
AN14182
Implementing Wired Communication with the NTM88
Rev. 1 — 21 March 2024 Application note

Document information
Information Content

Keywords NTM88, wired communication, spi, I2C

Abstract This application note explains how to implement wired communication with the NTM88.

https://www.nxp.com

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

1 Introduction

The NTM88 device can be used in a variety of applications. For example, it may be connected on the PCB to
another MCU, to external memory, to external sensors or to tag devices. In such implementations, the NTM88
must communicate with other devices using wired communication.

This application note explains how to use the NTM88 as SPI Client, SPI Server (Host) and I2C Controller. An
associated zip file is available in support of this application note. The zip file contains an excel spreadsheet
allowing users to encode and decode hardware SPI commands. The zip file also contains a demo project
implementing SPI and I2C bit banging.

NXP does not anticipate the need for the NTM88 to act as an I2C target for the following reasons:

• In most applications, the NTM88 needs to be a Host for other downstream devices such as memory, or other
sensors.

• The NTM88 already supports SPI Client mode if the NTM88 needs to be a peripheral to an upstream Host.

In this document, there a few new acronyms. A brief explanation of each acronym follows:

• SPI “SOCI” means Server Out Client In, and is to be interpreted as being the same as the MOSI signal name.
• SPI “SICO” means Server In Client Out, and is to be interpreted as being the same as the MISO signal name.
• SPI “CS” means Chip Select, and is to be interpreted as being the same as the SS signal name.

The information presented in this application note is applicable to all part numbers of the NTM88 family.

2 NTM88 as SPI Client

2.1 SPI configuration
The NTM88 device includes a hardware SPI block that can be used in Client mode only. The block is described
in details in the NTM88 User Manual[1], and the main points are highlighted in this document.

The SPI block supports the following configuration:

• Mode: Client only
• Maximum baud rate: 10 MHz
• Number of bits per frame: 16
• Clock polarity: active high (CPOL = 0)
• Clock phase: first edge (CPHA = 0)
• Data direction: MSB first
• CS polarity: active low

Care must also be taken by the SPI Host to comply with the SPI timings supported by the NTM88. A few
examples of timings are:

• tLEAD: The delay between CS asserted and first clock edge.
• tLAG: The delay between last clock edge and CS idle.
• tSSN: The minimum duration for CS not asserted.
• tSCLKR and tSCLKF: The maximum rise and fall times of SCLK

All timings are described in the NTM88 manual[1] and their durations are specified in the NTM88 data
sheets[2],[3],[4].

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
2 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

2.2 Enabling and disabling the SPI block
The NTM88 SPI block is enabled by one of the following two methods:

• By the NTM88 application setting the SPIEN bit in the SIMOPT1 register.
• At Power On Reset, by the Host holding the PTA0 pin at low state for a duration greater than tSPI_EN specified

in the data sheet[2],[3],[4].

The SPI block is disabled by one of the following methods:

• By the NTM88 application clearing SPIEN bit in SIMOPT1 register.
• By the NTM88 entering a STOP mode (STOP4 or STOP1).
• By the NTM88 MCU resetting.

Therefore, care must be taken that the NTM88 SPI block is not disabled while SPI transfers are ongoing by
inadvertently clearing SPIEN bit or by the NTM88 MCU entering a STOP mode or resetting.

2.3 SPI commands and error handling
When SPI is enabled in the NTM88, the SPI Host sends commands to perform READ and WRITE operations
on the NTM88 RAM and FLASH memory. In the NTM88, the SPI commands are handled by the SPI block
directly, not by the application. As a result, only the READ and WRITE commands with the format described in
the NTM88 manual[1] are supported by the NTM88 SPI block. Custom SPI frame formats are not supported. An
excel file allowing users to encode and decode SPI commands is available as associated file to this application
note.

Figure 1 shows that the Host transfers a command during transfer number N, and the NTM88 transfers the
response to that command during transfer number N+1. In Figure 1, the R1 frame contains the response to the
command included in frame T1. Similarly, R2 frame contains the response to the command included in frame
T2.

aaa-054444

T1 T2 T3 T4

Transfer
1

SOCI
(Commands from

host to NTM88)

SICO
(Response from
NTM88 to host)

Transfer
2

Transfer
3

Transfer
4

Response
to T1

Response
to T2

Response
to T3

R0 R1 R2 R3

Figure 1. SPI commands and responses

A READ operation is performed in two transfers, as illustrated in Figure 2.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
3 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

aaa-054445

TN T(N+1)

Transfer
N

SOCI
(Commands from

host to NTM88)

SICO
(Response from
NTM88 to host)

Transfer
N+1

READ response
with status and
8-bit data byte

value

R(N-1)

READ command
with address to

be read

RN

Figure 2. Transfers for a READ operation

A WRITE operation is performed in three transfers as illustrated in Figure 3.

TN T(N+1)

Transfer
N

SOCI
(Commands from

host to NTM88)

SICO
(Response from
NTM88 to host)

Transfer
N+1

WRITE response
with address

written

R(N-1)

1st part of WRITE
command with
address to be

written

RN

2nd part of WRITE
command with

value to be
written

aaa-054446

T(N+2)

Transfer
N+2

WRITE response
with status and
value written

R(N+1)

Figure 3. Transfers for a WRITE operation

When reading a response frame from the NTM88, the Host MCU should check the following two points:

• Verify that the parity is correct. If parity is incorrect, the frame should be considered invalid and then discarded
by the Host.

• If parity is correct, check the status bits that are included in the frame. Status bits equal to 0 indicate that
the frame contains a valid response. Status bits different from 0 indicate that a SPI error occurred and the
command was not executed. The list of SPI errors and their corresponding status values is given in the
NTM88 manual[1].

If a SPI error occurs during transfer number N, the command included during that transfer is not executed
by the NTM88, and the following transfer (number N+1) is used by the NTM88 to clear the error in the SPI
block. As a result, the command included in transfer number N+1 is also not executed by the NTM88. Figure 4
illustrates an example of the sequence in case a SPI error occurs during Transfer 3. In such situations, both
commands T3 and T4 are ignored by the NTM88.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
4 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

T1 T2 T3 T4

Transfer
1

SOCI
(Commands from

host to NTM88)

SICO
(Response from
NTM88 to host)

Status bits = 0
(status value indicates

the cause of error
during Transfer 3)

Status bits = 0bx1xxx
↔ Command T4

ignored by the NTM88
Command ignored by
the NTM88

Transfer
2

Transfer
3

SPI
Error

during
Transfer

4

R0 R1 R2

aaa-054447

T5 T6

Transfer
5

Transfer
6

R5R3 R4

Figure 4. Example of sequence with a SPI error occurring during transfer number 3

When a command is ignored by the NTM88, it is not executed. In these situations, the Host should retry and
send the command again.

Note: Response frame R0 includes status bits equal to 0bx1xxx in case the T1 command is the first SPI
command transferred after a NTM88 reset (including STOP1 exit). A R0 frame with a status equal to 0b01000 is
the only situation where non-zero status bits do not correspond to a SPI error.

2.4 SPI clock error when using PTA0 as KBI pin
In the NTM88, pins PTA0 to PTA3 can be configured as KBI pins allowing a Host to wake up the NTM88 from
STOP mode. When PTA0 is used to wake up the NTM88 in order to perform SPI transfers, the specific wake up
sequence described in Figure 5 generates a SPI clock fault error on the NTM88 side.

aaa-054448

The first command must be a dummy READ
command in order to clear the SPI error

Host starts SPI transfers

Host reconfigures
the pin as SPI
CS_B pin

Host drives
PTA0 to low
state to wake
up the NTM88

NTM88 wakes up on KBI
interrupt and enables SPI
while PTA0 is at low state

NTM88 considers the time
during which CS_B pin is

held low while SPI is
enabled as failed SPI

transfer (clock fault error)

PTA0/CS_B
(driven by host)

PTA1/SCLK
(driven by host)

Figure 5. Sequence leading to a SPI clock fault error

A SPI clock fault error is generated when the NTM88 enables the SPI block while PTA0 is still at low state,
following the KBI wake up. In this situation, the NTM88 considers the time during which the CS_B pin is held
AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
5 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

low while the SPI is enabled as a failed SPI transfer due to clock fault error. This scenario results because the
NTM88 SPI block sees CS_B pin driven at low state with no clock cycle generated. In order to clear the SPI
error, the NTM88 uses the following SPI transfer to clear the error. As a result, the first SPI command sent
by the Host is discarded by the NTM88. The first SPI command transferred by the Host must therefore be a
dummy READ command.

Figure 6 shows an example of SPI sequence following the clock fault error described in the previous paragraph.
The first command transferred by the Host is a dummy READ command used by the NTM88 to clear the SPI
error. The SPI status transferred by the NTM88 during the first transfer indicates a clock fault error. The SPI
status transferred by the NTM88 during the second transfer indicates that the command of the first transfer was
ignored.

aaa-054449

h0140

DIO 0

DIO 1

DIO 3

DIO 2

Select

Clock

SPI MOSI

MOSI

SPI MISO

-

-

MISO

h0140

READ command 1
(read address 0x50)

0x2002
= 0b0010000000000010

<=> Status = previous command ignored

h0145

h1002 h2002 h0011

Dummy READ
command

0x1002
= 0b0001000000000010
<=> Status = clock fault

Answer to READ command 1
(value at 0x50 = 0x04)

READ command 2
(read address 0x51)

Figure 6. Example of SPI sequence following a SPI clock fault error

In order to avoid generating a clock fault error on the NTM88 side following a KBI wake up, the following options
are available:

• Do not use PTA0 as the KBI pin to wake up the NTM88. Use PTA1, PTA2 or PTA3 instead.
• If using PTA0 as the KBI pin, the NTM88 application should wait for PTA0 to be driven back to high state

before enabling the SPI block. Figure 7 shows a sequence that does not generate a SPI error. If such a
sequence is executed, care must be taken that the NTM88 application enables the SPI block before the Host
starts the SPI transfers.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
6 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

aaa-054450

Host starts SPI transfers

Host reconfigures
the pin as SPI CS_B pin

Host drives
PTA0 to low
state to wake
up the NTM88

NTM88 wakes up
on KBI interrupt

NTM88 enables SPI while
PTA0 is at high state

PTA0/CS_B
(driven by host)

PTA1/SCLK
(driven by host)

Figure 7. Sequence not generating a SPI error

2.5 Bus resources
In the NTM88, the SPI block and the CPU share the internal address, data and control bus. The SPI and CPU
cannot use the internal bus at the same time. In other words, when the SPI block is accessing the bus, CPU
instructions are not executed. In order to avoid unwanted inhibition of CPU instructions, enable the NTM88 SPI
block only when needed.

Similarly, when the CPU is accessing the bus, access to the bus is denied to the SPI block. If the Host sends
SPI commands while the NTM88 does not have access the to bus, the NTM88 is not able to process the
commands. When this occurs, the status bits in the SPI response frame indicate that an internal bus contention
fault has occurred. Similar to any other SPI error, the NTM88 uses the following transfer to clear the error. So,
the command included in the following transfer is discarded as well.

In order to prevent bus contention errors, it is possible to halt the NTM88 CPU while SPI transfers are ongoing.
The CPU is halted by setting CORE_TR_HOLD bit of SPIOPS register. When CORE_TR_HOLD bit is set, the
CPU is halted, so program instructions are not executed anymore. CORE_TR_HOLD bit can be set by the
NTM88 application executing the instruction SPIOPS_CORE_TR_HOLD = 1, or by the Host via a SPI WRITE
command. CORE_TR_HOLD bit must be cleared by the Host via a SPI WRITE command to allow the NTM88
CPU to resume at the end of the SPI sequence.

Halting the CPU does not halt the NTM88 internal clocks. The functions relying on the clocks, like the watchdog,
continue to work when the CPU is halted. A watchdog reset automatically restarts the CPU. Use the watchdog
to ensure that the NTM88 is not trapped in RUN mode with the CPU halted when the SPI Host fails to clear
CORE_TR_HOLD bit.

2.6 Selecting the FLASH address range
In the SPI command format, the address to be read or written is 13-bit long, resulting in a SPI address range
from $0000 to $1FFF. The address range is enough to address the entire NTM88 RAM memory ($0000 to
$028F), but additional bits are necessary to address the full range of the FLASH. These additional bits are
located in the SPIOPS register located in RAM at address $0038.

The last two bits of the SPIOPS register, FLS_ADDR[1:0], allow the Host to select the FLASH range to address,
as described in Table 1.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
7 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

FSL_ADDR[1:0]SPI Address Range

00 01 10 11

Start 0x0800 0xC000 0xD000 0xE000 0xF000

End 0x17FF 0xCFFF 0xDFFF 0xEFFF 0xFFFF

Table 1. Mapping of SPI address to FLASH address

Note: The SPI Address Range 0x0000-0x07FF corresponds to the NTM88 RAM memory (valid range from
0x0000 to 0x028F).

When the External MCU wants to access an address in FLASH, the SPIOPS_FSL_ADDR[1:0] field must be
configured first with the appropriate value, and then the READ or WRITE command can be transferred along
with the 13-bit SPI address within the range 0x0800 to 0x17FF.

Examples:

• To access address $C000 in FLASH, FSL_ADDR[1:0] must be set to ‘00’ and the 13-bit address transferred
via SPI must be equal to 0x0800.

• To access address $C010 in FLASH, FLS_ADDR[1:0] must be set to ‘00’ and the 13-bit address transferred
via SPI must be equal to 0x0810.

• To access address $E010 in FLASH, FSL_ADDR[1:0] must be set to ‘10’ and the 13-bit address transferred
via SPI must be equal to 0x0810.

• To access address $FFFF in FLASH, FSL_ADDR[1:0] must be set to ‘11’ and the 13-bit address transferred
via SPI must be equal to 0x17FF.

Important: The SPIOPS register includes the following fields described in Table 2.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

— — — — — CORE_TR_HOLD FSL_ADDR1 FSL_ADDR0

Table 2. SPIOPS register fields (address $0038)

Setting the CORE_TR_HOLD bit halts the NTM88 CPU. Clearing the CORE_TR_HOLD bit allows the CPU
to resume. As described in Section 2.5 "Bus resources", the NTM88 CPU can be kept halted for the duration
of the SPI transfers in order to avoid bus contention faults. Care must be taken by the Host MCU to keep the
CORE_TR_HOLD bit set while writing the SPIOPS register to update FSL_ADDR[1:0] bits.

2.7 Writing and erasing the NTM88 FLASH
It is important to understand that writing or erasing the NTM88 FLASH cannot be done by simply sending a SPI
WRITE command to an address in FLASH. In order to write or erase FLASH bytes, the Host MCU must follow
the program and erase command flows described in section “Flash Memory Controller (FMC) module” of the
NTM88 user manual[1].

FLASH is written byte by byte, and is erased page by page. In the NTM88, one page is 512-byte long. It is not
possible to erase a single byte in FLASH. The minimum amount that can be erased is 512 bytes.

The “Flash Memory Controller (FMC) module” section of the NTM88 user manual[1] states that a command to
perform a mass erase on the NTM88 FLASH is available. A mass erase allows the entire FLASH memory of
the NTM88 to be erased at once. It is important to understand that a mass erase also erases the trim section of
the NTM88. The trim section includes coefficients calibrating the sensors that are unique to each device. If the
NTM88 trim section is erased, the sensors are not functional anymore and the device cannot be recovered.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
8 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

2.8 Example of implementation
On the NTM88 side, since transfers are handled at block-level and not application level, no application or
software driver are needed. The NTM88 application should ensure the following points:

• The SPI block must be enabled before the Host starts the transfers.
• The SPI block must remain enabled as long as transfers are ongoing: SIMOPT1_SPIEN bit must not be

cleared and the NTM88 must not reset nor enter a STOP mode.
• In order to prevent memory contention issues, the NTM88 CPU should be halted for the duration of the

transfers. At the end of the transfers, the Host lets the NTM88 CPU resume by clearing SPIOPS register.

Figure 8 summarizes the flow of instructions on the NTM88 and Host sides for a typical implementation.

aaa-054451

GPIO handshake to ensure both MCUs are ready for SPI communication;

SIMOPT1_SPIEN = 1; /* Enable SPI */
SPIOPS_CORE_TR_HOLD = 1; /* Halt CPU */

Configure and enable SPI;

Send a last WRITE command to clear SPIOPS register;

Disable SPI;

SIMOPT1_SPIEN = 0; /* Disable SPI */

O
rd

er
 o

f e
xe

cu
tio

n
of

 th
e

in
st

ru
ct

io
ns

NTM88 application Host application

/* At this point, the CPU is halted, SPI transfers can be performed
with no risk of memory contention faults. Following instructions
will be executed when the CPU resumes, after the Host clears
SPIOPS register */

Check that SPI communication is correctly established: send a
READ command to address 0x38 (SPIOPS register); /* BIT2 of
SPIOPS register is set when the NTM88 CPU is halted */
Send additional READ and WRITE commands as needed by the
application;

Figure 8. Flow of instructions in a typical implementation

2.9 Examples of transfers
Figure 9 shows SPI transfers allowing the Host to check the status of SPI communication at the start of the
transfer sequence. Extracts of the excel file allowing encoding and decoding of SPI commands and responses
are also provided.

• During the first transfer, the Host sends command 0x00E1 in T1 frame, corresponding to a READ command to
address $0038 (SPIOPS register).

• During the first transfer, the NTM88 answers 0x2002 in R0 frame, corresponding to a status value of 0b01000.
As mentioned in section SPI commands and error handling, a status value of 0b01000 included in frame R0
does not correspond to a SPI error but indicates that R0 is the first response transferred by the NTM88 after
reset.

• The response to command 0x00E1 is given by the NTM88 during the second transfer. The NTM88 answers
0x0011 in R1 frame, corresponding to a status clear and data byte equal to 0x04. Such response indicates
that BIT2 (0x04) of SPIOPS register is set, meaning that the NTM88 CPU is halted, and SPI communication
has been successfully established.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
9 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

Figure 9. Start of the SPI sequence: Host reading SPIOPS register

Figure 10 shows the SPI signals during the first two transfers. Note that the CS_B signal goes back to high state
after each 16-bit transfer.

Figure 10. View of the SPI signals during the first two transfers

Figure 11 shows the SPI transfers performed at the end of the SPI sequence. The Host sends commands to
write value 0x00 at address $0038, in order to clear SPIOPS register and let the NTM88 CPU resume.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
10 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

aaa-054454

h80E3

DIO 0

DIO 1

DIO 3

DIO 2

Select

Clock

SPI MOSI

MOSI

SPI MISO

-

-

MISO

h8002

h000C h80E3

WRITE at address
0x38

WRITE value
0x00

Acknowledge that
address 0x38 is to

be written

Figure 11. End of the SPI sequence: Host clearing SPIOPS register

Generally speaking, after the two transfers of a WRITE command have been performed, the Host can perform
one additional transfer in order to read the status of the second transfer. However, this is not possible in case
of the WRITE command clearing SPIOPS register. The reason is that once the NTM88 has executed the
command clearing the SPIOPS register, the NTM88 CPU restarts and the NTM88 application then typically
disables the SPI block. Any additional SPI commands transferred after the second transfer of the WRITE
command are not answered due to the SPI block being disabled.

3 NTM88 as SPI Server (Host)

3.1 Implementation
The NTM88 device does not include a hardware SPI block that can be configured in Host mode. In order for the
NTM88 to act as SPI Host, the NTM88 application performs SPI bit-banging using software drivers controlling
the GPIOs in order to emulate a SPI block working in Host mode.

The software drivers and example of implementation are provided in the demo project provided as associated
file to this application note. In the demo project, the files spi.c and spi.h include the code of the software drivers.
The file app_spi.c gives an example of a function using the drivers to transfer four bytes via SPI. The function is
called periodically in the main().

When using the drivers, the following points are to be noted:

• The macro SPI_INIT_PINS_MACRO is to be executed at the start of the SPI sequence.
• SPI transfers are performed by executing the function SPI_XferPacket(UINT8 *pTxB, UINT8 *pRxB, UINT8

DataLen), which takes as parameters the transmit buffer, receive buffer and number of bytes of the transfer.
The function returns when the transfer has been performed.

• The transfers are performed in RUN. While the transfers are ongoing, the watchdog keeps running, if enabled
by the application.

• The macro SPI_INIT_PINS_MACRO is to be executed at the end of the SPI sequence, after all desired
transfers have been performed.

The user selects which GPIO to map to each SPI signal in the file spi.h. Any of the PTA[3:0] and PTB[1:0] GPIO
can be used for SS_B, SCLK, SOCI and SICO signals. PTA4 pin can be configured as GPIO output only by

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
11 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

clearing SIMOPT1_BKGDPE bit. As a result, PTA4 can be used for SS_B, SCLK or SOCI signal, but not for
SICO signal which requires the pin to be configured as GPIO input.

Note: By default after reset (including STOP1 exit), PTA4 pin is configured as BKGD pin with an internal pull-up
enabled. As a result, if PTA4 pin is used as SPI signal, care must be taken not to connect a pull-down resistor to
the pin. Background debug mode is entered when PTA4 pin is driven to low state during reset. Care must also
be taken not to drive PTA4 pin to low state during reset.

3.2 Baud rate
The SPI clock signal is generated by the software drivers, and not by a timer. The resulting baud rate directly
depends on the bus clock configuration. With the default bus clock speed of 4 MHz, the SPI baud rate is around
50 kbps. If the bus clock is configured to a lower speed, the baud rate will decrease accordingly.

3.3 Example of transfers
Figure 12 shows the SPI signals during the 4-byte transfer implemented in the demo project. When the
screenshot was taken, no SPI client was connected to the Host, which explains why the SICO line remains at
high state for the duration of the transfer.

Figure 12. SPI signals during the transfer implemented in the demo project

4 NTM88 as I2C Controller

4.1 Implementation
The NTM88 device does not include an I2C block. In order for the NTM88 to act as I2C Controller, the NTM88
application performs I2C bit-banging, using software drivers controlling the GPIOs in order to emulate an I2C
block working in Controller mode.

The software drivers and example of implementation are provided in the demo project provided as associated
file to this application note. In the demo project, the files i2c.c and i2c.h include the code of the software drivers.
The file app_i2c.c provides an example of a function using the drivers to perform multiple transfers via I2C. The
function is called periodically in the main().

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
12 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

When using the drivers, note the following points:

• The macro I2C_INIT_PINS_MACRO is to be executed at the start of the I2C sequence.
• The function I2C_XferPacket_AckCheck(UINT8 I2CAdd, UINT8 *pTxB, UINT8 DataLen) transfers data

bytes on the SDA line. The function takes as parameter the I2C address, transmit buffer and the number of
data bytes to transmit. The number of data bytes does not include the length of the I2C address.
In the function, after transmission of the I2C address, the ACK bit is checked. If acknowledge is received (ACK
= 0), the function proceeds with the transmission of the data bytes. After the transmission of each data byte,
the ACK bit is checked. The next data byte is transmitted only if the previous one has been acknowledged
(ACK = 0). The function returns value 0 when all data bytes have been transferred or value 1 when one data
byte has not been acknowledged and the transfer was aborted.

• The function I2C_XferPacket_NoAckCheck(UINT8 I2CAdd, UINT8 *pTxB, UINT8 DataLen) transfers data
bytes on the SDA line. The function takes as parameter the I2C address, transmit buffer and number of data
bytes to transmit. The number of data bytes does not include the length of the I2C address.
In the function, after transmission of the I2C address, the ACK bit is checked. If acknowledge is received (ACK
= 0), the function proceeds with the transmission of the data bytes. The ACK bit is then not checked anymore
during the transmission of the data bytes. The function generates the ninth clock cycle (ACK cycle) after the
transmission of the 8-bit data, as specified in the I2C protocol[5], but the value of the ACK bit is not checked.
The function returns when all data bytes have been transferred. No status is returned by the function to the
application.
Calling this function is suitable when the application is not expecting an acknowledge of the data bytes.

• The function I2C_RcvPacket(UINT8 I2CAdd, UINT8 *pRxB, UINT8 DataLen) reads data bytes on the SDA
line. The function takes as parameter the I2C address, receive buffer and number of data bytes to read.
In the function, after transmission of the I2C address, the ACK bit is checked. If acknowledge is received (ACK
= 0), the function proceeds with reading the number of data bytes passed as parameter.
The function returns value 0 when the I2C address was correctly acknowledged and data bytes were read and
stored. The function returns value 1 when the I2C address was not acknowledged and data bytes were not
read.

• The transfers are performed in RUN. While the transfers are ongoing, the watchdog keeps running, if enabled
by the application.

The user selects which GPIO to map to each I2C signal in the file i2c.h. Any of the PTA[3:0] and PTB[1:0]
GPIO can be used for SCL and SDA signals. PTA4 pin can be configured as GPIO output only by clearing
SIMOPT1_BKGDPE bit. As a result, PTA4 can be used for SCL signal (with clock stretching disabled), but not
for SDA signal which requires the pin to be configured as GPIO input.

Note: By default after reset (including STOP1 exit), the PTA4 pin is configured as BKGD pin with an internal
pull-up enabled. Background debug mode is entered when the PTA4 pin is driven to low state during reset. Care
must be taken not to drive PTA4 pin to low state during reset.

4.2 Baud rate
The I2C clock signal is generated by the software drivers, and not by a timer, so the resulting baud rate directly
depends on the bus clock configuration. With the default bus clock speed of 4 MHz, the I2C baud rate is around
35 kbps. If the bus clock is configured to a lower speed, the baud rate will decrease accordingly.

4.3 Example of transfers
Figure 13 and Figure 14 show the I2C signals during the transfers implemented in the demo project. The
screenshots were captured with an I2C sensor connected to the NTM88. The acknowledges and data bytes
received on the SDA line come from the sensor.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
13 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

Figure 13. I2C signals during the transfers implemented in the demo project

Figure 14. Zoom on the first I2C transfer

5 References

[1] UM11227, NTM88 User Manual

[2] NTM88Hxx5S, Tire pressure monitor sensor

[3] NTM88Jxx5S, Tire pressure monitor sensor

[4] NTM88Kxx5S, Tire pressure monitor sensor

[5] UM10204, I2C-bus specification and user manual

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
14 / 18

https://www.nxp.com/webapp/Download?colCode=UM11227&appType=license
https://www.nxp.com/docs/en/data-sheet/NTM88Hxx5S.pdf
https://www.nxp.com/docs/en/data-sheet/NTM88Jxx5S.pdf
https://www.nxp.com/docs/en/data-sheet/NTM88Kxx5S.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

6 Revision history

Rev Date Description

AN14182 v.1 21 March 2024 • Initial release

Table 3. Revision history

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
15 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
16 / 18

mailto:PSIRT@nxp.com

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

Tables
Tab. 1. Mapping of SPI address to FLASH address8
Tab. 2. SPIOPS register fields (address $0038)8

Tab. 3. Revision history ...15

Figures
Fig. 1. SPI commands and responses 3
Fig. 2. Transfers for a READ operation4
Fig. 3. Transfers for a WRITE operation 4
Fig. 4. Example of sequence with a SPI error

occurring during transfer number 3 5
Fig. 5. Sequence leading to a SPI clock fault error 5
Fig. 6. Example of SPI sequence following a SPI

clock fault error ... 6
Fig. 7. Sequence not generating a SPI error7
Fig. 8. Flow of instructions in a typical

implementation .. 9

Fig. 9. Start of the SPI sequence: Host reading
SPIOPS register ..10

Fig. 10. View of the SPI signals during the first two
transfers ...10

Fig. 11. End of the SPI sequence: Host clearing
SPIOPS register ..11

Fig. 12. SPI signals during the transfer
implemented in the demo project 12

Fig. 13. I2C signals during the transfers
implemented in the demo project 14

Fig. 14. Zoom on the first I2C transfer 14

AN14182 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 21 March 2024
17 / 18

NXP Semiconductors AN14182
Implementing Wired Communication with the NTM88

Contents
1 Introduction .. 2
2 NTM88 as SPI Client ..2
2.1 SPI configuration ... 2
2.2 Enabling and disabling the SPI block 3
2.3 SPI commands and error handling 3
2.4 SPI clock error when using PTA0 as KBI

pin .. 5
2.5 Bus resources ..7
2.6 Selecting the FLASH address range 7
2.7 Writing and erasing the NTM88 FLASH8
2.8 Example of implementation 9
2.9 Examples of transfers ..9
3 NTM88 as SPI Server (Host) 11
3.1 Implementation .. 11
3.2 Baud rate ...12
3.3 Example of transfers ..12
4 NTM88 as I2C Controller12
4.1 Implementation .. 12
4.2 Baud rate ...13
4.3 Example of transfers ..13
5 References ..14
6 Revision history ...15

Legal information ...16

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 21 March 2024
Document identifier: AN14182

	1 Introduction
	2 NTM88 as SPI Client
	2.1 SPI configuration
	2.2 Enabling and disabling the SPI block
	2.3 SPI commands and error handling
	2.4 SPI clock error when using PTA0 as KBI pin
	2.5 Bus resources
	2.6 Selecting the FLASH address range
	2.7 Writing and erasing the NTM88 FLASH
	2.8 Example of implementation
	2.9 Examples of transfers

	3 NTM88 as SPI Server (Host)
	3.1 Implementation
	3.2 Baud rate
	3.3 Example of transfers

	4 NTM88 as I2C Controller
	4.1 Implementation
	4.2 Baud rate
	4.3 Example of transfers

	5 References
	6 Revision history
	Legal information
	Tables
	Figures
	Contents

