX 8M Nano Applications Processor Datasheet for Consumer Products (document IMX8MNCEC)
- *i.MX 8M Nano Applications Processor Reference Manual* (document <u>IMX8MNRM</u>)
- *i.MX 8M Nano Hardware Developer's Guide* (document <u>IMX8MNHDG</u>)
- *i.MX 8M Nano Power Consumption Measurement* (document <u>AN12778</u>)
- i.MX 8M Low Power Design By M Core Running In System Suspend (document AN13400)
- i.MX 93 Consumer Application Processors Data Sheet (document IMX93CEC)
- *i.MX* 93 Applications Processor Reference Manual (document <u>IMX93RM</u>)
- i.MX 93 Hardware Design Guide (document IMX93HDG)
- i.MX 93 Power Consumption Measurement (document AN13917)

# 6 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# 7 Revision history

Table 28 summarizes the revisions to this document.

| Table 28. Revision history |                |                        |  |  |  |
|----------------------------|----------------|------------------------|--|--|--|
| Revision number            | Release date   | Description            |  |  |  |
| 1                          | 07 August 2023 | Initial public release |  |  |  |

AN14022 Application note

#### i.MX 93 Migration Guide from i.MX 8M Nano

#### Legal information 8

## 8.1 Definitions

Draft - A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

## 8.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security - Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products.

## 8.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AN14022

copyrights, designs and trade secrets. All rights reserved.

# AN14022

#### i.MX 93 Migration Guide from i.MX 8M Nano

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents,

AN14022 Application note

## i.MX 93 Migration Guide from i.MX 8M Nano

## Contents

| 1     | Introduction                             | 2    |
|-------|------------------------------------------|------|
| 2     | Definitions, acronyms, and abbreviations | 2    |
| 3     | General comparison between i.MX 8M       |      |
|       | Nano and i.MX 93                         | 4    |
| 3.1   | Architecture differences                 | 5    |
| 3.2   | Hardware differences                     | 6    |
| 3.2.1 | Clocking                                 | 6    |
| 3.2.2 | Power management                         | 8    |
| 3.2.3 | Reset and boot                           | . 10 |
| 3.2.4 | Security                                 | . 10 |
| 3.2.5 | Other module differences                 | . 11 |
| 3.3   | Power difference                         | 13   |
| 3.3.1 | Power architecture                       | 13   |
| 3.3.2 | Power optimization                       | . 15 |
| 4     | How to migrate                           | 15   |
| 4.1   | Hardware                                 | . 15 |
| 4.1.1 | Board changes                            | . 15 |
| 4.1.2 | Board design considerations              | . 17 |
| 4.2   | Software                                 | 17   |
| 4.2.1 | U-Boot and kernel changes                | . 17 |
| 4.2.2 | SDK changes                              | 18   |
| 4.2.3 | RDC changes                              | . 18 |
| 4.2.4 | M core running when A core suspended     | . 19 |
| 4.2.5 | Enable DVFS or VFS                       | . 21 |
| 5     | Reference                                | . 22 |
| 6     | Note About the Source Code in the        |      |
|       | Document                                 | 22   |
| 7     | Revision history                         | . 22 |
| 8     | Legal information                        | . 23 |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 7 August 2023 Document identifier: AN14022