
AN14024
LPC86x FlexTimer Module Feature
Rev. 1.0 — 29 September 2023 Application note

Document information
Information Content

Keywords AN14024, FlexTimer, LPC86x, PWM, motor control, power energy

Abstract This document introduces the FlexTimer module feature, which is an enhanced version of CTimer
used for motor control and power energy applications.

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

1 Introduction

The FlexTimer module (FTM) is an enhanced timer module when compared with the Timer/PWM module
(TPM). The FTM is commonly used in the Kinetis series MCUs and for motor control, lighting, and power-
conversion application. This document introduces the features of the FTM module in LPC86x.

The key features of the FTM module are as follows:

• Each channel can be configured for Input capture, Output compare, or Edge-aligned or Center-aligned PWM
mode.

• Each pair of channels can be combined to generate PWM signals with equal outputs, pairs with
complementary outputs, or independent outputs.

• The dead time insertion is available for each complementary pair.
• Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of

position count on external event.
• Software control of PWM outputs, fault inputs for global fault control.

The masking, inverting, polarity and fault control, and hardware dead time insertion are the main features of the
FTM module dedicated for motor-control applications. They provide greater flexibility and significantly reduce
the CPU load. If the FTM module is not used for motor control, it retains standard timer functions such as the
Input capture or Output compare modes.

2 Acronyms

Table 1 lists the acronyms used in this document.

Acronym Meaning

FTM FlexTimer module

EPWM Edge-aligned PWM

CPWM Center-aligned PWM

DCAP Dual-edge capture

GTB Global time base

Table 1. Acronyms

3 FlexTimer overview

The LPC86x FTM is a six-to-four-channel timer that supports the following features:

• Input capture
• Output compare
• Generation of PWM signals to control electric motor
• Power management applications

The FTM time reference is a 16-bit counter that can be used as an unsigned or signed counter.

The LPC86x device has two FlexTimers as follows:

• FTM0: FTM0 provides six channels and includes support for motor control including fault control.
• FTM1: FTM1 provides four channels. This timer does not include fault control but includes a quadrature

decoder.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
2 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Both the FlexTimers can be clocked up to 60 MHz. When the FlexTimers are operated at a rate higher than the
CPU, they must be exactly two times the CPU/AHB frequency. Otherwise, they can use the same clock as the
CPU/AHB. Figure 1 shows the FTM block diagram.

PS

CLKS
FTMEN

QUADEN

QUADEN

CAPTEST

FTM counter

CPWMS

CNTIN
INITTRIGEN Initialization

trigger
Timer overflow
interrupt

MOD
TOIE

TOF

TOFDIR

QUADIR

Synchronizer

Quadrature
decoder

FTM input clock

No clock selected
(FTM counter disable)

External clock
Phase A

Phase B

Prescaler
(1, 2, 4, 8, 16, 32, 64 or 128)

Channel 0
interrupt

Channel 1
interrupt

Output modes logic
(Generation of channels 0 and 1 outputs signals in output

compare, EPWM, CPWM, combine, and modified combine
PWM modes according to initialization, Complementary mode,

inverting, software output control, deadtime insertion,
output mask and polarity control)

CH0IE

Pair channels 0 - channels 0 and 1

CH0F

CH1F

CH1IE

C0VChannel
0 input

Dual edge capture
mode and Input
capture mode

DECAPEN, MCOMBINE0, COMBINE0,
CPWMS, MS0B:MS0A, ELS0B:ELS0A,

MS1B:MS1A, ELS1B:ELS1A

Input capture
mode

Channel
1 input

C1V

Channel 0
match trigger

Channel 0
output signal

Channel 1
output signal

Channel 1
match trigger

CH0TRIG

CH1TRIG

Channel 6
interrupt

Channel 7
interrupt

Output modes logic
(Generation of channels 6 and 7 outputs signals in output

compare, EPWM, CPWM, combine, and modified combine
PWM modes according to initialization, Complementary mode,

inverting, software output control, deadtime insertion,
output mask and polarity control)

CH6IE

Pair channels 3 - channels 6 and 7

CH6F

CH7F

CH7IE

C6VChannel
6 input

Dual edge capture
mode and Input
capture mode

DECAPEN, MCOMBINE3, COMBINE3,
CPWMS, MS6B:MS6A, ELS6B:ELS6A,

MS7B:MS7A, ELS7B:ELS7A

Input capture
mode

Channel
7 input

C7V

Channel 6
match trigger

Channel 6
output signal

Channel 7
output signal

Channel 7
match trigger

CH6TRIG

CH7TRIG

Figure 1. FTM block diagram

Figure 2 shows the FTM module channel modes setting and the capture edge level.

DECAPEN COMBINE CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration
Capture on rising edge onlyInput capture1

10
11
1

10
11
10

X1

10

X1

10

X1

X0
X1

XX

XX

1X

1

00

1

0

0

1

0

001

Output
compare

Edge-aligned
PWM

PWM
Center-aligned

Combine

Dual -edge
capture
mode

Capture on falling edge only
Capture on rising or falling edge

Toggle output on match

One-shot capture mode

Continuous capture mode

Clear output on match
Set output on match

High-true pulses
(clear output on match)

High-true pulses
(set on channel (n) match, and clear

on channel (n+1) match)

Low-true pulses
(clear on channel (n) match, and set

on channel (n+1) match)

Low-true pulses
(set output on match)

High-true pulses
(clear output on match-up)

Low-true pulses
(set output on match-up)

PWM

Figure 2. FTM channel mode setting

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
3 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

4 FlexTimer features

The FTM features are discussed in detail in further sections.

4.1 Edge-aligned PWM mode
For Edge-aligned PWM (EPWM) mode, the FTM counter counts from the FTM_CNTIN value to the FTM_MOD
value. All FTM channel signals align at the edge when the FTM counter changes from the MOD value to the
CNTIN value.

The Edge-aligned mode is selected when:

• QUADEN = 0
• DECAPEN = 0
• COMBINE = 0
• CPWMS = 0
• MSnB = 1

The edge-aligned PWM period can be determined from Equation 1:

(1)

The pulse width or the duty cycle can be determined from Equation 2 or Equation 3, depending on the
ELSnB:ELSnA bits setting.

(2)

(3)

The Edge-aligned mode PWM code example is as follows:

void FTM_EdgeAlignedMode_Output(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo in initialization stage (10kHz PWM frequency @60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
/* Set CNTIN in initialization stage */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* Enable high-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;
/* Set channel value in initialization stage */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
/* Reset FTM counter */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC = FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK;
}

Figure 3 shows that the CH1 and CH2 channel signals on the oscilloscope are the FTM0_CH0 and FTM0_CH1
signals. The FTM0_CH0 and FTM0_CH1 are aligned in the raising edge.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
4 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 3. Edge-aligned PWM signal

4.2 Center-aligned PWM mode
In Center-aligned PWM (CPWM) mode, the FTM counter counts up from FTM_CNTIN to FTM_MOD and then
counts down from FTM_MOD to FTM_CTNIN. All FTM channel signals align at the point when the FTM counter
reaches up to FTM_MOD value.

The Center-aligned mode is selected when:

• QUADEN = 0
• DECAPEN = 0
• COMBINE= 0
• CPWMS = 1

The center-aligned PWM period can be determined from Equation 4:

(4)

The pulse width or the duty cycle can be determined from Equation 5 or Equation 6, depending on the
ELSnB:ELSnA bits setting.

(5)

(6)

The Center-aligned mode PWM code example is as follows:

void FTM_CenterAlignedMode_Output(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1);
/* Set CNTIN in initialization stage */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1500); // 50% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(750); // 25% duty cycle

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
5 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK;
}

Figure 4 shows that the CH1 and CH2 channel signals on the oscilloscope are the FTM0_CH0 and FTM0_CH1
signals. The FTM0_CH0 and FTM0_CH1 are aligned in the center.

Figure 4. Center-aligned PWM signal

4.3 Complementary mode and dead time insertion
The FTM module supports the Complementary mode. If the COMP bit enables the Complementary mode in the
FTM_COMBINE register, the even FTM channel generates the output signal. The complementary logic generates
the odd output signal as a complement to the even FTM channel. The complementary signal generation can be
set individually for each pair of the FTM outputs.

To avoid short-circuit, the dead time must be inserted into the complementary signals. The dead time insertion
is provided by the dead time logic, following the complementary logic. The DTEN bit enables this feature in
the FTM_COMBINE register. The dead time logic delays every rising edge by a time set in the FTM_DEADTIME
register.

The dead time consists of two parts as follows:

• The first two most significant bits DTPS[1:0] define the pre-scaler of the system clock.
• The bits DTVAL[5:0] define the dead time value using the pre-scaled clock.

The Complementary mode and dead time insertion are applied to both the Edge-aligned PWM and Center-
aligned PWM modes, described in Section 4.1 and Section 4.2.

The Complementary mode and dead time insertion PWM code example is as follows:

void FTM_CompMode_Output(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable combine, complementary mode and dead-time for channel pair CH0/CH1*/
FTM0->COMBINE = FTM_COMBINE_COMP0_MASK | FTM_COMBINE_DTEN0_MASK
| FTM_COMBINE_COMP1_MASK | FTM_COMBINE_DTEN1_MASK;
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Select up-down counter for Center-Align PWM */
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
6 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

/* Set CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(1500); // 25% duty cycle
FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(1500); // 25% duty cycle
FTM0->DEADTIME = FTM_DEADTIME_DTVAL(10) | FTM_DEADTIME_DTPS(1);
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK
| FTM_SC_PWMEN2_MASK | FTM_SC_PWMEN3_MASK;
}

Figure 5 shows the following parameters:

• CH1 and CH2 in the oscilloscope are FTM0_CH0 and FTM0_CH1.
• CH3 and CH4 are FTM0_CH2 and FTM0_CH3.
• The FTM0_CH0 and FTM0_CH1 and FTM0_CH2 and FTM_CH3 are all in Complementary mode.
• The FTM0_CH0 and FTM0_CH1 PWM duty cycles are 50 %.
• The FTM0_CH2 and FTM0_CH3 PWM duty cycles are 25 %.

Figure 5. FTM Complementary mode PWM output

Figure 6 shows the dead time value between FTM0_CH0 and FTM0_CH1. The oscilloscope can get the dead
time value of 0.16 μs. This value is equal to the value, which has been set in the code example.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
7 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 6. FTM dead time insertion

4.4 Combine mode
The Combine mode provides a higher flexibility because the PWM channel (n) output is generated by combining
the even channel (n) and the adjacent odd channel (n+1). This implies that the even and odd channels must
work in the Complementary mode.

The Combine mode enables generating the EPWM and CPWM using only the up counter, the asymmetrical
PWM, or the phase-shifted PWM. The phase-shifted PWM generation is commonly used in phase-shifted full-
bridge converters and motor-control applications. Here, the 3-phase stator currents are reconstructed from the
current sensed by a single shunt resistor placed in the DC-link and the actual combination of the power supply
inverter switches.

The Combine mode is selected when:

• QUADEN = 0
• DECAPEN = 0
• MCOMBINE = 0
• COMBINE = 1
• CPWMS = 0

To generate a phase-shifted PWM with high-true pulses, set the control bits as ELSnB:ELSnA = 1:0. This code
example shows the configuration of the FTM0 module used for the phase-shifted PWM generation.

Complementary mode and phase shift PWM code example is as follows:

void FTM_CombineMode_Output(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Enable combine, complementary mode and dead-time for channel pair CH0/CH1*/
FTM0->COMBINE = FTM_COMBINE_COMBINE0_MASK | FTM_COMBINE_DTEN0_MASK
| FTM_COMBINE_COMBINE1_MASK | FTM_COMBINE_DTEN1_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1000); // 50% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(4000); // 50% duty cycle

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
8 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2500); // 50% duty cycle
FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(5500); // 50% duty cycle
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK
| FTM_SC_PWMEN2_MASK | FTM_SC_PWMEN3_MASK;;
}

Figure 7 shows the following parameters:

• The scope channels CH1, CH2, CH3, and CH4 represent the FTM0 module channels FTM0_CH0, FTM0_CH1,
FTM0_CH2, and FTM0_CH3, respectively.

• The first channel pair (FTM0_CH0/FTM0_CH1) and the second channel pair (FTM0_CH2/FTM0_CH3) both work
in the Complementary mode with a 50 % duty cycle.

• The second channel pair (FTM0_CH2/FTM0_CH3) is phase-shifted by 90 degrees to the first channel pair
(FTM0_CH0/FTM0_CH1).

Figure 7. FTM phase-shift PWM output

4.5 Single-edge capture mode
The FTM capture mode has the following uses:

• The FTM capture mode determines the pulse width or the period of the tested signal.
• The FTM capture mode detects the rising/falling edge of an external signal and generates an interrupt to notify

that an external event has appeared.
• The FTM capture mode is used in BLDC motor-control applications. The hall sensors in these applications

are used to detect the position of the rotor and compute the rotor speed, so that the speed loop can be
established. The hall sensors are connected to the channels of the independent FTM (FTM_CHx). The FTM
can then detect both the falling and rising edges of the hall sensor signals and generates a capture interrupt.
In the capture-interrupt routine, the duty cycles of the PWM signals are then modified according to the hall
sensor logic.

The Single-edge capture mode is selected when:

• DECAPEN = 0
• MCOMBINE = 0
• COMBINE = 0
• CPWMS = 0
• MSnB:MSnA = 0:0
AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
9 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

• ELSnB:ELSnA ≠ 0:0

To measure either the pulse width or the period of the tested signal, perform the following steps:

1. Select the input channel of the FTM module FTM_CHx and the edge-sensitive input by the control bits
ELSnB:ELSnA.

2. When the selected edge occurs on the channel input, the current value of the FTM counter is captured in
the CnV register. It also generates a channel interrupt (if CH(n)IE = 1).

3. In the interrupt routine, save the value of the CnV register into a variable.
4. Create a difference between the current value and the saved value from the previous interrupt routine:

• If the selected capture mode is sensitive either on the rising edge (ELSnB:ELSnA= 0:1) or the falling edge
(ELSnB:ELSnA= 1:0), the difference is equal to the signal period.

• If the selected capture mode is sensitive on both edges (ELSnB:ELSnA = 1:1), the difference is equal to
the pulse width of the tested signal.

The Single-edge capture mode code example is as follows:

void FTM0_IRQHandler(void)
{
if ((FTM_GetStatusFlags(FTM0) & kFTM_Chnl0Flag) == kFTM_Chnl0Flag)
{
/* Clear interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_Chnl0Flag);
}
ftmIsrFlag = true;
g_index++;
__DSB();
}

void FTM_SingleEdgeInputCaptureMode(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Input capture mode sensitive on rising edge to measure period of tested signal */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSA_MASK | FTM_CnSC_CHIE_MASK;
/* Reset counter */
FTM0->CNT = 0;
/* Select clock */
FTM0->SC = FTM_SC_CLKS(1);
}

Figure 8 shows the PWM signal attached to the FTM0 used for single edge capture. The PWM signal frequency
is 10 kHz.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
10 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 8. FTM single capture PWM input signal

Figure 9 shows the calculated input PWM signal period MOD value. This value also determines its PWM period.

Figure 9. FTM single capture PWM period value

4.6 Dual-edge capture mode
The Dual-edge capture mode uses two FTM channels that enable measuring the positive-polarity or negative-
polarity pulse width of the signals. In this mode, input the signals through the even FTM channels and ignore the
odd channels.

The Dual-edge capture mode is selected when DECAPEN = 1. The Dual-edge capture mode of the FTM can
work either in the One-shot capture mode or the Continuous capture mode. The One-shot capture mode is
selected when MS(n)A = 0. If the DECAP bit is enabled, the edges are captured. For every new measurement,
clear the CH(n)F and CH(n+1)F and set the DECAP bit again. The Continuous capture mode is selected

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
11 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

when MS(n)A = 1. In this mode, if the DECAP bit is set, the edges are captured continuously. For each new
measurement, it is necessary to clear the CH(n)F and CH(n+1)F bits.

To measure the positive-polarity pulse width of the tested signal (either in the One-shot mode or in the
Continuous mode), configure the channels as follows:

• To capture the rising edge (ELS(n)B:ELS(n)A = 1:0), configure channel (n).
• To capture the falling edge (ELS(n+1)B:ELS(n+1)A = 0:1), configure channel (n+1).

When a second falling edge of the tested signal is detected, set CH(n+1)F, clear the DECAP bit, and if CH(n
+1)IE=1, generate an interrupt. In the interrupt routine, subtract the values saved in the C(n+1)V and C(n)V
registers. The subtraction determines the positive-polarity pulse width of the tested signal and clears the CH(n
+1)F bit.

If the application requires to measure the negative-polarity pulse width of the tested signal, configure the
channels as follows:

• To capture the falling edge (ELS(n)B:ELS(n)A = 0:1), configure channel (n).
• To capture the rising edge (ELS(n+1)B:ELS(n+1)A = 1:0), configure channel (n+1).

To determine the period of the tested signal, channel (n) and channel (n+1) must be sensitive on the same
edges.

Dual-edge capture mode code example is as follows:

void FTM0_IRQHandler(void)
{
if ((FTM_GetStatusFlags(FTM0) & kFTM_TimeOverflowFlag) == kFTM_TimeOverflowFlag)
{
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_TimeOverflowFlag);
g_timerOverflowInterruptCount++;
}
else if (((FTM_GetStatusFlags(FTM0) & kFTM_Chnl0Flag) == kFTM_Chnl0Flag) &&
 (ftmFirstChannelInterruptFlag == false))
{
/* Disable first channel interrupt.*/
FTM_DisableInterrupts(FTM0, kFTM_Chnl0InterruptEnable);
g_firstChannelOverflowCount = g_timerOverflowInterruptCount;
ftmFirstChannelInterruptFlag = true;
}
else if ((FTM_GetStatusFlags(FTM0) & kFTM_Chnl1Flag) == kFTM_Chnl1Flag)
{
/* Clear second channel interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_Chnl1Flag);
/* Disable second channel interrupt.*/
FTM_DisableInterrupts(FTM0, kFTM_Chnl1InterruptEnable);
g_secondChannelOverflowCount = g_timerOverflowInterruptCount;
ftmSecondChannelInterruptFlag = true;
}
else
{}
}

void FTM_DualEdgeInputCaptureMode(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Enable dual-edge capture mode */
FTM0->COMBINE = FTM_COMBINE_DECAPEN0_MASK | FTM_COMBINE_DECAP0_MASK
| FTM_COMBINE_DECAPEN1_MASK | FTM_COMBINE_DECAP1_MASK;
/* Select positive polarity pulse width measurement and enable continuous mode for FTM0_CH0/CH2 */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_MSA_MASK | FTM_CnSC_ELSA_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK | FTM_CnSC_CHIE_MASK;
FTM0->CONTROLS[2].CnSC = FTM_CnSC_MSA_MASK | FTM_CnSC_ELSA_MASK;
FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK | FTM_CnSC_CHIE_MASK;

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
12 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

/* Reset counter */
FTM0->CNT = 0;
/* Select clock */
FTM0->SC = FTM_SC_CLKS(1);
}

void FTM_PwmPulseWithCaculate(void)
{
capture1Val = FTM_GetInputCaptureValue(DEMO_FTM_BASEADDR,
(ftm_chnl_t)(BOARD_FTM_INPUT_CAPTURE_CHANNEL_PAIR * 2));
capture2Val = FTM_GetInputCaptureValue(DEMO_FTM_BASEADDR, (ftm_chnl_t)
(BOARD_FTM_INPUT_CAPTURE_CHANNEL_PAIR * 2 + 1));
/* FTM clock source is not prescaled and is divided by 1000000 as the output is printed in
 microseconds*/
pulseWidth =
(float)(((g_secondChannelOverflowCount - g_firstChannelOverflowCount) * 65536 + capture2Val -
 capture1Val) +
1) / ((float)FTM_SOURCE_CLOCK / 1000000);
}

Figure 10 shows the PWM signal attached to the FTM0 used for dual edge capture. The PWM signal frequency
is 10 kHz.

Figure 10. FTM dual-edge capture PWM input signal

Figure 11 shows the captured input PWM signal C(n)V and C(n+1)V value. This value also determines its PWM
period.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
13 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 11. FTM dual-edge capture PWM value

4.7 Quadrature decoder mode
For the motor control use case, the encoder sensor is used to detect the motor position. The Quadrature
decoder mode of the FTM module can be used to decode the signals and get the position information of the
motor. There are three output signals. The phase A and phase B signals consist of a series of pulses, which are
phase-shifted by 90 degrees. The third signal provides the absolute position information. In the motion control,
it is used to check the pulse-counting consistency. After each revolution, the value of the counted pulses is
captured and compared to the defined value. If a difference is detected, the control algorithm must perform the
position-offset compensation.

The LPC86x FTM module only provides the Quadrature encoder mode in the FTM1 module. The Quadrature
decoder mode is enabled if QUADEN = 1. The Quadrature decoder mode uses the input signals phase A and
phase B to control the FTM counter increment and decrement.

Two sub-modes can be used in the Quadrature encoder mode, which are as follows:

• Count and direction encoding mode
• Phase A and phase B encoding mode

The Count and direction encoding mode is enabled when QUADMODE = 1. In this mode, the phase A and
phase B inputs imply the counting rate and the counting direction.

To process the phase A and phase B signals from the encoder sensor, enable the Phase A and phase B
encoding mode (QUADMODE = 0).

• In this mode, the phase A and phase B signals indicate the counting direction and the counting rate.
• If the phase B signal lags the phase A signal, the FTM counter increments after every detected rising/falling

edge of both signals.
• If the phase B signal leads the phase A signal, the FTM counter decrements after every detected rising/falling

edge of both signals. The QUADIR bit in the FTM_QDCTRL register indicates the counting direction.

The Quadrature decoder mode code example is as follows:

void FTM_QuadratureDecoderMode(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm1);

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
14 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

EnableIRQ(FTM1_IRQn);
/* Enable registers updating from write buffers */
FTM1->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Encoder simulation with totally 10 rising/falling edges */
FTM1->MOD = FTM_MOD_MOD(10);
FTM1->CNTIN = FTM_CNTIN_INIT(0);
FTM1->QDCTRL= FTM_QDCTRL_QUADEN_MASK;
FTM1->CNT = 0;
/* Select clock */
FTM1->SC = FTM_SC_CLKS(1) | FTM_SC_TOIE_MASK;
}

Figure 12 shows the following parameters:

• CH2 and CH4 in the scope represent the encoded phase A and phase B PWM signals attached to the
FTM1_QD_PHA and FTM1_QD_PHB.

• CH1 in the scope represents the FTM1 counter overflow interrupt generated every time the FTM counter
reaches the value of the MOD register.

Figure 12. FTM quadrature decoder PWM capture

4.8 Updating the FTM registers
This section describes the flow on how to update the FTM register using the reload points, software, and
hardware.

4.8.1 Update FTM registers by reload points (half cycle reload points)

The following sections describe how to update the FTM registers using the reload points.

4.8.1.1 Edge-aligned PWM register update

To change the PWM duty cycle or time period while the FTM counter is running, the half and full cycle reload
strategies can be applied. This feature enables updating the FTM registers with the content of their buffers,
depending on the chosen reload opportunity, by setting the LDOK bit in the FTM_PWMLOAD register. When
a reload opportunity occurs, the RF bit in the FTM_SC register is set and the reload-opportunity interrupt is
generated if RIE = 1. In the interrupt routine, the FTM registers can be changed and updated simultaneously.

If the Up-counting mode is selected to generate the edge-align PWM, the half and full cycle reload opportunities
can update the FTM registers according to the following steps:

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
15 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

1. To generate the edge-align PWM and enable the FTMEN bit in the FTM_MODE register and the RIE bit in the
FTM_SC register, initialize FTM0.

2. Enable the HCSEL bit in the FTM_PWMLOAD register.
3. For the half-cycle reload opportunity, adjust the value in the FTM_HCR register to MOD/2
4. For the full-cycle reload opportunity, HCSEL = 0.
5. In the interrupt routine, change the value of the FTM registers to update the values from their buffers and

clear the RF bit in the FTM_SC register.

Edge-aligned PWM register update code example is as follows:

void FTM0_IRQHandler(void)
{
if((FTM_GetStatusFlags(FTM0) & kFTM_ReloadFlag) == kFTM_ReloadFlag)
{
if(g_flag)
{
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1);
}
else
{
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
}
g_flag = ! g_flag;
GPIO_PinInit (GPIO, 1, 20, &gpioPinConfig_1);//set PIO1_20 to Low
FTM0->PWMLOAD = FTM_PWMLOAD_LDOK_MASK;
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_ReloadFlag);
}
}

void FTM_EdgeAlignedUpdatePwmMode(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo in initialization stage (10kHz PWM frequency @60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
/* Set CNTIN in initialization stage */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* Enable high-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;
/* Enable high-true pulses of PWM signals */
FTM0->CONTROLS[1].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;
/* Set channel value in initialization stage */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1500); // 50% duty cycle
/* Set channel value in initialization stage */
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(1500); // 50% duty cycle
/*enable HalfCycle reload*/
FTM0->PWMLOAD = FTM_PWMLOAD_HCSEL_MASK;
/*Set the halfcycle value*/
FTM0->HCR = FTM_HCR_HCVAL(3000);
/* Reset FTM counter */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC = FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_RIE_MASK;
}

Figure 13 shows the Edge-aligned PWM mode update MOD register with the following parameters:

• The CH1 in the scope represents the FTM0_CH0.
• The FTM0_CH0 updates the MOD value each half PWM cycle.
• The CH2 in scope represents the FTM0 reload interrupt when the FTM counter C(n)V reaches MOD/2.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
16 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 13. FTM edge-aligned PWM MOD register update

4.8.1.2 Center-aligned PWM register update

A different scenario must be considered when the Up/Down-counting mode is selected to generate the center-
aligned PWM as described in the following steps:

1. To generate the center-aligned PWM, initialize FTM0.
2. Enable the FTMEN bit in the FTM_MODE register and the RIE bit in the FTM_SC register.
3. Enable the CNTMIN and CNTMAX bits in the FTM_SYNC register for the half-cycle reload opportunity.
4. Enable the CNTMIN = CNTMAX = 0 for the full-cycle reload opportunity.
5. In the interrupt routine, change the value of the FTM registers to update the values from their buffers and

clear the RF bit in the FTM_SC register.

Center-aligned PWM register update code example is as follows:

void FTM0_IRQHandler(void)
{
if((FTM_GetStatusFlags(FTM0) & kFTM_ReloadFlag) == kFTM_ReloadFlag)
{
FTM0->CONTROLS[0].CnV = FTM_CnV_VAL(4500);
FTM0->CONTROLS[1].CnV = FTM_CnV_VAL(4500);
GPIO_PinInit (GPIO, 1, 20, &gpioPinConfig_1);//set P1O1_20 to Low
FTM0->PWMLOAD = FTM_PWMLOAD_LDOK_MASK;
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_ReloadFlag);
}
}

void FTM_CenterAlignedUpdatePwmMode(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
/* Set CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK;

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
17 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(1500); // 25% duty cycle
FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(1500); // 25% duty cycle
FTM0->SYNC = FTM_SYNC_CNTMAX_MASK | FTM_SYNC_CNTMIN_MASK;
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK
| FTM_SC_PWMEN2_MASK | FTM_SC_PWMEN3_MASK | FTM_SC_RIE_MASK;
}

Figure 14 shows the Center-aligned PWM mode update for the C(n)V and C(n+1)V register with the following
parameters:

• The CH2 in the scope represents the FTM0_CH0.
• The FTM0_CH0 updates the C(n)V value after the half PWM cycle.
• The CH4 in the scope represents the FTM0_CH3, which does not update the C(n)V value used to compare

with the FTM0_CH0.
• The CH1 in scope represents the FTM0 reload interrupt when the FTM counter C(n)V reaches MOD/2.

Figure 14. FTM center-aligned PWM CnV register update

4.8.2 Update FTM registers by software

The following sections describe how to update the FTM registers using the software.

4.8.2.1 Update MOD register value

The MOD register synchronization updates the MOD register with its buffer value. This synchronization is
enabled if FTMEN = 1.

The MOD register synchronization is done either by the enhanced PWM synchronization (SYNCMODE =
1) or the legacy PWM synchronization (SYNCMODE = 0). However, it is expected that the MOD register is
synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the MOD register synchronization depends on SWWRBUF,
SWRSTCNT, HWWRBUF, and HWRSTCNT bits.

Figure 15 shows the MOD register update flowchart.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
18 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Begin

0 =

= 1

= 0

= 1

= 1

= 1

= 0

0 =

0 =

0 =

Legacy PWM
synchronization

SYNCMODE
bit ?

End

HWWRBUF
bit ?

MOD register is updated
by hardware trigger

Enhanced PWM synchronization

MOD register is updated
by software trigger

FTM counter is reset
by software trigger

FTM counter is reset
by hardware trigger

Hardware
trigger

Wait hardware trigger n

HWTRIGMODE
bit ?

= 10 = HWRSTCNT
bit ?

TRIGn
bit ?

= 0

= 1 End

SWWRBUF
bit ?

Software
trigger

= 1

SWSYNC
bit ?

= 1SWRSTCNT
bit ?

Clear TRIGn bit

Wait the next selected
loading point

Update MOD with
its buffer value

End

Wait the next selected
loading point

Clear SWSYNC bit

Update MOD with
its buffer value

End

Clear SWSYNC bit

Update MOD with
its buffer value

End

Update MOD with
its buffer value

End

Figure 15. FTM MOD register update flowchart

The software MOD register updated code example is as follows:

void FTM0_IRQHandler(void)
{
if((FTM_GetStatusFlags(FTM0) & kFTM_ReloadFlag) == kFTM_ReloadFlag)
{
if(FTM0->MOD != FTM_MOD_MOD(3000-1))
{
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1);
GPIO_PinInit (GPIO, 1, 20, &gpioPinConfig);//set P1O1_20 to Low
/* enable software sync */
FTM0->SYNC = FTM_SYNC_SWSYNC_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
}
else
{
GPIO_PinInit (GPIO, 1, 20, &gpioPinConfig);//set P1O1_20 to Low
FTM0->SYNC = FTM_SYNC_SWSYNC_MASK;
}
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_ReloadFlag);
}
}

void FTM_CenterAlignedSwTiggerMODSYNC(void)
{

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
19 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK| FTM_MODE_WPDIS_MASK;
/* Set Modulo (5kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
/* Set CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1500); // 50% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(1500); // 50% duty cycle
FTM0->CONF = FTM_CONF_LDFQ(3);
FTM0->SYNCONF = FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_SWWRBUF_MASK | FTM_SYNCONF_SWRSTCNT_MASK;
FTM0->SYNC = FTM_SYNC_CNTMAX_MASK | FTM_SYNC_CNTMIN_MASK;
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_RIE_MASK;
}

Figure 16 shows the result for the software MOD register update with the following parameters:

• The CH1 and CH2 in the scope represent the FTM0_CH0, FTM0_CH1.
• The CH3 represents the reload point interrupt after every three periods.
• After four periods, the reload point interrupt is generated and the MOD register can be updated in the IRQ.
• The frequency changes between 5 kHz and 10 kHz.

Figure 16. FTM software MOD register update

4.8.2.2 Update output mask register value

The OUTMASK register synchronization updates the OUTMASK register with its buffer value. The OUTMASK
register can be updated at each rising edge of the FTM input clock (SYNCHOM = 0), by one of the following
synchronizations:

• The enhanced PWM synchronization, where SYNCHOM = 1 and SYNCMODE = 1.
• The legacy PWM synchronization, where SYNCHOM = 1 and SYNCMODE = 0.

However, it is expected that the OUTMASK register is synchronized only by the enhanced PWM
synchronization.

Figure 17 shows the output mask register update flowchart.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
20 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Begin

0 =

0 =

0 =

SYNCHOM
bit ?

Legacy PWM
synchronization

= 0

= 1

= 1

= 0

SYNCMODE
bit ?

SWOM
bit ?

HWOM
bit ?

1 = = 0

OUTMASK is updated
by software trigger

Software
trigger

Hardware
trigger

= 1

SWSYNC
bit ?

= 0

HWTRIGMODE
bit ?

Update OUTMASK
with its buffer value

End

no =

Update OUTMASK register at
each rising edge of FTM input clock Update OUTMASK register by

PWM synchronization

= yes

Rising edge
of FTM input

clock?

Update OUTMASK
with its buffer value

End

= 1

OUTMASK is updated
by software trigger

= 1

TRIGn
bit ?

= 1

Wait hardware
trigger n

Update OUTMASK
with its buffer value

Clear TRIGn bit

End

End

Enhanced PWM synchronization

End

Figure 17. FTM output mask register update flowchart

The output mask register update code example is as follows:

void FTM0_IRQHandler(void)
{
if((FTM_GetStatusFlags(FTM0) & kFTM_ReloadFlag) == kFTM_ReloadFlag)
{
if(!(FTM0->OUTMASK & FTM_OUTMASK_CH0OM_MASK))
{
FTM0->OUTMASK = FTM_OUTMASK_CH0OM_MASK;
GPIO_PinInit (GPIO, 1, 20, &gpioPinConfig);//set P1O1_20 to High
FTM0->SYNC = FTM_SYNC_SWSYNC_MASK;
}
else
{
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->OUTMASK &= ~(FTM_OUTMASK_CH0OM_MASK);
}
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_ReloadFlag);
}
}

void FTM_CenterAlignedSwTiggerOMSYNC(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable registers updating from write buffers */

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
21 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1);
/* Set CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2250); // 75% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(2250); // 37.5% duty cycle
FTM0->SYNC = FTM_SYNC_SYNCHOM_MASK | FTM_SYNC_CNTMAX_MASK | FTM_SYNC_CNTMIN_MASK;
FTM0->CONF = FTM_CONF_LDFQ(3);
FTM0->SYNCONF = FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_SWOM_MASK;
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK |FTM_SC_RIE_MASK;
}

Figure 18 shows the output mask register update for PWM output with the following parameters:

• CH1 and CH2 in the scope represent the FTM0_CH1 and FTM0_CH0.
• CH3 represents the reload point interrupt every four periods.
• As the scope shows, the FTM0_CH0 output mask register is updated every four periods and FTM0_CH0 is

masked after every four periods.

Figure 18. FTM output mask register update

4.8.2.3 Update invert register value

The INVCTRL register synchronization updates the INVCTRL register with its buffer value. The INVCTRL
register can be updated at each rising edge of the FTM input clock (INVC = 0). The enhanced PWM
synchronization (INVC = 1 and SYNCMODE = 1) can also update the INVCTRL register, as shown in the
flowchart in Figure 19.

In the case of enhanced PWM synchronization, the INVCTRL register synchronization depends on SWINVC
and HWINVC bits.

Figure 19 shows the invert register update flowchart.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
22 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Begin

0 =

0 =

0 =

INVC
bit ?

= 0

= 1

1 =

= 0

SYNCMODE
bit ?

SWINVC
bit ?

HWINVC
bit ?

1 = = 0

INVCTRL is updated
by software trigger

Software
trigger

Hardware
trigger

= 1

SWSYNC
bit ?

= 0

HWTRIGMODE
bit ?

Update INVCTRL
with its buffer value

End

no =

Update INVCTRL register by
PWM synchronization

Enhanced PWM synchronization

Update INVCTRL register at each
rising edge of FTM input clock

= yes

Rising
edge of FTM input

clock?

Update INVCTRL
with its buffer value

End

End

= 1

INVCTRL is updated
by hardware trigger

= 1

TRIGn
bit ?

= 1

Wait hardware
trigger n

Update INVCTRL
with its buffer value

Clear TRIGn bit

End

End End

Figure 19. FTM invert register update flowchart

The invert register update code example is as follows:

void FTM0_IRQHandler(void)
{
if((FTM_GetStatusFlags(FTM0) & kFTM_ReloadFlag) == kFTM_ReloadFlag)
{
FTM0->INVCTRL = FTM_INVCTRL_INV0EN_MASK;
FTM0->SYNC = FTM_SYNC_SWSYNC_MASK;
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_ReloadFlag);
}
}

void FTM_CenterAlignedSwTiggerIVSYNC(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
EnableIRQ(FTM0_IRQn);
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(6000-1);
/* Set CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
23 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2250); // 37.5% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(2250); // 37.5% duty cycle
FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2250); // 37.5% duty cycle
FTM0->SYNC = FTM_SYNC_CNTMAX_MASK | FTM_SYNC_CNTMIN_MASK;
FTM0->INVCTRL &= ~FTM_INVCTRL_INV0EN_MASK;
FTM0->CONF = FTM_CONF_LDFQ(3);
FTM0->SYNCONF = FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_SWINVC_MASK | FTM_SYNCONF_INVC_MASK;
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK |
 FTM_SC_RIE_MASK;
}

Figure 20 shows the invert register update PWM output with the following parameters:

• CH1 and CH2 in the scope represent the FTM0_CH0 and FTM0_CH1.
• CH3 represents FTM0_CH2.
• As the scope shows, FTM0_CH3 is the PWM, which has not been inverted.
• The FTM0_CH0 and FTM0_CH1 represent the inverted PWM compared with FTM0_CH3.

Figure 20. FTM invert register update PWM output

4.8.3 Update FTM registers by hardware

The hardware synchronization is another way of updating the FTM registers when the counter is running. For
this case, the interrupt routine is not necessary because the FTM registers can be changed at any time during
the code execution. Their values are updated when a hardware trigger occurs. This way the CPU load can be
reduced significantly.

Three hardware trigger signal inputs of the FTM module can be selected depending on the enabled TRIGn bit in
the FTM_SYNC register. The FlexTimer trigger input multiplexing assigns the input trigger "n" to certain signals,
as shown in Figure 21.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
24 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

FlexTimer0 trigger
input multiplexing

Input trigger 0 (en. by TRIG0) Ftm0_init_trig Ftm0_init_trig

Ftm0_ext_trig

Gtb_in
Gtb_out

Gtb_out
Gtb_in

CH0TRIGInput trigger 1 (en. by TRIG1)

Input trigger 2 (en. by TRIG2)

Fault 0

Fault 1
Fault 2

Fault 3

FlexTimer1 trigger
input multiplexing

Input trigger 0 (en. by TRIG0)
Input trigger 1 (en. by TRIG1)

Input trigger 2 (en. by TRIG2)

FlexTimer0 tfault
input multiplexing

FTM1_QD_PHA

FTM1_QD_PHB

Ftm0_ch0_match_trig

From FTM
DMA input
trigger mux

ADC input
trigger mux

Seq_A
and

Seq_B

Ftm0_ch5_match_trig

CH5TRIG

CH0TRIG

Ftm1_init_trig Ftm1_init_trig

GPIO_INT interrupt 0

GPIO_INT interrupt 1

ADC_SEQA_IRQ

ADC_SEQB_IRQ

GPIO_INT bmatch

ARM core TXEV event

ACMP out

Ftm1_ext_trig

Ftm1_ch0_match_trig

CH0TRIG

CH0TRIG

Ftm0

Ftm1

Ftm1_ch3_match_trig

CH3TRIG

Ftm1_ch0_output

Ftm1_ch3_output

ipp_do_ftm1_ch(0)

ipp_do_ftm1_ch(3)

~CH0OM

~CH3OM

/M

Figure 21. FTM trigger input source

Figure 22 shows the selection ID of the FlexTimer0 trigger input source. For more information on the FTM
trigger input configuration, refer to the below code example.

FTM1_INIT_TRIG
Input sourceSelection

FTM1_EXT_TRIG
ADC0_THCMP_IRQ

ACMP0_OUT

GPIOINT_BMATCH
ARM_TXEV

MRT_IRQ (global MRT interrupt)

0

1
2

3

4
5

6

Figure 22. FTM trigger input source selection

The hardware PWM register updated code example is as follows:

void FTM0_IRQHandler(void)
{
if((FTM_GetStatusFlags(FTM0) & kFTM_ReloadFlag) == kFTM_ReloadFlag)
{
if(!(FTM0->OUTMASK & FTM_OUTMASK_CH0OM_MASK))
{
FTM0->OUTMASK = FTM_OUTMASK_CH0OM_MASK;
GPIO_PinInit (GPIO, 1, 20, &gpioPinConfig);//set P1O1_20 to High
FTM0->SYNC = FTM_SYNC_SWSYNC_MASK;
}
else
{
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->OUTMASK &= ~(FTM_OUTMASK_CH0OM_MASK);
}
/* Clear overflow interrupt flag.*/
FTM_ClearStatusFlags(FTM0, kFTM_ReloadFlag);
}
}

void FTM_CenterAlignedHwTiggerUpdatePwmMode(void)
{
EnableIRQ(FTM0_IRQn);
/* FTM0 configuration*/
FTM0->SC = FTM_SC_CPWMS_MASK;
/* Enable registers updating from write buffers */

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
25 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Set Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1);
/* Set CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2250); // 62.5% duty cycle
FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(2250); // 62.5% duty cycle
/*Connect FTM1_INIT_TRIG to FTM0 trigger0*/
INPUTMUX->FTM0_INMUX[0] = 0;
/*Configure the output mask synchronization and trigger input*/
FTM0->SYNC = FTM_SYNC_SYNCHOM_MASK | FTM_SYNC_CNTMAX_MASK | FTM_SYNC_CNTMIN_MASK
| FTM_SYNC_TRIG0_MASK;
/*enable hardware trigger pwm synchronization*/
FTM0->SYNCONF = FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_HWOM_MASK | FTM_SYNCONF_HWTRIGMODE_MASK;
/* FTM counter reset */
FTM0->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_RIE_MASK;
/* FTM1 configuration*/
/* Enable registers updating from write buffers */
FTM1->MODE = FTM_MODE_FTMEN_MASK;
/* Set Modulo in initialization stage (10kHz PWM frequency @60MHz system clock) */
FTM1->MOD = FTM_MOD_MOD(6000-1);
/* Set CNTIN in initialization stage */
FTM1->CNTIN = FTM_CNTIN_INIT(0);
/* Enable high-true pulses of PWM signals */
FTM1->CONTROLS[0].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;
/* Set channel value in initialization stage */
FTM1->CONTROLS[0].CnV=FTM_CnV_VAL(3000); // 50% duty cycle
/*Enable FTM1 INIT_TRIG*/
FTM1->EXTTRIG = FTM_EXTTRIG_INITTRIGEN_MASK;
/* Reset FTM counter */
FTM1->CNT = 0;
/* Clock selection and enabling PWM generation */
FTM1->SC = FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK;
}

Figure 23 shows the hardware trigger invert register update for PWM output with the following parameters:

• CH1 and CH2 in the scope represent the FTM1_CH0 and FTM0_CH1.
• CH3 represents FTM0_CH0.
• As the scope shows, FTM1_CH0 is the hardware trigger signal.
• FTM0_CH1 is the PWM, which has not been masked.
• The FTM0_CH0 represents the masked PWM by hardware trigger compared with FTM0_CH1.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
26 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 23. FTM hardware trigger output mask

4.9 Fault control and GTB feature
Fault control is an FTM feature used in motor control application.

4.9.1 Fault control

The fault control of the FTM module plays an important role in motor-control applications. It protects the power
devices and the whole electrical drive system in critical moments, when undesirable behaviors such as over-
temperature, over-voltage, or over-current occur. In such cases, the fault signal can be generated via a sensor
or a special circuit. The fault control is able to stop all PWM channels when a fault signal is detected on the
input of the FTM fault pins. An interrupt can be generated after receiving the fault signal and the undesirable
behavior can be mitigated.

All FTM interrupt sources (fault interrupt, FTM counter overflow and reload opportunity interrupt, channel-
compare event interrupt, and capture interrupt) share the interrupt vector. When a fault signal appears, the
outputs of the FTM channels are disabled and kept at a safe logic defined in the FTM_POL register.

For example, if POL0 = 1 and a fault is present, FTM_CH0 is disabled and forced to a high logic. On the contrary,
if POL0 = 0 and a fault is present, FTM_CH0 is disabled, but forced to a low logic.

FTM has multiple channels. However, FTM cannot disable the specific channels by the means of specific fault
signals. One fault signal is generated as a result of the OR operation of all entering fault signals. Whether the
fault signal can disable the FTM channel or not depends on the FAULTENx bit in the FTM_COMBINE register.
The resulting fault signal can disable all FTM channels or only the even channels (FTM_CH0/CH2/CH4/CH6).
The selection depends on the FAULTM bit field in the FTM_MODE register.

Fault control code example is as follows:

void FTM_FaultControlCombineMode_Output(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
/* Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* Enable combine, complementary mode and dead-time for channel pair CH0/CH1*/
FTM0->COMBINE = FTM_COMBINE_COMBINE0_MASK | FTM_COMBINE_COMP0_MASK
| FTM_COMBINE_DTEN0_MASK | FTM_COMBINE_FAULTEN0_MASK;
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK; // Select high-true pulses
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK; // Select high-true pulses
/* Set Modulo (20kHz PWM frequency @60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1); // Set modulo
FTM0->CONTROLS[0].CnV = FTM_CnV_VAL(1000); // Set channel Value

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
27 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

FTM0->CONTROLS[1].CnV = FTM_CnV_VAL(2500); // Set channel Value
FTM0->CNT = 0; // Counter reset
FTM0->FLTCTRL = FTM_FLTCTRL_FAULT0EN_MASK;
/* Enable fault control for all channels and select automatic fault clearing mode */
FTM0->MODE |= FTM_MODE_FAULTM(0x3);
/* Safe value is set as a low after fault input is detected */
FTM0->POL = 0x0;
/* A 1 at the fault input indicates the fault */
FTM0->FLTPOL &= ~FTM_FLTPOL_FLT0POL_MASK;
FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK; // Select clock and enable PWM
}

Figure 24 shows the fault control output with the following parameters:

• CH1 represents the fault input signal.
• CH2 and CH3 are FTM0_CH0 and FTM0_CH1.
• As the scope shows, when the fault signal is high logic, the FTM0_CH0 and FTM0_CH1 are masked.

Figure 24. FTM fault control output

4.9.2 Global time base

The chip supports multiple FTMs and the multiple FTM modules are independent. If the application requires
more PWM channels, multiple FTM modules can be used, but they must be synchronized. The synchronization
of two (or more) FTM modules means that their counters have the same values at any instant time.

LPC86x provides the global time base (GTB) mechanism to synchronize multiple FTMs. The GTB is a
synchronous signal generated by the leader FTM that launches the counter of all FTMs used.

The following two conditions must be met when using the GTB function:

• Each FTM must have the same clock source
• Each FTM must start at the same time

To enable the GTB feature for each participating FTM module, perform the following steps:

1. Stop the FTM counter (write 00b to SC[CLKS]).
2. Program the FTM to the intended configuration. The FTM counter mode must be consistent across all

participating modules.
3. Write 1 to CONF[GTBEEN] and write 0 to CONF[GTBEOUT] at the same time.
4. Select the intended FTM counter clock source in SC[CLKS]. The clock source must be consistent across all

participating modules.
5. Reset the FTM counter (write any value to the CNT register).

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
28 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

The GTB code example is as follows:

void FTM_CenterAlignedPwmOutputGlobalBaseMode(void)
{
(void)CLOCK_EnableClock(kCLOCK_Ftm0);
(void)CLOCK_EnableClock(kCLOCK_Ftm1);
/* FTM0 Enable registers updating from write buffers */
FTM0->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* FTM1 Enable registers updating from write buffers */
FTM1->MODE = FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
/* FTM0 configuration*/
FTM0->SC = FTM_SC_CPWMS_MASK;
/* FTM1 configuration*/
FTM1->SC = FTM_SC_CPWMS_MASK;
/* Set FTM0 Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM0->MOD = FTM_MOD_MOD(3000-1);
/* Set FTM1 Modulo (10kHz PWM frequency at 60MHz system clock) */
FTM1->MOD = FTM_MOD_MOD(3000-1);
/* Set FTM0 CNTIN */
FTM0->CNTIN = FTM_CNTIN_INIT(0);
/* Set FTM1 CNTIN */
FTM1->CNTIN = FTM_CNTIN_INIT(0);
/* High-true pulses of PWM signals */
FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;
FTM1->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;
/* Set Channel Value */
FTM0->CONTROLS[0].CnV = FTM_CnV_VAL(1500); // 50% duty cycle
FTM0->CONTROLS[1].CnV = FTM_CnV_VAL(1500); // 50% duty cycle
FTM1->CONTROLS[0].CnV = FTM_CnV_VAL(1500); // 50% duty cycle
/* FTM counter reset */
FTM0->CNT = 0;
/* FTM counter reset */
FTM1->CNT = 0;
/* Enable global time base to control FTM0 and FTM1 */
FTM0->CONF = FTM_CONF_GTBEEN_MASK;
FTM1->CONF = FTM_CONF_GTBEEN_MASK;
/* FTM0 Clock selection*/
FTM0->SC |= FTM_SC_CLKS(1);
/* FTM1 Clock selection*/
FTM1->SC |= FTM_SC_CLKS(1);
/* Synchronization signal for FTM0 and FTM1 */
FTM0->CONF |= FTM_CONF_GTBEOUT_MASK;
/* FTM0 Clock selection and enabling PWM generation */
FTM0->SC |= FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK;
/* FTM1 Clock selection and enabling PWM generation */
FTM1->SC |= FTM_SC_PWMEN0_MASK;
}

Figure 25 shows the FTM output without global time base with the following parameters:

• CH1 and CH2 in scope represent the FTM0_CH0 and FTM0_CH1.
• CH3 represents FTM1_CH0. When two FTM modules do not enable GTB function, the signals are not

synchronized.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
29 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Figure 25. FTM without global time base

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE

6 Revision history

Table 2 summarizes revisions to this document.

Revision history Release date Description

1 29 September 2023 Initial public release

Table 2. Revision history

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
30 / 32

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

7 Legal information

7.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

7.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Kinetis — is a trademark of NXP B.V.

AN14024 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 September 2023
31 / 32

mailto:PSIRT@nxp.com

NXP Semiconductors AN14024
LPC86x FlexTimer Module Feature

Contents
1 Introduction ... 2
2 Acronyms ...2
3 FlexTimer overview ...2
4 FlexTimer features .. 4
4.1 Edge-aligned PWM mode4
4.2 Center-aligned PWM mode 5
4.3 Complementary mode and dead time

insertion ... 6
4.4 Combine mode .. 8
4.5 Single-edge capture mode 9
4.6 Dual-edge capture mode 11
4.7 Quadrature decoder mode 14
4.8 Updating the FTM registers15
4.8.1 Update FTM registers by reload points (half

cycle reload points) ... 15
4.8.1.1 Edge-aligned PWM register update15
4.8.1.2 Center-aligned PWM register update17
4.8.2 Update FTM registers by software18
4.8.2.1 Update MOD register value18
4.8.2.2 Update output mask register value20
4.8.2.3 Update invert register value22
4.8.3 Update FTM registers by hardware 24
4.9 Fault control and GTB feature 27
4.9.1 Fault control ...27
4.9.2 Global time base ... 28
5 Note about the source code in the

document ... 30
6 Revision history .. 30
7 Legal information ..31

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 29 September 2023
Document identifier: AN14024

	1 Introduction
	2 Acronyms
	3 FlexTimer overview
	4 FlexTimer features
	4.1 Edge-aligned PWM mode
	4.2 Center-aligned PWM mode
	4.3 Complementary mode and dead time insertion
	4.4 Combine mode
	4.5 Single-edge capture mode
	4.6 Dual-edge capture mode
	4.7 Quadrature decoder mode
	4.8 Updating the FTM registers
	4.8.1 Update FTM registers by reload points (half cycle reload points)
	4.8.1.1 Edge-aligned PWM register update
	4.8.1.2 Center-aligned PWM register update

	4.8.2 Update FTM registers by software
	4.8.2.1 Update MOD register value
	4.8.2.2 Update output mask register value
	4.8.2.3 Update invert register value

	4.8.3 Update FTM registers by hardware

	4.9 Fault control and GTB feature
	4.9.1 Fault control
	4.9.2 Global time base

	5 Note about the source code in the document
	6 Revision history
	7 Legal information
	Contents

