
AN14072
Accessing the HSE Using PKCS#11
Rev. 1.0 — 8 January 2024 Application note

CONFIDENTIAL

Document Information
Information Content

Keywords PKCS#11, HSE, S32G

Abstract This application notes introduces accessing the HSE via the PKCS11 standard API. It shows
examples of using OpenSSL and OpenSSL PKCS11 engine to access the HSE based on NXP
Linux BSP software.

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

1 Acronyms

Acronym Description

API Application Programming Interface

EC Elliptic Curve

ECC Elliptic Curve Cryptography

HSE Hardware Security Engine

HSM Hardware Security Module

MU Messaging Unit, the host interface of HSE

NVM Non-Volatile Memory

PKCS Public-Key Cryptography Standards

UIO Userspace I/O

URI Uniform Resource Identifier

Table 1. Acronyms

2 Introduction

This application note describes access schemes to the HSE using the PKCS#11 standard API. It shows
examples of using OpenSSL and the OpenSSL PKCS11 engine to access the HSE under incorporation of the
NXP Linux BSP software.

The Hardware Security Engine (HSE) is the security subsystem that is embedded in NXP S32 Platform
Products. It provides cryptographic services to host CPUs and network accelerators among other functionalities.
System (and software) designers can use HSE services, for example, secure key management, cryptography
acceleration, and secure booting of the system. The host side communicates with the HSE through dedicated
HSE-Host interfaces, called “Messaging Units”.

The PKCS#11 standard provides a standard Application Programming Interface (API) for software to
access security devices like smart cards and Hardware Security Modules. Typically, these security devices
are designed to provide some secure services such as secure key storage and cryptography algorithms
acceleration. The standard API is called “Cryptoki”. Cryptoki specifies data types and functions available
for applications. It supports functions for key object management and cryptographic operations which uses
keys, such as data encryption, decryption, signature generation, and verification operations. See [1] and [2]
of Section 7 for a detailed specification of PKCS#11 Cryptoki. More important is that Cryptoki isolates an
application from the detailed implementation of security devices. Aim and target is that a Cryptoki application
doesn’t need to be changed to interface with a different security device.

2.1 Cryptoki model
Figure 1 shows the simplified Cryptoki model. As defined by Cryptoki, a security device is represented as a
so called Token. Cryptoki applications access a token via Slots. A slot corresponds to a device interface. For
example, when accessing the HSE using Cryptoki, the token represents the HSE and the slot represents one
MU interface of the HSE. A system can have multiple slots, and the application can connect to tokens using any
one or all of these slots. Read [3] of Section 7 for further description of the Cryptoki model.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 2 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Figure 1. Cryptoki model

The Cryptoki’s logical view of a token is a device that stores objects and can perform cryptographic functions.
Cryptoki defines three classes of objects: data, certificates, and keys. A key object contains a cryptographic key
and its attributes. The key may be a public key, a private key, or a secret key. Usually, a key object is required
to perform a cryptographic function. Cryptoki provides object management APIs to create, destroy, or find an
object within a token. The object is referenced in an application by using the object handle.

Note: Data objects and certificate objects are not supported by the current implementation of Cryptoki for the
HSE and are out of scope of this Application Note.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 3 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Figure 2. Logical view of a token

2.2 PKCS11-HSE
In the release of S32 Linux BSP software, Cryptoki is implemented to allow easier access to the HSE
accelerator from Linux applications. The software is called PKCS11-HSE. The source code structure of
PKCS11-HSE is as below:

├─examples
├─libhse
└─libpkcs

The PKCS11-HSE comprises two libraries and example applications. The LIBHSE is the HSE driver running in
userspace of Linux OS. It operates the HSE UIO device that is set up by the Linux HSE UIO driver and maps
the HSE interfaces to the userspace. The LIBPKCS is the implementation of Cryptoki on top of LIBHSE. See
the user manual of Linux BSP for more information on how to enable PKCS11-HSE.

3 Access HSE using PKCS11-HSE

In this application note, three ways of using PKCS11-HSE for accessing the HSE are introduced, as shown in
Figure 3:

1. The application accesses the HSE using the LIBHSE. The application initializes the HSE service descriptor
and requests an HSE service via the LIBHSE. All services that the HSE supports are available for
application.

2. The application accesses the HSE through Cryptoki.
3. The application accesses the HSE through OpenSSL and OpenSSL PKCS11 engine.

For variant (1), you can find examples in the 'example' folder of PKCS11-HSE. The example names start with
‘hse-’. Variants (2) and (3) are described further in the following chapters.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 4 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Figure 3. Use cases of PKCS11-HSE

4 Cryptoki application

An application becomes a Cryptoki application by calling the Cryptoki function C_Initialize from one of its
threads. Examples can be found in the 'example' folder of PKCS11-HSE, starting with ‘pkcs-’.

Figure 4 shows the typical flow of a Cryptoki application.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 5 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Figure 4. Cryptoki application flow

4.1 Storing objects in PKCS11-HSE, Notes
There are two physical places for for an NVM storage to contain a key object:

1. The file: /etc/pkcs-hse-objs. It stores the attributes of all available objects. For example, the label, the
key ID, and so on.

2. HSE key slots. The key value of every key object is stored in the HSE key slots. The ID attribute of the
object specifies the used key slot.

During initialization of Cryptoki, PKCS11-HSE tries building a list of objects in the memory. If there are no object
records in the memory, it builds the object list based on the content of the file pkcs-hse-objs. On finalization
of Cryptoki, the file pkcs-hse-objs gets updated to match to the object list in the memory.

The implemented object management functions update both the object list in the memory and the HSE key
slots. For example, when creating a new key object, the new object is appended to the existing objects list and
the key value of the new object is installed into the specified HSE key slot. The PKCS11-HSE does not update
the HSE SYS_IMG which is stored in external NVM devices (MMC or NOR flash). This should be handled by
the application instead.

When finding an object in the token, PKCS11-HSE searches for the object in the object list using the specified
attributes as the keyword; for example, the label. It does not check the key availability in the HSE key slot. It
assumes that the objects list in the memory and HSE key slots are synchronized.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 6 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

5 OpenSSL PKCS11 engine

The engine framework of OpenSSL allows to integrate an alternative implementation of cryptographic primitives
that the hardware security devices provide. OpenSSL provides engine APIs to implement a customized engine
that can operate with a specific security device.

The open source project LIBP11 provides an implementation of the OpenSSL engine on top of Cryptoki. It
can interface with the PKCS11-HSE. The following sections explain steps to enable multiple use cases of the
OpenSSL PKCS11 engine.

6 Demo setups

In all described demos, the following software packages are used:

• OpenSSL 3.0.8
• OpenSC 0.23.0
• Libp11 0.4.12

Note: In this Application Note, Linux BSP 38.0 for S32G is used. The board used is NXP-S32G-RDB3 with
S32G399A Rev 1.1 silicon chip.

Note: In this section, the command line starting with the prompt ‘$’ indicates the command runs on the host
PC. The prompt ‘#’ indicates the command runs on the targeting board.

Note: All patches and scripts mentioned in this section can be found in the repository: https://github.com/nxp-
auto/AN14072-SW.

6.1 Building OpenSSL and LIBP11
Since the software LIBP11 and OpenSC link to the OpenSSL, the OpenSSL should be compiled at first. By the
default configuration of Yocto in Linux BSP 38.0, the OpenSSL version 3.0.8 is used. The same version is used
here.

Note: The host PC is with Ubuntu 20.04. The GCC toolchain used is GCC 11.3.0 for ARM64.

Clone the OpenSSL repository.

$ cd $WORKSPACE
$ git clone https://github.com/openssl/openssl.git
$ cd openssl
$ git checkout openssl-3.0.8

Apply the below patch. The patch is a bug fix, which is required when running the TLS demo using the engine.
Refer to [4] for more information.

$ git apply -v ../patch/openssl/0001-PR-20780-fix-20161.patch

Building of OpenSSL.

$ export CROSS_COMPILE=/path/to/toolchain/dir/bin/aarch64-none-linux-gnu-

Note: It’s assumed CROSS_COMPILE is exported when building all software packages.

$ mkdir ../openssl-aarch64
$./Configure linux-aarch64 --prefix=${WORKSPACE}/openssl-aarch64
$ make && sudo make install

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 7 / 20

https://github.com/nxp-auto/AN14072-SW
https://github.com/nxp-auto/AN14072-SW
https://github.com/openssl/openssl.git

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

After the building is finished, you can find the output in the folder openssl-aarch64. Clone the LIBP11
repository.

$ cd $WORKSPACE
$ git clone https://github.com/OpenSC/libp11.git
$ cd libp11
$ git checkout libp11-0.4.12

Apply the below three patches to add features to LIBP11.

1. Adding support of PKCS1 v1.5 encoding scheme for RSA signature algorithm:

$ git apply -v \
 ../patch/libp11/0001-Add-PKCS1-v1.5-encoding-for-rsa-sign.patch

2. Adding support of AES-128-CBC algorithm for the PKCS11 engine:

$ git apply -v \
 ../patch/libp11/0001-engine-support-for-aes-128-cbc-and-cmac.patch

3. Adding function of random number generation for the PKCS11 engine:

$ git apply -v \
 ../patch/libp11/0001-engine-support-for-random.patch

Building of LIBP11.

$ sudo apt install pkgconf libssl-dev
$ mkdir ../libp11-aarch64
$./bootstrap
$./configure \
 CC=${CROSS_COMPILE}gcc \
 --host=aarch64-none-linux-gnu \
 --prefix=$WORKSPACE/libp11-aarch64 \
 --with-enginesdir=$WORKSPACE/libp11-aarch64 \
 OPENSSL_CFLAGS="-I$WORKSPACE/openssl-aarch64/include" \
 LDFLAGS="-L$WORKSPACE/openssl-aarch64/lib"
$ make && sudo make install

After successful building of LIBP11, the output is stored in the folder libp11-aarch64.

6.2 Building PKCS11-tool
PKCS11-tool is a tool provided by the OpenSC. In the demo, use this tool for key objects management.

First, install the prerequisite packages on the host side.

$ sudo apt-get install pcscd libccid libpcsclite-dev \
libssl-dev libreadline-dev autoconf automake build-essential \
docbook-xsl xsltproc libtool pkg-config

Clone the OpenSC repository.

$ cd $WORKSPACE
$ git clone https://github.com/OpenSC/OpenSC.git
$ cd OpenSC
$ git checkout 0.23.0

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 8 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Apply the two patches listed right after this text and build. The first patch is the bug fix for RSA private key
parsing. The second patch is to set a template for the public key part of an ECC private key when creating a key
object for the ECC key. This is needed because the HSE requires both public and private keys for importing an
ECC private key (the corresponding key type for HSE is an ECC key pair).

$ git apply -v \
 ../patch/opensc/0001-fix-rsa-private-key-parser-error.patch
$ git apply -v \
 ../patch/opensc/0001-add-EC_POINTS-for-ECC-private-key-parsing.patch

Building of OpenSC.

$ mkdir ../opensc-aarch64
$./bootstrap
$./configure \
 --host=aarch64-linux --disable-strict \
 --prefix="${WORKSPACE}/opensc-aarch64" \
 --enable-openssl CC=${CROSS_COMPILE}gcc \
 LDFLAGS="-g -Wl,-rpath-link,${WORKSPACE}/openssl-aarch64/lib" \
 OPENSSL_LIBS="-lcrypto -L${WORKSPACE}/openssl-aarch64/lib" \
 OPENSSL_CFLAGS=-I${WORKSPACE}/openssl-aarch64/include
$ make && sudo make install

After successfully building, the output is stored in the folder opensc-aarch64.

6.3 Building PKCS11-HSE
There are two options for how to enable the HSE features and PKCS11-HSE in Linux BSP.

6.3.1 Build PKCS11-HSE using Yocto

The default configuration of Yocto does not build the PKCS11-HSE. To enable it (as an example), update the
conf/local.conf file in the Yocto build directory with these lines:

DISTRO_FEATURES:append = " hse"
NXP_FIRMWARE_LOCAL_DIR = "/path/to/hse/firmware/deliverables"
HSE_VERSION = "0_2_22_0"
HSE_SOC_REV = "rev1.1"
HSE_LIC = "license.rtf"
HSE_LIC_MD5 = "0474bb8a03b7bc0ac59e9331d5be687f"

NXP_FIRMWARE_LOCAL_DIR must be set to the folder which contains the HSE firmware deliverables. The
name of the folder of HSE firmware deliverables must be in the pattern of HSE_FW_<SoC>_<Version>, for
example, HSE_FW_S32G3_0_2_16_1.

Then, you can build the Linux BSP using Yocto per instructions in the Linux BSP user manual.

6.3.2 Manually build PKCS11-HSE

$ cd $WORKSPACE
$ git clone https://github.com/nxp-auto-linux/pkcs11-hse.git
$ cd pkcs11-hse
$ git checkout bsp38.0

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 9 / 20

https://github.com/nxp-auto-linux/pkcs11-hse.git

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Apply the patch below. The patch adds an example application PKCS-engine. The application is used for
AES-128-CBC encryption/decryption and CMAC generation/verification using the engine.

$ git apply -v \
 ../patch/pkcs11-hse/0001-openssl-engine-example-for-AES-CBC.patch

Build the PKCS11-HSE.

$ export HSE_FWDIR=/path/to/hse/firmware/deliverables
$ export LIBP11_DIR=${WORKSPACE}/libp11-aarch64
$ export OPENSSL_DIR=${WORKSPACE}/openssl-aarch64
$ make install

After successfully building, libraries and example applications are installed in the Out folder.

Note: In order to use the PKCS11-HSE, the HSE features of the Linux BSP must be enabled. To enable the
HSE features manually, the u-boot and the Arm Trusted Firmware (TF-A) needs to be built. Refer to instructions
described in the below sections of [6] to build u-boot and TF-A with support of HSE features:

• 10.5.1.1 Building U-Boot with support for HSE features
• 10.5.1.2 Building TF-A FIP with support for HSE features

6.4 Deployment on S32G-VNP-RDB3
Transfer PKCS11-tool and libraries to the target board. It’s assumed the board is up and is connected to your
local network. The IP address is IP-ADDR. We use the program ‘scp’ to transfer the file from the host PC to the
board.

$ cd $WORKSPACE
$ scp opensc-aarch64/bin/pkcs11-tool root@IP-ADDR:/home/root
$ scp opensc-aarch64/lib/libopensc.so.8.1.0 root@IP-ADDR:/usr/lib

Transfer LIBP11 LIBS to the target board.

$ scp libp11-aarch64/libpkcs11.so root@IP-ADDR:/usr/lib/engines-3
$ scp libp11-aarch64/lib/libp11.so.3.5.0 root@IP-ADDR:/usr/lib

Transfer output of PKCS11-HSE to the target board.

$ scp -r pkcs11-hse/out root@IP-ADDR:/home/root

Deployment on targeting board.

cd ~
cp out/lib/libhse.so.2.1 /usr/lib
cp out/lib/libpkcs-hse.so.1.0 /usr/lib
ldconfig -l /usr/lib/libopensc.so.8.1.0
ldconfig -l /usr/lib/libp11.so.3.5.0
ldconfig -l /usr/lib/libhse.so.2.1
ldconfig -l /usr/lib/libpkcs-hse.so.1.0

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 10 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

6.5 Use cases
After deployment of required software, we can now continue to run several use cases using the PKCS11-HSE.
The PKCS#11 tool pkcs11-tool is used to generate key objects for the token. And then use the OpenSSL
and the PKCS11 engine to perform cryptographic operations making use of the installed key objects.

First, generate public and private keys for testing.

cd ~/workspace
mkdir keys
cd keys

Use the OpenSSL application to generate a RSA-2048 key pair (private and public keys):

openssl genrsa -out rsa2048_private.pem 2048
openssl rsa \
 -in rsa2048_private.pem \
 -pubout -outform pem \
 -out rsa2048_public.pem

Note: In some case, the length of private exponent of the generated RSA private key
(rsa2048_private.pem) is 255 bytes. This is not acceptable by the HSE. Use the below command to check
the private exponent of the generated RSA private key:

openssl rsa -in rsa2048_private.pem -noout -text

Then, check the length of the parameter privateExponent in the output log. If the length of privateExponent is
not 256 bytes, try to re-run the above commands to re-generate the RSA-2048 key pair.

Generate an ECC key pair:

openssl ecparam -list_curves
openssl ecparam -name secp256r1 -genkey -out ecc_private.pem
openssl ec -in ecc_private.pem -pubout -out ecc_public.pem

Generate an AES-128 key with the same key value with the key used in the PKCS-engine example application:

echo -e -n \
 "\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef" \
 > aes_128.key

Next, modify OpenSSL configuration file for the PKCS11 engine. Back it up before making modifications.

cp /etc/ssl/openssl.cnf /etc/ssl/openssl.cnf.default
vi /etc/ssl/openssl.cnf

Edit the openssl.cnf as below:

• In the section [openssl_init], append the below line

engines = engine_section

• Append the below lines at the end of the file.

[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 11 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

engine_id = pkcs11
dynamic_path = /usr/lib/engines-3/libpkcs11.so
MODULE_PATH = /usr/lib/libpkcs-hse.so.1
init=0

Test the PKCS11 engine. If everything is set up correctly, a similar log to the one provided below should be
observed.

openssl engine pkcs11 -t
(pkcs11) pkcs11 engine
 [available]

To import keys into HSE key catalogs, the first step is to format HSE key catalogs. This can be done using the
example application ‘hse-secboot’.

~/out/bin/hse-secboot -f -o -d /dev/mmcblk0
[INFO] Formatting HSE key catalog hse: device initialized, status 0x6b20
[INFO] Retrieving IVT from device /dev/mmcblk0
[INFO] Enabling MUs
[INFO] Formatting NVM and RAM key catalogs
[INFO] Retrieving SYSIMG size
[INFO] Publishing SYSIMG
[INFO] Writing SYSIMG to /dev/mmcblk0

Then, try to remove the file ‘pkcs-hse-objs’ which is used for storing PKCS11 objects. To ensure both the
HSE key catalogs and storage of PKCS#11 objects are cleaned.

rm /etc/pkcs-hse-objs

Install the generated RSA private key to the token using the PKCS11-tool. This creates a PKCS#11 key object
and import the key into the HSE key slot.

~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --write-object keys/rsa2048_private.pem \
 --type privkey \
 --id 000601 \
 --label "HSE-RSAPRIV-KEY"

Note: The option ‘--id 000601’ specifies the key slot (i.e. the key handle) used by the HSE to store the key
value: key catalog 0x01 (that is, NVM), key group 0x06, key slot 0x00.

Continue installing other keys:

~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --write-object keys/rsa2048_public.pem \
 --type pubkey \
 --id 000701 \
 --label "HSE-RSAPUB-KEY"
~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --write-object keys/ecc_private.pem \
 --type privkey \
 --id 000301 \
 --label "HSE-ECCPRIV-KEY"
~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 12 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

 --write-object keys/ecc_public.pem \
 --type pubkey \
 --id 000401 \
 --label "HSE-ECCPUB-KEY"
~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --write-object keys/aes_128.key \
 --type secrkey \
 --key-type AES:128 \
 --id 000101 \
 --label "HSE-AES-128-KEY"
~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --write-object keys/aes_128.key \
 --type secrkey \
 --key-type AES:128 \
 --id 010101 \
 --label "HSE-AES-128TEST"

Then, to check the installation, list and check the objects that were installed:

~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --list-object

To delete a key object that was installed before, you can do as in the below example. Both the PKCS11 object
and the key in the HSE key slot are deleted.

~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --delete-object \
 --type secrkey --id 010101

Note: When using the PKCS11-tool to list the installed objects, only the PKCS11 objects are counted. It does
not check the key availability in the HSE key slots.

After key installation, use the installed keys for cryptography operations.

6.5.1 Signature generation and verification

First, generate a plain text file for testing.

cd ~/workspace
echo "The quick brown fox jumps over the lazy dog" > plain.txt

Perform the RSA signature generation and verification with PKCS1 v1.5 encoding scheme.

openssl dgst -engine pkcs11 \
 -keyform engine \
 -sign "pkcs11:token=NXP-HSE-Token;object=HSE-RSAPRIV-KEY" \
 -out rsa.sig -sha512 \
 plain.txt

The above command calls for the OpenSSL ‘dgst’ program to generate an RSA signature for the input file.
In the low level it calls for the HSE signature generation service to sign the input using the key in the HSE
key slot. The key used is specified using the PKCS#11 Uniform Resource Identifier (URI) scheme. See [5]
for the specification of the PKCS#11 URI scheme. In the above URI example, the token and the object are

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 13 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

specified by their label (string) each. The used object can also be specified using its ID attribute, for example
"pkcs11:token=NXPHSE-Token;id=%00%06%01".

To verify the generated signature, the below command can be used:

openssl dgst -engine pkcs11 \
 -keyform engine \
 -verify "pkcs11:token=NXP-HSE-Token;object=HSE-RSAPUB-KEY" \
 -signature rsa.sig -sha512 \
 plain.txt

hse: device initialized, status 0x6b20 Verified OK

Perform the RSA signature generation and verification with PSS encoding scheme.

Signature generation:

openssl dgst -engine pkcs11 \
 -keyform engine \
 -sign "pkcs11:token=NXP-HSE-Token;object=HSE-RSAPRIV-KEY" \
 -sigopt rsa_padding_mode:pss \
 -sigopt rsa_pss_saltlen:20 \
 -sigopt rsa_mgf1_md:sha512 \
 -out rsa.sig -sha512 \
 plain.txt

Signature verification:

openssl dgst -engine pkcs11 \
 -keyform engine \
 -verify "pkcs11:token=NXP-HSE-Token;object=HSE-RSAPUB-KEY;type=public" \
 -sigopt rsa_padding_mode:pss \
 -sigopt rsa_pss_saltlen:20 \
 -sigopt rsa_mgf1_md:sha512 \
 -signature rsa.sig -sha512 \
 plain.txt

Engine "pkcs11" set. hse: device initialized, status 0x6b20
Verified OK

ECDSA signature generation and verification:

openssl dgst -engine pkcs11 \
 -keyform engine \
 -sign "pkcs11:token=NXP-HSE-Token;object=HSE-ECCPRIV-KEY" \
 -out ecc.sig -sha512 \
 plain.txt
openssl dgst -engine pkcs11 \
 -keyform engine \
 -verify "pkcs11:token=NXP-HSE-Token;object=HSE-ECCPUB-KEY" \
 -signature ecc.sig -sha512 \
 plain.txt

Engine "pkcs11" set. hse: device initialized, status 0x6b20
Verified OK

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 14 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

6.5.2 RSA encryption and decryption

openssl rsautl \
 -engine pkcs11 \
 -keyform engine \
 -encrypt -pkcs -pubin \
 -inkey "pkcs11:token=NXP-HSE-Token;object=HSE-RSAPUB-KEY;type=public" \
 -in plain.txt \
 -out rsa-cipher.bin
openssl rsautl \
 -engine pkcs11 \
 -keyform engine \
 -decrypt -pkcs \
 -inkey "pkcs11:token=NXP-HSE-Token;object=HSE-RSAPRIV-KEY;type=private" \
 -in rsa-cipher.bin \
 -out rsa-decrypted.txt

Check the decrypted result:

cat rsa-decrypted.txt
The quick brown fox jumps over the lazy dog

6.5.3 AES encryption and decryption and CMAC generation and verification

~/out/bin/pkcs-engine

The example application pkcs-engine calls for OpenSSL APIs to perform AES-128-CBC and CMAC
operations using the pkcs11 engine.

6.5.4 Random number generation

openssl rand -engine pkcs11 -hex 16

6.5.5 TLS handshaking

The OpenSSL engine can be used in the TLS handshake processes for signature generation and random
number generation. For this case, the patched OpenSSL lib must be used. On the host side, transfer the built
libcrypto.so.3 to the board:

$ scp openssl-aarch64/lib/libcrypto.so.3 root@IP-ADDR:/tmp

Then, copy the lib to replace the current one:

cp /tmp/libcrypto.so.3 /usr/lib

Note: After the lib is replaced, the SSH connection is lost and needs to be reestablished.

ldconfig -l /usr/lib/libcrypto.so.3
export OPENSSL_CONF=/etc/ssl/openssl.cnf

Note: After replacing the libcrypto.so, $OPENSSL_CONF must be set in order to use the former configuration.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 15 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Run the below scripts to generate keys and certificates used in the TLS communication.

cd tls-demo/scripts
export OPENSSL_CONF=/etc/ssl/openssl.cnf.default
./tlsCreateCredentialsRunOnce.sh

Then, install the generated ECC private key for the TLS client into the HSE.

export OPENSSL_CONF=/etc/ssl/openssl.cnf
~/pkcs11-tool \
 --module /usr/lib/libpkcs-hse.so.1 \
 --write-object ../ecc/tls_client_key.pem \
 --type privkey \
 --id 010301 \
 --label "HSE-ECCPRIV-TLS"

Open another SSH session connecting to your board. The session runs the TLS server. Start the TLS server by
executing the scripts below.

./tlsServer.sh ECDHE

On the client side, start the TLS client and connect to the server (localhost).

./tlsClient.sh localhost ECDHE

7 References

1. PKCS #11 Cryptographic Token Interface Base Specification Version 3.0
2. PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 3.0
3. PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. https://docs.oasis-open.org/pkcs11/

pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
4. OpenSSL 3.0: SSL ECDHE Kex fails when OpenSSL Engine with EC methods is set in the config file

https:// github.com/openssl/openssl/issues/20161
5. RFC 7512 The PKCS #11 URI Scheme. https://www.rfc-editor.org/rfc/rfc7512.txt
6. Linux BSP 38.0 User Manual for S32G3 platforms

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 16 / 20

https://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://github.com/openssl/openssl/issues/20161
https://github.com/openssl/openssl/issues/20161
https://www.rfc-editor.org/rfc/rfc7512.txt

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9 Revision history

This table summarizes the revisions to this document.

Document ID Release date Description

AN14072 v.1.0 8 January 2024 Initial release

Table 2. Revision history

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 17 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

10 Legal information

10.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

10.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 18 / 20

mailto:PSIRT@nxp.com

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Tables
Tab. 1. Acronyms ...2 Tab. 2. Revision history ...17

Figures
Fig. 1. Cryptoki model .. 3
Fig. 2. Logical view of a token 4

Fig. 3. Use cases of PKCS11-HSE 5
Fig. 4. Cryptoki application flow 6

AN14072 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 8 January 2024
CONFIDENTIAL 19 / 20

NXP Semiconductors AN14072
Accessing the HSE Using PKCS#11

Contents
1 Acronyms ...2
2 Introduction ... 2
2.1 Cryptoki model ...2
2.2 PKCS11-HSE ...4
3 Access HSE using PKCS11-HSE 4
4 Cryptoki application ..5
4.1 Storing objects in PKCS11-HSE, Notes6
5 OpenSSL PKCS11 engine 7
6 Demo setups ... 7
6.1 Building OpenSSL and LIBP117
6.2 Building PKCS11-tool .. 8
6.3 Building PKCS11-HSE9
6.3.1 Build PKCS11-HSE using Yocto 9
6.3.2 Manually build PKCS11-HSE9
6.4 Deployment on S32G-VNP-RDB3 10
6.5 Use cases ..11
6.5.1 Signature generation and verification 13
6.5.2 RSA encryption and decryption 15
6.5.3 AES encryption and decryption and CMAC

generation and verification 15
6.5.4 Random number generation15
6.5.5 TLS handshaking ...15
7 References ... 16
8 Note about the source code in the

document ... 16
9 Revision history .. 17
10 Legal information ..18

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 8 January 2024
Document identifier: AN14072

	1 Acronyms
	2 Introduction
	2.1 Cryptoki model
	2.2 PKCS11-HSE

	3 Access HSE using PKCS11-HSE
	4 Cryptoki application
	4.1 Storing objects in PKCS11-HSE, Notes

	5 OpenSSL PKCS11 engine
	6 Demo setups
	6.1 Building OpenSSL and LIBP11
	6.2 Building PKCS11-tool
	6.3 Building PKCS11-HSE
	6.3.1 Build PKCS11-HSE using Yocto
	6.3.2 Manually build PKCS11-HSE

	6.4 Deployment on S32G-VNP-RDB3
	6.5 Use cases
	6.5.1 Signature generation and verification
	6.5.2 RSA encryption and decryption
	6.5.3 AES encryption and decryption and CMAC generation and verification
	6.5.4 Random number generation
	6.5.5 TLS handshaking

	7 References
	8 Note about the source code in the document
	9 Revision history
	10 Legal information
	Tables
	Figures
	Contents

