AN14618

Multi-core Application Development on i.MX RT700
Rev. 2.0 — 10 November 2025

Application note

Document information

Information Content
Keywords AN14618, i.MX RT700, multi-core application
Abstract

The i.MX RT700 features five domains, with compute and sense as primary processors. This

application note outlines strategies for managing memory, cache, boot sequence, and inter-core
communication to develop multi-core application.



https://www.nxp.com

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

1 Introduction

The i.MX RT700 MCU includes five independent functional domains:

e Compute

* Sense

« Common

* Digital Signal Processing (DSP)
* Media

The compute and sense domains act as the primary processing domains. Each of these two domains integrates
an Arm Cortex-M33 core (processor), colocated with a Cadence Tensilica HiFi4/HiFi1 DSP core, as shown in
Figure 1.

The media domain also features a Reduced Instruction Set Computer-V (RISC-V) core called EZH-V, primarily
implemented to provide a SmartDMA engine for postprocessing graphics data assembled by the GPU and/or
CPU. The EZH-V core then passes this data to the Flexible Input/Output (FlexlO) or Mobile Industry Processor
Interface Display Serial Interface (MIPI DSI) for output. Processing operations include data packing and byte
and bit order adjustment.

EZH-V handles any required general-purpose tasks and supports an extensive selection of trigger inputs from
General-Purpose Input/Output (GP1O) and most on-chip peripherals.

The single i.MX RT700 MCU includes the following five heterogeneous cores:

e 2x Cortex-M33
HiFi4 DSP
HiFi1 DSP

e EZH-V

Therefore, i.MX RT700 users must properly manage communication between each core and memory
allocations to avoid resource conflict and optimize performance.

This application note explains how to manage memory, cache, boot sequence, and inter-core communication
in i.MX RT700. The i.MX RT700 also includes a Neural Processing Unit (NPU) to accelerate neural network
operations, but this application note does not cover the NPU.

Media Compute Sense
EZH-V CPUO CPU1
HiFi4 HiFi1

Figure 1. The compute and sense domains have an Arm Cortex-M33 core processor, colocated with a DSP and the
media domain has a RISC-V core called EZH-V

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
2/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

2 Memory usage in i.MX RT700 multi-core applications

This section explains how i.MX RT700 MCU manages memory across different domains and cores. It also
describes memory architecture, cache controllers, memory maps, and memory allocation strategies.

2.1 Memory architecture

In a multi-core application development, developers decide the physical location of code, data, and shared
buffers to avoid resource conflict and optimize performance. Figure 2 shows the memory architecture of the
i.MX RT700 family. The figure highlights which memory is tightly coupled to each core.

The following Random Access Memory (RAM) arbiter modules manage access to the on-chip shared RAM
memory partitions:

* RAM_ARBITERQO, located in the VDD2_COM power domain, manages accesses to VDD2 shared memory
partitions (P0-P17).

* RAM_ARBITERH1, located in the VDD1_SENSE power domain, manages accesses to VDD1 shared memory
partitions (P18-P29).

This shared RAM is divided into multiple partitions with variable sizes. Some partitions are intentionally larger,
for example, for frame buffers or DMA descriptors, while others are smaller for stack or heap, or control
structures. Each arbiter enforces access rules for every partition. Contention occurs only when two masters
target the same partition. Accesses to different partitions proceed independently. CPUO takes a performance hit
for accessing partitions, P18-P30 and CPU1 takes a performance hit for accessing partitions, PO-P17.

—| DTCM ITCM
| CPUO | DTCM | ITCM
Code System I/D cache t T
[ XCACHET | [ XCACHEO | NIC DSP AXBS EZHV
I {_‘ XSPI2
M bus P bus EZH-V T
L L NIC media 1
—
NPU CPU1
CACHE64_CTRLO|  [CACHE64_CTRL1 |
S bus
RAM_ARBITERO RAM_ARBITER1 :-
XSPI0 XSPI1 (PO ~ P17) (P18 ~ P29)
Figure 2. Simplified memory architecture of i.MX RT700 MCU
AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback

3/30


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

The subsections that follow explain the memory architecture of different i.MX RT700 functional domains.

2.1.1 Compute domain

The compute domain includes the following main cores and components:

» Cortex-M33 (CPUOQ)
 HiFi4 DSP

* NPU

* A diverse set of peripherals

One architectural enhancement in i.MX RT700 is the cache support for CPUO. In this scheme, shared Static
Random Access Memory (SRAM) is cached, while CPUO directly accesses the peripherals. There are separate
cache controllers for the CPUO code and system buses. The SRAM is shared, but it can be configured partially
as cacheable, with the remainder configured as uncached.

The compute domain uses a split-bus architecture consisting of the following:

* Memory Bus (M-Bus) matrix connects the core initiators to the shared memory.
» Peripheral Bus (P-Bus) matrix interfaces to peripherals.

XSPIO primarily executes code from off-chip Serial Peripheral Interface (SPI) flash memory. XSPI0 supports
Execute-in-Place (XIP) and, if required, On-the-Fly (OTF) decryption using the PRINCE module. It also provides
a mechanism to shift designated addresses to a different region of off-chip memory to support dual-image boot.

XSPI1, if used at all, primarily accesses data from pSRAM efficiently. The HiFi4 DSP and CPUO access the
XSPI1.

Both the XSPI0 and XSPI1 interfaces include a 32 KB cache with a CACHE®64 cache controller.

2.1.2 Common domain

The common domain holds a shared SRAM (RAM_ARBITERO).

2.1.3 DSP domain

The HiFi4 DSP core has a private cache controller, independent of CPUOQ accesses to the shared memory. It
also has a dedicated 64 KB Data Tightly Coupled Memory (DTCM) and a 64 KB Instruction Tightly Coupled
Memory (ITCM), which are accessible by CPUO. These memories store HiFi4 vectors and time-critical code and
data.

2.1.4 Sense domain

The sense domain has its own bus, S-Bus, which connects the other Cortex-M33 core (CPU1), a HiFi1 DSP
core, and two Direct Memory Access (DMA) controllers as core initiators.

CPU1 cannot execute in XIP mode and does not have cache memory. The domain has a shared SRAM that
can be accessed through RAM_ARBITER1. CPU1 in the sense domain can access SRAM for code and data.
The SRAM is also accessible by CPUO, but the frequency is SENSE_RAM_CLK, which is slower than the
RAM_ARBITERO clock (COMMON_RAM_CLK) in many cases.

The HiFi1 DSP does not have private cache memory. Instead, its dual-memory TCM bus interfaces connect to
the shared memory. HiFi1 cannot access RAM_ARBITERO.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
4/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

2.1.5 Media domain

The purpose of the media domain is to hold peripherals that require high performance. The media domain has
cross-links to the compute and sense domains and direct access to all partitions of the shared memory.

EZH-V has dedicated 32 KB ITCM and 32 KB DTCM, which are appropriate areas for EZH-V to access code
and data frequently. EZH-V does not have cache memory.

XSPI2 is primarily used to access data from pSRAM or HyperRAM, particularly for Graphics Processing Unit
(GPU) or LCD Interface (LCDIF), efficiently.

2.2 Cache controllers

CPUO and HiFi4 have cache memories. While cache improves performance, software issues can occur in multi-
core development due to cache coherency, if not managed carefully. Therefore, it is important to determine
whether a shared resource among multiple cores is cacheable.

The subsections that follow describe how to configure the cache for different i.MX RT700 cores.

2.2.1 CPUO

The CPUO and CPU1 code buses access memory and peripherals, as shown in Figure 2. CPUO code bus
access is routed to XCACHE1. This XCACHE1 controller processes cacheable accesses as needed, while
bypassing noncacheable accesses or forwarding cache write-through and cache miss accesses to downstream
memories through the controller port of the cache controller.

All system bus accesses are routed to the target address in destination memories through a multilayer
Advanced High-performance Bus (AHB) matrix slave port. The CPUO system bus access is routed to
XCACHEQ.

The CPUO Memory Protection Unit (MPU) defines the cache policy. In the Armv8-M architecture, memory
attributes are not defined for each region differently as in the Armv7-M architecture (for example, Cortex-M3
and Cortex-M7). Instead, the Memory Attribute Indirection Registers (MAIR), specifically MPU_MAIRO and
MPU_MAIR1, define memory attributes that are indirectly referenced by the configuration of each memory
region.

In the attached project (AN14618SW), MPU_MAIRO and MPU_MAIR1 are defined according to Table 1. For a
detailed explanation of the memory attributes, refer to the Arm document, MPU Memory Attribute Indirection
Registers 0 and 1.

Table 1. MPU_MAIRO0 and MPU_MAIR1 configuration

Attribute index Memory attribute

0 Device-nGnRnE

1 Normal memory, noncacheable

2 Write-through transient, read-allocation

The following code snippet implements the configuration in Table 1:

/* Attr0: device memory. */
ARM MPU SetMemAttr (0U, ARM MPU ATTR (ARM MPU ATTR DEVICE,
ARM MPU ATTR DEVICE nGnRnE)) ;
/* Attrl: non-cacheable. */
ARM MPU SetMemAttr (1U, ARM MPU ATTR (ARM MPU ATTR NON CACHEABLE,
ARM MPU ATTR NON CACHEABLE)) ;
/* Attr2: nontransient, write-through, read-allocate. */
attr = ARM MPU ATTR MEMORY (0U, 0U, 1U, 0U);

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
5/30



https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-memory-attribute-indirection-registers-0-and-1
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-memory-attribute-indirection-registers-0-and-1
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

ARM MPU SetMemAttr (2U, ARM MPU ATTR (attr, attr));

Region Base Address Register (MPU_RBAR) and Region Limit Address Register (MPU_RLAR) are defined
according to Table 2 to specify memory regions. Region 0 is accessed under the write-through and read-
allocation policy, while Region 1 is noncacheable. Region 2 is accessed under nongathering, non-reordering,
and non-early-write-acknowledge policy. For a detailed explanation of the memory attributes, refer to the Arm
documents, MPU Region Base Address Register and MPU Region Limit Address Register.

Table 2. MPU_RBAR and MPU_RLAR register

_Reglon Address Shareable |Access permission 200D Attnbute

index never index

0 0x0 - OX1FFFFFFF N E(/ V;I| by any privilege 5o itted 2
{nonCacheStart} RW b Vil

1 - Outer bmlymymwwe Permitted 1
{nonCacheStart + nonCacheSize - 1}

2 0x40000000 - OX5FFFFFFF N E(/ V;I| by any privilege 5o itted 0

The following code snippet implements the configuration in Table 2:

/* Region 0: [0x0, Ox1FFFFFFF], nonshareable, read/write, any privileged,
executable. Attr 2 (write-through). */

ARMﬁMPUisetRegion(OU, ARMﬁMPUiRBAR(OU, ARM MPU SH NON, ou, 1u, o0U),

ARM MPU RLAR (OX1FFFFFFFU, 2U));

/* Region 1 setting outter-shareable, read-write, nonprivileged, executable.
Attr 1. (non-cacheable) */

ARM MPU SetRegion (1U, ARM MPU RBAR (nonCacheStart, ARM MPU SH OUTER, 0U, 1U, 0U),

ARM MPU RLAR (nonCacheStart + nonCacheSize - 1, 10U));

/* Region 2 (Peripherals): [0x40000000, Ox5FFFFFFF], nonshareable, read/write,
nonprivileged, executable. Attr O

* (device). */
ARM_MPU_SetRegion (20, ARM_MPU_RBAR (0x40000000U, ARM_MPU_SH_NON,
0U, 1U, 0U), ARM MPU RLAR(0xSFFFFFFF, 0U)); ARM MPU SetMemAttr (1U,

ARM MPU ATTR(ARM MPU ATTR NON CACHEABLE, ARM MPU ATTR NON CACHEABLE));

2.2.2 CPU1

CPU1 does not have cache memory.

2.2.3 HiFi4

The HiFi4 system bus accesses the system memory and peripherals, as shown in Figure 3. The HiFi4 system
bus access is routed to an internal cache controller. Memory Management Unit (MMU) defines the cache policy.

In the HiFi4 core of the i.MX RT700 MCU, the MMU includes a region-protection feature that divides the 32-
bit address space into eight segments of 512 MB each. Table 3 shows the example of MMU configuration. The
software can control protection settings depending on the requirements, as discussed in Section 6.1.

AN14618 All information provided in this document is subject to legal disclaimers.

Application note Rev. 2.0 — 10 November 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
6/30



https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-region-base-address-register
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-region-limit-address-register
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

Cache
Core pipeline / PIF |— % p’:':&‘;?;l
Bypass — z
Figure 3. HiFi4 cache controller
Table 3. HiFi4 MMU configuration (example)
Segment Start address Policy
0 0x00000000 Write-through
1 0x20000000 Bypass
2 0x40000000 Bypass
3 0x60000000 Write-back
4 0x80000000 llegal
5 0xA0000000 llegal
6 0xC0000000 llegal
7 0xE0000000 llegal
2.2.4 HiFi1

HiFi1 does not have cache memory.

2.3 Memory map

Table 4 shows the memory map. The system bus is defined as an alias for the code bus and uses the 28" pit
for identification.

Table 4. Memory map and accessibility

Media
Address Allocation CPUO [CPU1 HiFi4 |HiFi1 [NPU |eDMAO [eDMA1 [eDMA2 |eDMA3 |domain
controllers
0x00000000 | SRAM PO-P171
(system)
0x00580000 | SRAM P18-P30 |, v J
(system)
0x00780000 |Reserved
0x08000000 | XSPI1 N v v v N
0x20000000 SRAMPO-PA7 1, v v v v v v v v
(code)
0x20540000 SRAM P18-P30 v N v v v N v v N4
(code)
0x20780000 |Reserved
0x24000000 |HiFi4_DTCM N v v
0x24010000 |Reserved

AN14618

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Application note

Rev. 2.0 — 10 November 2025

Document feedback

7/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

Table 4. Memory map and accessibility...continued

Medi
Address Allocation CPUO |CPU1 HiFi4 [HiFi1 |[NPU eDMAO [eDMA1 |eDMA2 eDMA3 d::\:in
controllers
0x24020000 |HiFi4_ITCM v v v
0x24030000 |Reserved
0x24100000 [EZHV_ITCM v v v
0x24108000 |[EZHV_DTCM v v v
0x24112000 |Reserved
0x28000000 | XSPIO v v v v v
0x40000000 |Peripheral
0x40520000 |NPU v v v v v v v
0x60000000 |XSPI2 v v v v v v v v
0xE0000000 |PPB_INT v v
0xE0040000 |PPB_EXT v v

2.4 Memory allocation

The software on each core needs individual and shared resources. Each object must reside in the correct
memory area to ensure that multiple cores boot properly and compute efficiently.

In the attached project (AN14618SW), each object is placed according to Table 5. You can change the start
address and the size depending on your requirements, as discussed in Section 6. The shared region is used for
inter-core communication, as discussed in Section 4.

Table 5. Memory allocation for multi-core applications

Address range Allocation Objects

0x00000000-0x0003FFFF SRAM PO-P5 CPUO noncache data (secure)
0x00040000-0x0005FFFF SRAM P6 CPUO noncache data (nonsecure)
0x00060000-0x00067FFF SRAM P7 Shared by CPUOQ (secure) and CPU1
0x00068000-0x0006FFFF SRAM P7 Shared by CPUOQ (secure) and EZH-V
0x00070000-0x0007FFFF SRAM P7 Shared by CPUO (secure) and HiFi4
0x000C0000-0x000FFFFF SRAM P9 CPUO data/code/stack (secure)
0x00100000-0x0013FFFF SRAM P10 CPUO vector table/code (nonsecure)
0x00140000-0x0017FFFF SRAM P10 CPUO data/stack (nonsecure)
0x00400000-0x0057FFFF SRAM P14-P17 | HiFi4 data/code/stack
0x00580000-0x00587FFF SRAM P18 HiFi1 vector table
0x005B0000-0x005BFFFF SRAM P23 Shared by CPU1 and HiFi1
0x005C0000-0x005FFFFF SRAM P24-25 CPU1 data/stack
0x00600000-0x0067FFFF SRAM P26 CPU1 boot Image
0x00680000-0x006FFFFF SRAM P27 HiFi1 code
0x00700000-0x0077FFFF SRAM P28-P29 | HiFi1 data/stack

AN14618 All information provided in this document is subject to legal disclaimers.

Rev. 2.0 — 10 November 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
8/30

Application note


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

Table 5. Memory allocation for multi-core applications...continued

Address range Allocation Objects
0x24000000-0x2400FFFF HiFi4_DTCM HiFi4 data
0x24020000-0x2402FFFF HiFi4_ITCM HiFi4 code
0x24100000-0x24107FFF EZHV_ITCM EZH-V code
0x24108000-0x2410FFFF EZHV_DTCM EZH-V data

Flash configuration

CPUO vector table (secure)
CPUO boot image (secure)
Veneer table

0x28000000-0x2FFFFFFF XSPIO

3 Boot sequence

In a multi-core application, the cores must be booted following the correct procedure.

3.1 Boot sequence overview

After a power-on reset or warm reset, CPUO executes the ROM bootloader from internal Read-only Memory
(ROM). The ROM bootloader loads the CPUO boot image from eMMC, NOR flash, or serial communication,
depending on the boot configuration.

At reset, CPU1, HiFi1, HiFi4, and EZH-V are clock gated. To boot each core, follow the steps below:
1. Enable the clock and power for SRAM or TCM and the core.

2. Load the image into an appropriate RAM area.
3. Set the offset of the vector table, if needed.
4,
5.

Send the reset signal to the core.
Clear the stall status bit.

Figure 4 illustrates the boot sequence in the attached project (AN14618SW):

1. CPUO boots from the QSPI NOR flash memory at reset.
2. CPUO boots CPU1, HiFi4, and EZH-V.
3. CPU1 boots HiFi1.

* Flash SRAM i " :
CPUO image CPU1 image
Copied SRAM

- — Copied —
CPU1 image HiFi1 image ——>| HiFi1 image
HiFi1 image HiFi4 DTCM/ITCM

w HiFi4 image

\

HiFi4 image
. EZH-V ITCM
- Copied
EZH-V image [ EZH-V image

Figure 4. Boot sequence

3.2 Clock root

Table 6 shows how each core works under a different clock root. Each clock root operates independently and
supports individual configuration, as shown in Figure 5.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
9/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

Table 6. Clock root of each core

Processor Clock root CLKCTL instance
CPUO COMPUTE_MAIN_CLK CLKCTLO
HiFi4 DSP_CLK CLKCTLO
HiFi1 SENSE_DSP_CLK CLKCTLA1
CPU1 SENSE_MAIN_CLK CLKCTL3
EZH-V MEDIA_MAIN_CLK CLKCTL4
Clock source Clock select and enable Clock divider Clock root

MAINCLKSEL[SEL] (1)
S~

baseclk_cmpt 00 MAINCLKDIV[DIV]
main_pll_pfd0 01 |_|
DIV COMPUTE_MAIN_CLK
fro0_max 10 L - -
audio_pll_pfd1 11
/
DSPCPUCLKSEL[SEL] (1)
S~
baseclk_dsp 00 1 sEL EN] DSPCPUCLKDIV[DIV]
main_pll_pfd0 01 | |
L (cg DIV DSP_CLK
fro0_max 10 L -
audio_pll_pfd1 1
/
SENSEDSPCPUCLKSEL[SEL] (1)
S
baseclk_sense 00 | SEL EN] SENSEDSPCPUCLKDIV[DIV]
fro2_max R @ DIV SENSE_DSP_CLK
>
audio_pll_pfd1 10 L - =
fro1_max 11
/
MAINCLKSEL[SEL] (1)
baseclk_sense 00 SENSEMAINCLKDIVIDIV]
fro2_max 01 | ] SENSE_MAIN_CLK/
DIV
audio_pll_pfd3 10 L1 SENSE_MAIN_CLK_1
fro1_max 11

MEDIAMAINCLKSEL[SEL] (1)

baseclk_md2 o MEDIAMAINCLKDIV[DIV]
main_pll_pfd0 01 M~
DIV MEDIA_MAIN_CLK
fro0_max 10 L - -
main_pll_pfd2 11

Figure 5. Clock root selector and divider for each core

3.3 Software implementation

The CPUO source files implement the HiFi4 boot sequence. The following code snippet boots HiFi4. As listed in
Table 5, it is important to note that the binary is copied to three isolated regions.

/* Initialize PMIC */
/* BOARD InitPmic(); */
PMCO->PDRUNCFG2 &= ~0x0003C000; /* power up dsp used SRAM. */

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
10/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

PMCO->PDRUNCFG3 &= ~0x0003C000;
POWER_DisablePD (kPDRUNCFG_PD_VDD2_DSP) 2
POWER ApplyPD () ;

/* Let's DSP run on PLL clock. */
CLOCK AttachClk (kMAIN PLL PFDO to DSP);
CLOCK_SetClkDiv (kCLOCK DivDspClk, 2U);
/* Initializing DSP core */

DSP Init ()

/* Copy literals to DSP DTCM */

DSP CopyImage (&literal image);

/* Copy vectors to DSP ITCM */

DSP CopyImage (&text image);

/* Copy application from RAM to DSP_RAM */
DSP CopyImage (&data image) ;

/* Only for HiFid */

XCACHE CleanInvalidateCacheByRange ( (uint32 t)data image.destAddr,
data image.size);

/* Copy ncache section to DSP_RAM */
DSP CopyImage (&ncache image) ;

/* Run DSP core */

DSP_Start () ;

The CPU1 source files implement the HiFi1 boot sequence. The following code snippet boots HiFi1. As listed in

Table 5, it is important to note that the binary is copied to three isolated regions.

CLOCK AttachClk (kSENSE BASE to SENSE DSP);
CLOCK EnableClock (kCLOCK SenseAccessRamArbiter0);
CLOCK EnableClock (kCLOCK Sysconl) ;

CLOCK EnableClock (kCLOCK Sleepconl) ;

/* Enable SENSE private clock. */

POWER DisablePD (kPDRUNCFG SHUT SENSEP MAINCLK) ;
/* Initializing DSP core */

DSP Init();

/* Copy literals to DSP RAM */

DSP CopyImage (&vector image) ;

/* Copy vectors to DSP ITCM */

DSP CopyImage (&text image);

/* Copy application from RAM to DSP_RAM */

DSP CopyImage (&data image) ;

/* Copy ncache section to DSP_RAM */

DSP CopyImage (&ncache image) ;

/* Run DSP core */

DSP_Start () ;

The CPUO source files implement the EZH-V boot sequence. The following code snippet boots EZH-V.

CLOCK_EnableClock (kCLOCK Ezhv) ;

CLOCK EnableClock (kCLOCK AxbsEzh) ;

POWER DisablePD (kPDRUNCFG_APD EZHV_ TCM) ;

POWER DisablePD (kPDRUNCFG PPD EZHV TCM) ;

POWER ApplyPD () ;

EZHV InstallFirmware (&ezhv image));

XCACHE CleanInvalidateCacheByRange (ezhv_ image.destAddr, ezhv image.size);
EZHV Boot (EZHV_ITCM ADDRESSESS) ;

The CPUO source files implement the CPU1 boot sequence. The following code snippet boots CPU1.

BOARD CopyCorelImage (CORE1 BOOT ADDRESS) ;
BOARD ReleaseCorelPower () ;

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback

11730


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

BOARD BootCorel ( (CORE1 BOOT ADDRESS & OxXOFFFFFFF), (CORE1 BOOT ADDRESS &
O0xOFFFFFFF) ) ;

4 Inter-core communication

In a multi-core application, the different cores need to interact with each other. This section explains how inter-
core communication happens.

RPMsg-Lite is a middleware, that enables one-to-one communication between cores. In this model, one core
acts as the master and the other as the remote. Furthermore, RPMsg endpoints provide logical connections on
top of the RPMsg channel, allowing you to bind multiple callbacks on the same channel. This mechanism works
like a port number used in the TCP/UDP protocol. You can register callbacks for each endpoint. The endpoint
address can be announced dynamically to the name service endpoint.

Here, the software implementation is discussed first, and the hardware implementation is explained later.

4.1 Software implementation

The master first initializes the Virtual Input/Output (VirtlO) queue, which is shared with the remote. Each VirtlO
queue contains a Used buffer and an Avail buffer. These buffers hold elements that point to the buffer descriptor
index, as shown in Figure 6. Each buffer descriptor includes the address and length of the buffer, which is used
to exchange data between master and remote.

The two VirtlO queues have initially been created.

* Master TVQ (= Remote RVQ from the perspective of remote):
— The Used buffer contains elements with buffer descriptor index.
— The Avail buffer remains empty.

* Remote TVQ (= Master RVQ from the perspective of master):
— The Avail buffer contains elements with a buffer descriptor index.
— The Used buffer remains empty.

Buffer descripter

Index Address Length >
0

X o Used Avail
1 XXX XXX

Master TVQ

Buffer descripter

Index Address Length >
0

X o Avail Used
1 XXX XXX

Master RVQ

Figure 6. Two VirtlO queues initialized by the master

When the master sends data to the remote, the master and remote processors follow the below procedure, as
shown in Figure 7:

1. The master dequeues the descriptor index from the Used buffer in the master Transmit VirtlO Queue (TVQ).
2. The master updates the buffer.
3. The master enqueues the descriptor index into the Avail buffer in the master TVQ.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
12/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

The master kicks the remote.

The remote dequeues the descriptor index from the Avail buffer in the remote Receive VirtlO Queue (RVQ).
The remote reads the buffer.

The remote enqueues the descriptor index from the Avail buffer in the remote RVQ.

No ok

Master TVQ (= remote RVQ)

vg_tx_alloc_master: q tx_master: vq rx_remote: vq rx_free_remote:
dequeue enqueue m dequeue enqueue
-
Descnptor Descnptor
Used mdex Avail mdex Used
Master Remote

Figure 7. The master sends data to the remote

When the remote sends data to the master, each processor follows the procedure shown in Figure 8. When the
remote sends a message to the master, the roles of the Avail and Used buffers are swapped.

1. The remote dequeues the descriptor index from the Avail buffer in the remote TVQ.
The remote updates the buffer.

The remote enqueues the descriptor index into the Used buffer in the remote TVQ.
The remote kicks the master.

The master dequeues the descriptor index from the Used buffer in the master RVQ.
The master reads the buffer.

The master enqueues the descriptor index from the Used buffer in the master RvVQ.

Noak~ODN

Remote TVQ (= Master RVQ)

vg_tx_alloc_remote: q tx_remote: vq rx_master: vq rx_free_master:
dequeue enqueue m dequeue enqueue
-
Descnptor Descnptor
Ava|I mdex Used mdex Avall
Remote Master

Figure 8. The remote sends data to the master

4.2 Hardware implementation

RPMsg-Lite requires the following two basic components in hardware perspective:
* Shared memory
* Inter-core interrupt

This section explains how the shared memory and inter-core interrupt are implemented in the i.MX RT700 MCU.

4.2.1 Shared memory

RPMsg-Lite uses the VirtlO queue to exchange data, and this queue resides in the shared memory. The start
address and size of the shared memory must remain fixed during initialization time on both the master and
remote sides. In the attached project (AN14618SW), the shared memory is allocated as listed in Table 7.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
13/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

In RPMsg-Lite v5.1.3 or higher, the shared regions is either cacheable or noncacheabile. If it is cacheable, the
library maintains cache coherency.

Table 7. Shared memory placement

Master and remote Address Size

CPUO and CPU1 0x20060000 0x8000
CPUO and EZH-V 0x20068000 0x8000
CPUO and HiFi4 0x20070000 0x8000
CPU1 and HiFi1 0x205B0000 0x8000

4.2.2 Inter-core interrupt

RPMsg-Lite uses inter-core interrupts to notify target core (such as CPU1, HiFi4, HiFi1, or EZH-V) about VirtlO
queue updates. The subsections that follow explain how inter-core communication can happen using interrupts.

4.2.2.1 Messaging unit (MU)

The MU enables one processor to signal the other processor using interrupts. The MU consists of the following
two interfaces as shown in Figure 9:

* MUA: MUA can generate interrupts to processor A when interrupts are enabled.
* MUB: MUB can generate interrupts to processor B when interrupts are enabled.

Processor A MU Processor B
MUA MUB
| TXandRX TXandRX |
registers registers
Status and Status and
< > control control < >
Processor A registers | registers Processor B
peripheral peripheral
bus l T l T bus
Sync and Sync and
> control control <
registers registers
Interrupts to Generate | | | Generate Interrupts to
processor A interrupts interrupts processor B
interrupt interrupt
controller controller

Figure 9. MU block diagram

The i.MX RT700 MCU includes five MU instances, with processor pairings, as listed in Table 8.

Table 8. Processor A and processor B for each MU instance

MU instance Processor A Processor B

MUO CPUO HiFi1

MU1 CPUO CPU1
AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback

14/30


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

Table 8. Processor A and processor B for each MU instance...continued

MU instance Processor A Processor B
MuU2 HiFi4 CPU1
MU3 CPU1 HiFi1
MU4 CPUO HiFi4

4.2.2.2 Arm to EZH-V and EZH-V to Arm interrupt

The Arm core can generate an interrupt to EZH-V core directly without using the MU, and EZH-V core can also
signal the Arm core in the same way.

The following mechanisms are used for the two types of processors:

* For the Arm core: The Arm core uses the EZHV2ARM_INT_CHAN register to identify which VirtlO queue has
been updated.

* For EZH-V: EZH-V uses the machine software input interrupt and machine external input interrupt to
determine which VirtlO queue has been updated.

5 Running the demo

This section explains how to build and run the i.MX RT700 multi-core application project in IAR Embedded
Workbench for Arm.The same basic procedure applies to other toolchains. The i.MX RT700 multi-core
application demonstrates exchanging message by RPMsg Lite between each cores.

5.1 Apply the patch to the MCUXpresso SDK

RPMsg-Lite does not support EZH-V in MCUXpresso SDK 24.12.00. Therefore, a software patch must be
applied to the MCUXpresso SDK. To apply the patch, follow the steps below:

1. Download the MCUXpresso SDK 24.12.00 and unzip it to a path of your choice.
2. Copy rpmsg-lite ezhv.patch to the SDKroot directory.

3. Change the current directory to the SDK root directory.

4. Apply the patch using the following command:

patch -pl < rpmsg-lite ezhv.patch

5.2 Hardware and PC setup

To set up the hardware and PC for the i.MX RT700 multi-core application demo, follow the steps below:

1. On the MIMXRT700-EVK board, ensure that the jumper JP18 is open if you use the onboard debugger;
otherwise, short JP18.

2. To see two COM ports from the PC, open the jumper JP27.
3. Open two terminal consoles:

* One for CPUO, HiFi4, and EZH-V

¢ The other for CPU1 and HiFi1
4. Configure both consoles with the following settings:

* 115,200 baud rate

* 8 data bits

* No parity

* One stop bit

AN14618 All information provided in this document is subject to legal disclaimers.

Application note Rev. 2.0 — 10 November 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
15730



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

* No flow control

5.3 Build the i.MX RT700 multi-core application project

To build all components of the i.MX RT700 multi-core application, follow the step-by-step procedures mentioned
in the following subsections. The order of building is important because some images are embedded into other
images (for example, the CPU1 image includes the HiFi1 image).

5.3.1 Build HiFi4 and HiFi1

To build the HiFi4 and HiFi1 DSP using Xtensa Xplorer, follow the steps below:

1. To set up Xtensa Xplorer, follow the Getting Started with Xplorer for MIMXRT700-EVK (document
GSXMIMXRT700UG).

2. Download the attached project (AN14618SW) and unzip it to boards\mimxrt700evk\demo apps.

3. Import the project from the file system, as shown in Figure 10.

Import Projects from File System or Archive [m] X
Import Projects from File System or Archive —
_—
This wizard analyzes the content of your folder or archive file to find projects and import them in the [DE. b
Import source: | Ch_ddmimcu-sdk\5DK_24_12_00_MIMXRT700-EVK: boards\mimuxrt700evihdeme_appsirpmsg_lite ~ Directory... Archive...
type filter text Select All
Folder Import as Deselect All
g
B rpmsg_lite\Hifil\xtensa Eclipse project
B rpmsg_lite\Hifid\xtensa Eclipse project o BTt

[] Hide already open projects
[_] Close newly imported projects upon completion

Use installed project configurators to:
8 Search for nested projects

B Detect and configure project natures
Working sets
] Add project to working sets Mew...

Select...

Show other specialized import wizards

li?j' < Back Mext = Cancel

Figure 10. Import projects from file system

4. Build the project, as shown in Figure 11 and Figure 12. Use correct configurations for each project in the
pulldown as shown in Figure 13:
* rt700_hifi4_RI23_11_nlib for HiFi4
* rt700_hifi1_RI23_11_nlib for HiFi1

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
16/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

InstruMode: None = P: dsp_rpmsg_lite_hifid ~ C: t700_hifid_RI23_11_nlib ~ T:Debug ~ BuildActive ¥ . Run ~ Profile = Debug ~ Trace ~

& Console 3 Search vervie L oqp <§>| LA EE = & | B~ [~ GrepConsole = B
COT Build Console [dsp_rpmsg_lite_hifid]

e A MOL L LACTMUOGE L LA LLST Y LWULD L LMD LEGELL L L eWULAD L T RL T A VST e LT WAL S L WAL TMOGL WY AD L AL VAT oL AT T erw _U-U-I-Il.r At
TYFE text rodata data bss=s dec hex filename
code 42566 a a a 42866 aTiz C:f_ddmfmﬂu—sdkaDK_2ﬂ_12_GG_HIHXRTTGG—EVbeDaId
literal 1308 a a a 1308 Slc C:f_ddmfmsu—sdkaDK_Zﬂ_lz_OG_HIHXRTTGG—EVbeoaId
other 1242 4332 3072 11120 13766 4d36 C:/ ddm/mcu-sdk/SDE 24 12 00 MIMXRTTOO-EVE/board
Total 45416 4332 3072 11120 63940 foca C:f_ddmfmﬂu—sdk{SDK_24_l2_OG_HIMXRTTOO—EVKKbDaId

Time taken: 553 ms
Executing post-build step...
cnd /c C:f_ddm/mcu-sdk/SDK 24 12 00 _MIMXRTTOO-EVE/boards/mimxrt700evk/demo apps/rpmsg_lite/Hifi4/xtensa/

C:\_ddm\mcu-sdk\5DK_24 12 00 MIMXRTTOO-EVE‘\boards\mimxrt70O0evkidemo appsi\rpmsg lite\Hifid4\xtensa>rem(){
post all rule
--xtensa-system=C:/usr/xtensa/XtDevIools/install/builds/RI-2023.11-win32/rt700 hifi4 RIZ3_11 nlib/config
dsp rpmsg_lite hifid4

bin/rt700_hifi4 RIZ3 11 nlib/Debug/dsp rpmsg lite hifi4

Time taken: 1106 ms

EEEEEEL AAAAAAAAAALTLCEE AR R R

Build successful !!
Total time taken: 10.89%8 secs
#%%% Bpild Finished [Tue, 18 Mar 2025 10:24:02] *#%*%

Figure 11. Build HiFi4 project in Xtensa Xplorer

InstruMode: Mone = P:dsp_rpmsg_lite_hifil = & t700_hifi1_RI23_11_nlib * T:Debug =~ BuildActive = . Run = Profile = Debug = Trace

B Console 2 | 4 Search %Systﬂm Overview 4o %l LB RE = B | ™ Bl ~ ] v Grep Console = B
CDT Build Consecle [dsp_rpmsg_lite_hifil]

e L LWOL LV AALTUOO Y WALLITY LIUULD L L AMO LG L L ) VLU LD IR T SV S e LA TWALLIS W WLAaLTUOGL LD ) WLy wALT oL T bew _Ll-u-lll.l' FTTLS
TYPE text rodata data bss dec hex filename
code §4312 Q i} Q 84312 14958 C:/ ddm/mcu-sdk/SDE 24 12 00 MIMXRT700-EVE/board
literal 2356 a 9] a 2356 934 C: f_ddmfmcu—scilc..l"SDK_Z&_lz_OG_HIHXRT'?CICI—EV'K..I"bDaId
other 2012 T34 3100 21024 33520 82f0 C:/ ddm/mcu-sdk/SDE 24 12 00 MIMXRT700-EVE/board
Total 88680 T384 3100 21024 120188 1d57c C:/_ddm/mcu-sdk/SDE_24 12 00 MIMXRT700-EVE/board

Time taken: 201 ms
Executing post-build step...
cmd /c C:/_ddm/mcu-sdk/SDK 24 12 00 MIMXRT700-EVE/boards/mimxrtT700evk/demo apps/rpmsg lite/Hifil/xtensa/:

C:\_ddm\mcu-sdk\5DK 24 12 00 MIMXRTTO0-EVE\boards\mimxrt700evk\demo apps‘rpmsg lite)\Hifil\xtensa>rem(){
post all rule

--xtensa-system=C: /usr/xtensa/XtDevicols/install/builds/RI-2023.11-win32/rt700 hifil RIZ3 11 nlib/config
dsp rpmsg lite hifil

bin/rt700_hifil RI23 11 nlib/Debug/dsp_rpmsg lite hifil

Time taken: 553 ms

AR EAEEE AR AAAERAARARROEOR A AR R

Build successful !!
Total time taken: 7.976 secs
#%%% Build Finished [Tue, 18 Mar 2025 10:25:16) #*#%

Figure 12. Build HiFi1 project in Xtensa Xplorer

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
171/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

InstruMode: None ¥ P: dsp_rpmsg_lite_hifi4 v C: rt700_hifi4_RI23_11_nlib ¥ T:Release ¥ Build Active ~
aaa-062767
Figure 13. Use the correct configuration depending on the project
5. Find the generated binary images in:
¢ rpmsg_lite\Hifi4\binary
* rpmsg_lite\Hifi1\binary

5.3.2 Build EZH-V

To build the EZH-V project using LLVM/Clang toolchains, follow the steps below:

1. To set up the LLVM/Clang toolchains, follow Developing Environment Setup for i.MX RT700 EZH-V
(document AN14614)

2. In the command prompt, open the ezhv/riscvilvm directory.

Runbuild debug.bat orbuild release.bat, as shown in Figure 14.

4. Find the generated binary images in rpmsg lite\ezhv\binary. The build log is saved in
build log.txt.

W

Command Prompt

This warning is for project developers. Use -Wno-dev to suppress it.

TOOLCHAIN_DIR: C:/_ddm/rt7e8_zenv_usecases/ezhv-1lvm/riscv-11lvm-win32

BUILD_TYPE: debug

TOOLCHAIN_DIR: C:/_ddm/rt700_zenv_usecases/ezhv-1lvm/riscv-1lvm-win32

BUILD_TYPE: debug

The ASM compiler identification is Clang with GNU-like command-line

Found assembler: C:/_ddm/rt70@_zenv_usecases/ezhv-llvm/riscv-1lvm-win32/bin/clang.exe

The C compiler identification is Clang 14.0.0

The CXX compiler identification is Clang 14.06.0
C:/_ddm/mcu-sdk/SDK_24_12_88_MIMXRT700-EVK/arch/riscv/headers/RISCV_Include_Core.MIMXRT7985.cmake component is included.
C:/_ddm/mcu-sdk/SDK_2U_12_88_MIMXRT700-EVK/components/uart/component_lpuart_adapter.MIMXRT798S.cmake component is included.
C:/_ddm/mcu-sdk/SDK_2t_12_8B_MIMXRT7088-EVK/devices/MIMXRT7985/device_CHMSIS.MIMXRT798S5.cmake component is included.
C:/_ddm/mcu-sdk/SDK_2t_12_@B_MIMXRT7088-EVK/devices/MIMXRT7985/device_startup.MIMXRT798S.cmake component is included.
se C:/_ddm/mcu-sdk/SDK_2t_12_@8_MIMXRT780-EVK/devices/MIMXRT7985/1lvm/startup_MIMXRT7985_ezhv.S in device_startup.MIMXRT798S.
/_ddm/mcu-sdk/SDK_2t_12_B8_MIMXRT700-EVK/devices/MIMXRT798S/device_system.MIMXRT798S.cmake component is included.
/_ddm/mcu-sdk/SDK_2t_12_B8_MIMXRT700-EVK/devices/MIMXRT798S/drivers/driver_clock.MIMXRT798S.cmake component is included.
/_ddm/mcu-sdk/SDK_2t_12_B8_MIMXRT788-EVK/devices/MIMXRT798S/drivers/driver_common.MIMXRT798S.cmake component is included.
/_ddm/mcu-sdk/SDK_2t_12_B8_MIMXRT7@8-EVK/devices /MIMXRT798S/drivers/driver_gpio.MIMXRT798S.cmake component is included.
/_ddm/mcu-sdk/SDK_2t_12_B8_MIMXRT7@-EVK/devices/MIMXRT798S/drivers/driver_iopctl_soc.MIMXRT798S.cmake component is included.
/_ddm/mcu-sdk/SDK_2t_12_BB_MIMXRT7@0-EVK/devices/MIMXRT798S/drivers/driver_lpflexcomm.MIMXRT798S.cmake component is included.
/_ddm/mcu-sdk/SDK_2t_12_B8_MIMXRT7@B-EVK/devices/MIMXRT798S/drivers/driver_lpflexcomm_lpuart.MIMXRT798S.cmake component is inc
ded.
/_ddm/mcu-sdhk/SDK_20_12_08_MIMXRT708-EVK/devices/MIMXRT7985/drivers/driver_reset.MIMXRT7985.cmake component is included.
/_ddm/mcu-sdhk/SDK_20_12_08_MIMXRT708-EVK/middleware/multicore/middleware_multicore_rpmsg-lite.cmake component is included.
/_ddm/mcu-sdhk/SDK_20_12_08_MIMXRT708-EVK/middleware/multicore/middleware_multicore_rpmsg-lite_bm.cmake component is included.
/_ddm/mcu-sdk/SDK_20_12_08_MIMXRT708-EVK/middleware/multicore/middleware_multicore_rpmsg-lite_imxrt700_ezhv.cmake component is
included.
C:/_ddm/mcu-sdk/SDK_20_12_00_MIMXRT700-EVK/middleware/multicore/middleware_multicore_rpmsg-lite_ns.cmake component is included.
C:/_ddm/mcu-sdk/SDK_20_12_00_MIMXRT700-EVK/devices/MIMXRT798S/utilities/utility_str.MIMXRT798S.cmake component is included.
— Configuring done (1.9s)
— Generating done (@.1s)
— Build files have been written to: C:/_ddm/mcu-sdk/SDH_2u_12_86_MIMXRT708-EVK/boards/mimxrt7@0evk/demo_apps/rpmsg_lite/ezhv/ri
scvllvm/debug

LI

U
C:
C:
C:
C:
C:
C:
C:
1
C:
C:
C:
C:

c:\_ddm\mcu-sdk\SDK_2u_12_88_MIMXRT700-EVK\boards\mimxrt700evk\demo_apps\rpmsg_lite\ezhv\riscvllvm\debug>ninja -ji 1>build_log.
txt 2281

c:\_ddm\mcu-sdk\SDK_2t_12_#8_MIMXRT708-EVK\boards\mimxrt78@evk\demo_apps\rpmsg_lite\ezhv\riscvllvm\debug>cp ezhv_image.bin ../..
/binary

c:\_ddm\mcu-sdk\SDK_2t_12_88_MIMXRT786-EVK\boards\mimxrt70@8evk\demo_apps\rpmsg_lite\ezhv\riscvllvm\debug>cd ..

c:\_ddm\mcu-sdk\SDK_24_12_BB_MIMXRT788-EVK\boards\mimxrt788evk\demo_apps\rpmsg_lite\ezhv\riscvllvm>|

Figure 14. Running build script in command prompt

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
18/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

5.3.3 Build CPU1

To build the CPU1 project using IAR Embedded Workbench, follow the steps below:

1. Install the IAR Embedded Workbench IDE 9.60.3 or higher.
2. Open the workspace file rpmsg lite cm33 corel.eww.
3. Build the project in the release configuration.

5.3.4 Build CPUO

To build and download the CPUO project using IAR Embedded Workbench (EWARM), follow the steps below:

1. Open the workspace file rpmsg lite cm33 core0.eww in EWARM.
2. Build the project in the flash_release configuration.
3. Download the project to the MIMXRT700-EVK board.

5.4 Result

After building and downloading all projects, verify that the demo runs successfully by checking the serial
console output. The console output displays messages exchanged between the following pairs of cores as
shown in Figure 15 and Figure 16:

* CPUO « CPU1
e CPUO & EZH-V
* CPUO < HiFi4
e CPU1 & HiFi1
Note:

* CPUO, EZH-V, and HiFi4 share the same serial COM port.
* CPU1 and HiFi1 share another COM port.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
19/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

T COM2T - Tera Term VT
File Edit Setup Control Window Help
[CPU®] boot up - RPMSG
[HiFi4] Running
[HiFi4] - DSP Main
[HiFi4] Link up!
Remote Name, 3@ - SenseDomain - CPU1l
[CPU@] RECV C1->C0:0
Remote Name, 50 - Compute - HiFi4
[EZHV] Running
[HiFi4] Name service announce sent.
[HiFi4] RECV C@->H4:0
[CPUR] RECV H4->C0:0
[EZHV] Link up!
Remote Name, 70 - MediaDomain - EZHV
[EZHV] Name service announce sent.
[EZHV] RECV C@->EZ:0
[CPUB] RECV EZ->(CO:
[CPUB] RECV C1->CO:
[HiFi4] RECV CO->H4:
[CPUB] RECV H4->(C@:
[EZHV] RECV C@->EZ:
[CPUB] RECV EZ->(C@:
[CPUB] RECV C1->CO:
[HiFi4] RECV C@->H4:
[CPUB] RECV H4->(C@:
[EZHV] RECV C@->EZ:

Figure 15. The log of CPUO, HiFi4, and EZH-V

T COM31 - Tera Term VT
File Edit Setup Control Window Help
[CPU1] boot up - RPMSG
[HiFil] Running
[HiFil] - DSP Main
[HiFi1l] Link up!
[CPU1] Link up!
[CPU1] Name service announce sent.
[CPU1] RECV CO->C1:0
Remote Name, 60 - Sense - HiFil
[HiFil] Name service announce sent.
[HiFil] RECV
[CPU1] RECV
[CPU1] RECV
[HiFil] RECV C
[CPU1] RECV
[CPU1] RECV C
[HiFil] RECV
[CPU1] RECV
[CPU1] RECV
[HiFil] RECV
[CPU1] RECV
[CPU1] RECV
[HiFil] RECV C
[CPU1] RECV
[CPU1] RECV C
[HiFil] RECV C

%]

7]

1

1

1
12
12
1:2
1:3
13
1:3
14
14
1:4
1:5
:5

Figure 16. The log of CPU1 and HiFi1

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback

20/30


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

5.5 Debug the i.MX RT700 multi-core application project

To debug each core of the i.MX RT700 multi-core application, use the tools and methods described in the
following subsections:

5.5.1 Debug CPUO/CPU1

Use one of the following IDEs to debug CPUO and CPU1 cores:
* IAR Embedded Workbench for Arm

* Arm Keil MDK

* MCUXpresso IDE

5.5.2 Debug HiFi4/HiFi1

You can debug HiFi4 and HiFi1 cores using Xtensa Xplorer. To set up Xtensa Xplorer and learn the debugging
steps, including updating the EVK debug drivers to J-Link, refer to Getting Started with Xplorer for MIMXRT700-
EVK (document GSXMIMXRT700UG).

5.5.3 Debug EZH-V

You can debug EZH-V cores using J-Link Ozone. For detailed debugging instructions, refer to Developing
Environment Setup for i.MX RT700 EZH-V.

6 Linker customization

The linker is configured properly to realize the memory allocation according to Table 5. The configuration
method varies depending on the toolchains.

6.1 Configure linker for HiFi4/HiFi1

The Xtensa toolchain, called Linker Support Package (LSP), defines the memory allocation, so you do not need
to modify the linker scripts manually.

LSP consists of three major components:

* memmap.xmm defines which object resides in which region memory. It also provides memory attributes for
the objects (for example, executable, writable, uncached). MMU is initialized automatically according to this
file.

* The specification file defines the standard object files and libraries to include in the linker command line for the
final application executable.

* The specification file references the object files and libraries.

You can access Xtensa tool documentation at the below location after the installation of Xtensa Xplorer:
C:/usr/xtensa/XtDevTools/downloads/RI-2023.11/docs/index.html

The memmap.xmm file for HiFi4 defines memory allocation as shown below. Compare it to Table 5 to
understand how memmap.xmm defines the memory allocation. You can also use the GUI tool called memory
map editor to edit the memory description, as shown in Figure 17.

BEGIN dsp core

0x20400000: sysram : dsp core : 0x180000 : executable, writable ;

dsp core : C : 0x20400000 - 0x2057ffff : dsp core.data dsp core.bss;
END dsp core

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
21/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

BEGIN dramO
0x24000000: dataRam : dram0 : 0x10000 : writable ;
dramO 0 : C : 0x24000000 - 0x2400ffff : STACK : HEAP
__1lvm prf names .data .rodata .literal .dramO.rodata .ResetVector.literal
.Level2InterruptVector.literal .Level3InterruptVector.literal
.DebugExceptionVector.literal .NMIExceptionVector.literal
.KernelExceptionVector.literal .UserExceptionVector.literal
.DoubleExceptionVector.literal .iram0O.literal .dramO.data .dram0O.bss .bss;
END dramO

BEGIN iramO
0x24020000: instRam : iramO : 0x10000 : executable, writable ;
iramO 0 : F : 0x24020000 -

0x240203ff : .ResetVector.text ResetHandler literal .ResetHandler.text;
iram0 1 F : 0x24020400 - 0x2402057b : .WindowVectors.text;
iram0 2 F 0x2402057c - 0x2402059%9 : .LevelZInterruptVector.text;
iram0 3 F 0x2402059c - 0x240205bb : .Level3InterruptVector.text;
iram0 4 F 0x240205bc - 0x240205db : .DebugExceptionVector.text;
iram0 5 F 0x240205dc - 0x240205fb : .NMIExceptionVector.text;
iram0_ 6 F 0x240205fc - 0x2402061b : .KernelExceptionVector.text;
iram0 7 F 0x2402061c - 0x2402063b : .UserExceptionVector.text;
iram0 8 F : 0x2402063c -
Ox2402ffff : .DoubleExceptionVector.text .iram0O.text .text;

END iramO

BEGIN iocached
0x70000000: io : iocached : 0xda00000 : executable, writable ;
END iocached

BEGIN rpmsg sh mem
0x20070000: sysram : rpmsg sh mem : 0x8000 : executable, writable ;
END rpmsg sh mem

BEGIN rambypass
0x80000000: sysram : rambypass : 0x10000000 : device, executable, writable ;
END rambypass

BEGIN iobypass
0x90000000: io : iobypass : 0xda00000 : device, executable, writable ;
END iobypass

S System Overview 51

~ [= Configurations
» (= hifi3_ss_spfpu_7 (RI-2023.11/LX7.1.10) (Chusixtensa\XtDevTools\instalh\builds\RI-2023.11-
3 = hifi3z_ss_spfpu_7 (RI-2023.11/LX7.1.10) (Chusrxtensa\XtDevTools\install\builds\RI-2023,11
3 = hifid_ss_spfpu_7 (RI-2023.11/LX7.1.10) (Chusrixtensa\XtDevTools\instal\builds\RI-2023.11-
» = tt700_hifi1_RI23_11_nlib (RI-2023.11/LX7.1.9) (T \LISI’\XtEI"ISE\XtDEVTUUlS\II"IStE”\bLIIldS\Rl -20
> [E= AT00_hifid_RI23_11_nlib (P ™77 2t v s o eme premoTm o ey
» (= sample_config (RI-2023.1 ﬂ»ﬂ Clene Config from Build N
3 [ sample_controller (RI-20z
3 = sample_flix (RI-2023.11/L
» [= tie_devl (RI-2023.11/LX7.
» = tie_dev2 (RI-2023.11/LX7.

» [ XRC_FusionF1_All_cache E Clene Config for Editing Memory Map

Uninstalled Confi
@?b ng aed-onligs E Create Custom LSP
ubsystems

(= Clone Config and Attach Software-Only TIE...

Figure 17. Running a GUI tool to edit memory description

There are some standard LSPs in Xtensa Xplorer, for example:

» gdbio builds an application that uses a connected debugger (gdb), if any, for all console and file I/Os.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
22/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

* min-rt builds an application to run in most systems or simulations, but without any board-specific support, such

as the character 1/O.

For more details, refer to the Xtensa Linker Support Packages (LSPs) Reference Manual.

After editing memmap.xmm based on standard LSPs, to generate linker scripts from it, follow the steps below:

1. Set the configuration to rt700_hifi4 RI23 11 nlib.

2. Right-click the project and select Open Command Shell as shown in Figure 18.
3. Execute the following command under the HiFi4 directory, as shown in Figure 19:

xt-genldscripts -b gdbio

4. The linker script (* . 1d) is generated automatically as shown in Figure 19.

» % dsp_rpmsg_lite_hifil

3 |% r.'isp_rprr'|sg_lite_hh‘i"I

5 B HiFi1_library New

3 % hifid_benchmark Go Into

5 BE hifid_demo

3 95 hifid_library Open in New Window

Show In

[E Copy

¥ Delete

Source

Rename...

Import...
Export...

CE

Refresh
Close Project
Close Unrelated Projects

Build Properties...
Library Dependencies...
57 C/C++ Search
Excluded Resources Settings

B¥ Open Command Shell

Figure 18. Clicking Open Command Shell

Alt+Shift+W »

Ctrl+C

Delete

F2

F5

AN14618 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025

Document feedback
23/30


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

Shell for config build rt700_hif X + -

C:\_ddm\mcu-sdk\SDK_24_12_68_MIMXRT700-EVK\boards\mimxrt7008evk\demo_apps\rpmsg_lite\Hifill\xtensa>set PATH=C:\usr\xtensa\Xplorer—
10.1.11;C: \TwinCAT\Common6tl; C: \TwinCAT\Common32;C: \Program Files\RedHat\java-1.8.0-openjdk-1.8.0.362-1\bin;C:\Program Files\RedH
at\java-1.8.0-openjdk-1.8.0.362-1\jre\bin;C:\Windows\system32;C: \Windows; C:\Windows\System32\Wbem; C: \Windows\System32\WindowsPow
erShell\vl.e\;C: \Windows\System32\0penSSH\ ;C: \Program Files\dotnet\;C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;C:\Pr
ogram Files (x86)\Pulse Secure\VC1U2.CRT\X64\;C:\Program Files (x86)\Pulse Secure\VC1U2.CRT\X86\;C:\Program Files (x86)\RedHat\j
ava-1.8.0-openjdk-1.8.0.362-1\webstart\;C:\Program Files (x86)\RedHat\java-1.8.0-openjdk-1.8.0.362-1\bin;C:\Program Files (x86)\
RedHat\java-1.8.0-openjdk-1.8.0.362-1\jre\bin;C:\Program Files\RedHat\java-1.8.0-openjdk-1.8.0.362-1\webstart\;C:\Program Files\
RedHat\java-1.8.8-openjdk-1.8.0.362-1\bin;C:\Program Files\RedHat\java-1.8.8-openjdk-1.8.8.362-1\jre\bin;C:\Program Files\usbipd
—win\;C:\Program Files\WinMerge;C:\Program Files\CMake\bin;C:\Program Files\WinGet\Links;C:\Program Files\Meson\;C:\Program File
s (x86)\dotnet\;C:\Users\nxf8368U\AppData\Local\Microsoft\WindowsApps ;C: \Users\nxf8368U\AppData\Local\Programs\Microsoft VS Code
\bin;C:\Users\nxf8368U\AppData\Local\Programs\Git\cmd ; C:\MinGW\bin;C: \MinGW\msys\1.@\bin;

C:\_ddm\mcu~-sdk\SDK_2L_12_88_MIMXRT700-EVK\boards\mimxrt788evk\demo_apps\rpmsg_lite\Hifill\xtensa>C:\usr\xtensa\XtDevTools\instal
1\tools\RI-2023.11-win32\XtensaTools\Tools\misc\xtensaenv.bat C:\usr\xtensa\XtDevTools\install\builds\RI-2823.11-win32\rt700_hif
ill_RI23_11_nlib C:\usr\xtensa\XtDevTools\install\tools\RI-2023.11-win32\XtensaTools C:\usr\xtensa\XtDevTools\install\builds\RI-2
623.11-win32\rt796_hifiﬂ_R123_11_nlib\config rt708_hifil_RI23_11_nlib

PATH is:

PATH=C:\usr\xtensa\XtDevTools\install\tools\RI-2023.11-win32\XtensaTools\bin;C:\usr\xtensa\XtDevTools\install\tools\RI-2023.11-w
in32\XtensaTools\lib\iss;C:\usr\xtensa\Xplorer-10.1.11;C:\TwinCAT\Common6U ;C:\TwinCAT\Common32;C:\Program Files\RedHat\java-1.8.
8-openjdk-1.8.0.362-1\bin;C:\Program Files\RedHat\java-1.8.0-openjdk-1.8.0.362-1\jre\bin;C:\Windows\system32;C:\Windows;C:\Windo
ws\System32\Wbem; C: \Windows\System32\WindowsPowerShell\vl.@\;C:\Windows\System32\0penSSH\;C:\Program Files\dotnet\;C:\Program Fi
les (x86)\NVIDIA Corporation\PhysX\Common;C:\Program Files (x86)\Pulse Secure\VC1U2.CRT\X6U\;C:\Program Files (x86)\Pulse Secure
\VC142.CRT\X86\ ;C: \Program Files (x86)}\RedHat\java-1.8.0-openjdk-1.8.0.362-1\webstart\;C:\Program Files (x86)\RedHat\java-1.8.8-
openjdk=1.8.0.362-1\bin;C:\Program Files (x86)\RedHat\java-1.8.0-openjdk-1.8.0.362-1\jre\bin;C:\Program Files\RedHat\java-1.8.8-
openjdk-1.8.0.362-1\webstart\;C: \Program Files\RedHat\java-1.8.0-openjdk-1.8.0.362-1\bin;C:\Program Files\RedHat\java-1.8.@-open
jdk-1.8.0.362-1\jre\bin;C:\Program Files\usbipd-win\;C:\Program Files\WinMerge;C:\Program Files\CMake\bin;C:\Program Files\WinGe
t\Links;C:\Program Files\Meson\;C:\Program Files (x86)\dotnet\;C:\Users\nxf8368u\AppData\Local\Microsoft\WindowsApps;C:\Users\nx
8368U\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\nxf8368U\AppData\Local\Programs\Git\cmd;C: \MinGW\bin;C: \MinGW\msys\
1.0\bin;

System registry is C:\usr\xtensa\XtDevTools\install\builds\RI-2023.11-win32\rt700_hifit_RI23_11_nlib\config
Current tdk path is not set
Current core is rt700_hifid_RI23_11_nlib

C:\_ddm\meu—sdk\SDK_24_12_08_MIMXRT700-EVK\boards\mimxrt700evk\demo_apps\rpmsg_lite\Hifil\xtensa>ecd hifiu

C:\_ddm\mcu-sdk\SDK_2L_12_08_MIMXRT700-EVK\boards\mimxrt700evk\demo_apps\rpmsg_lite\Hifil\xtensa\hifit>xt-genldscripts -b gdbio
New linker scripts generated in gdbio/ldscripts

C:\_ddm\mcu—sdk\sDK_2H_12_OG_MIMXRTTBB-EVK\baards\mimxrtTBBevk\dema_apps\rpmsg_1ite\Hifiu\xtensa\hifiﬂ%

Figure 19. xt-genldscripts -b gdbio command generates linker scripts

To implement the memory allocation according to Table 5, HiFi4 image must be copied into three different
areas, as specified in Table 9. Use the post-build.bat file to generate these three separate images. If you modify
the memmap.xmm file, update the post-build.bat file to match your memmap.xmm file.

Table 9. Image destination

Sections

Destination address

Binary name

dsp_core.data

0x20400000

dsp_data_release.bin

.data

.rodata

Jditeral

.rtos.rodata
.Level3InterruptVector.literal
.DebugExceptionVector.literal
.NMIExceptionVector.literal
.rtos.percpu.data

0x24000000

dsp_literal_release.bin

.ResetVector.text
.WindowVectors.text
.Level2InterruptVector.text
.Level3InterruptVector.text
.DebugExceptionVector.text
.NMIExceptionVector.text

AN14618

0x24200000

All information provided in this document is subject to legal disclaimers.

dsp_text_release.bin

© 2025 NXP B.V. All rights reserved.

Application note

Rev. 2.0 — 10 November 2025

Document feedback
24/ 30


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

Table 9. Image destination...continued

Sections Destination address Binary name

.KernelExceptionVector.text
.UserExceptionVector.text
.DoubleExceptionVector.text.text

6.2 Configure linker for EZH-V

LLVM/Clang toolchain is compatible with the GNU Id. For example, the shared region for RPMsg Lite is defined
as an uninitialized data section using the following code snippet.

/* Uninitialized data section */
/* NOINIT section for rpmsg sh mem */

.noinit rpmsg sh mem (NOLOAD) : ALIGN (4)
{
__RPMSG_SH MEM START = .;
*(.noinit.Srpmsg sh mem*)
. = ALIGN(4) ;
RPMSG SH MEM END = .;

} > rpmsg_sh mem

6.3 Configure linker for CPU0/CPU1

For CPUO and CPU1, configure the linker to generate a monolith image for downloading into the QSPI NOR
flash memory. The linker configuration must ensure that each image contains the required components:

1. The CPU1 image includes the HiFi1 image.
2. The CPUO image includes the CPU1, HiFi4, and EZH-V images.

Note: The configuration method varies depending on the toolchain.

6.3.1 IAR Embedded Workbench for Arm

In the IAR linker, use the --image input option to embed a binary into an image. For example, in the CPUO
configuration, the following option is used. This option defines cm33_core1.bin as the __core1_bin symbol in
the _ core1_image section with 4-byte alignment. Include the —-keep option because the software does not
explicitly reference the symbol.

--image input=$PROJ DIRS/../../cm33 corel/iar/binary/
cm33 corel.bin, corel bin, corel image, 4
—-—keep=_ corel bin

For detailed information about these options, refer to the IAR document.

6.3.2 Arm Keil MDK/GCC (MCUXpresso IDE)

In Armclang and Gcc assembly, use the .incbin directive to embed a binary into an image. For example, in the
CPUO configuration, use the following assembly code.

The core1_image.bin is included in the section named .core1_code, and its start address, end address, and
size are defined as core1_image_start, core1_image_end, and core1_image_size.

.section .corel code, "ax" (@progbits @preinit array
.global corel image start
.type corel image start, %object

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
Application note Rev. 2.0 — 10 November 2025 Document feedback
25/30



https://wwwfiles.iar.com/arm/webic/doc/EWARM_DevelopmentGuide.ENU.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

.align 4
corel image start:
.incbin "corel image.bin"
.global corel image end
.type corel image end, %object
corel image end:
.global corel image size
.type corel image size, %object
.align 4
corel image size:
.int corel image end - corel image start
.end

For detailed information about other options, refer to the GNU document.

7 Acronyms

Table 10 lists the acronyms used in this document along with their descriptions.

Table 10. Acronyms

Acronym Description

DTCM Data Tightly Coupled Memory
DSP Digital Signal Processing
FlexIO Flexible Input/Output

GPIO General-Purpose Input/Output
GPU Graphics Processing Unit
MIPI DSI Mobile Industry Processor Interface Display Serial Interface
MPU Memory Protection Unit
LCDIF LCD Interface

LSP Linker Support Package
M-Bus Memory Bus

MMU Memory Management Unit
NPU Neural Processing Unit

OTF On-the-Fly

P-Bus Peripheral Bus

RAM Random Access Memory
RISC-V Reduced Instruction Set Computer-V
ROM Read-only Memory

RVQ Receive VirtlO Queue

SPI Serial Peripheral Interface
SRAM Static RAM

TVQ Transmit VirtlO Queue

VirtlO Virtual Input/Output

XIP Execute-in-Place

AN14618

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Application note

Rev. 2.0 — 10 November 2025

Document feedback
26/30


https://ftp.gnu.org/old-gnu/Manuals/gas/html_chapter/as_7.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9 Revision history

Table 11 summarizes the revisions to this document.

Table 11. Revision history

Document ID Release date Description
AN14618 v.2.0 10 November 2025 |« Initial public release
* Updates:

— Made several technical and editorial changes
— Added Section 5.5

AN14618 v.1.0 23 April 2025 Initial internal release

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
271730



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Legal information

Multi-core Application Development on i.MX RT700

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN14618

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2025 NXP B.V. All rights reserved.

Application note

Rev. 2.0 — 10 November 2025

Document feedback
28130


mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN 1 461 8

Multi-core Application Development on i.MX RT700

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, IAR — is a trademark of IAR Systems AB.
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,

Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,

Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-

PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered

trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or

elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
29/30



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors

AN14618

Multi-core Application Development on i.MX RT700

Contents
1 Introduction ... 2
2 Memory usage in i.MX RT700 multi-core

applications ... 3
21 Memory architecture ...........ccccooiiiiiiiiiiieeee 3
2.1.1 Compute domain ........ccceeeeeeieiiiiiiiiiiciiiieees 4
21.2 Common domMain .........cceeeieeiiiiiieeeeee e 4
2.1.3 DSP domain .......ccceieiiiiiiiiie e 4
21.4 Sense domain ... 4
215 Media domain .........cccceeeiiiiiiiee e 5
2.2 Cache controllers ..........ccooioieiiiiiiiiieeeeeee 5
2.2.1 CPUD ot 5
222 CPUT et 6
223 HIFI4 oo 6
224 HIFIT e 7
2.3 MemOry Map .....oooeeeiiiiiee e 7
24 Memory allocation ..........cccooioiiiiiiiieieeeee 8
3 Boot sequence ........cccceeeieiicccccceeerern e 9
3.1 Boot sequence OVErview .........ccccccveeeeeeeeiiiecnnn, 9
3.2 Clock root ..o 9
3.3 Software implementation .................cccccocinns 10
4 Inter-core communication ............cccceeeeenneee 12
4.1 Software implementation .................c.ccccoinns 12
4.2 Hardware implementation ...............ccccveeeeee.n. 13
421 Shared Memory ........ccccooviiiiiieiiiee e 13
422 Inter-core interrupt ..., 14
4221 Messaging unit (MU) .....ccoooiiiiiiiiiieee 14
4222 Armto EZH-V and EZH-V to Arm interrupt ...... 15
5 Running the demo ..........cccooiiiiiiiiiiee. 15
51 Apply the patch to the MCUXpresso SDK ....... 15
5.2 Hardware and PC setup ......cccccceeeeeeeeeeeeninnnnn, 15
5.3 Build the i.MX RT700 multi-core application

PrOJECE oo 16
5.3.1 Build HiFi4 and HiFi1 ..........cccooiiiiiiiiieee 16
5.3.2 Build EZH-V ..o 18
5.3.3 Build CPUT ..o 19
5.34 Build CPUO ... 19
5.4 RESUIL ..o 19
5.5 Debug the i.MX RT700 multi-core

application project ..o 21
5.5.1 Debug CPUO/CPUT .......ooeieiieecee e 21
552 Debug HiFi4/HiFi1 .......cccooiiiiieeeeee e 21
5.5.3 Debug EZH-V ..o 21
6 Linker customization ............ccccoviiieiiiniiiies 21
6.1 Configure linker for HiFi4/HiFi1 ....................... 21
6.2 Configure linker for EZH-V .........cccociiiie.. 25
6.3 Configure linker for CPUO/CPU1 .........cccce..e. 25
6.3.1 IAR Embedded Workbench for Arm ................ 25
6.3.2 Arm Keil MDK/GCC (MCUXpresso IDE) .......... 25
7 ACronyms ... s 26
8 Note about the source code in the

document ... 27
9 Revision history ..........cociiiiiiioiiiiccerecces 27

Legal information ..........ccccoooiiiiiiiiiieee 28

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 10 November 2025
Document identifier: AN14618


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

	1  Introduction
	2  Memory usage in i.MX RT700 multi-core applications
	2.1  Memory architecture
	2.1.1  Compute domain
	2.1.2  Common domain
	2.1.3  DSP domain
	2.1.4  Sense domain
	2.1.5  Media domain

	2.2  Cache controllers
	2.2.1  CPU0
	2.2.2  CPU1
	2.2.3  HiFi4
	2.2.4  HiFi1

	2.3  Memory map
	2.4  Memory allocation

	3  Boot sequence
	3.1  Boot sequence overview
	3.2  Clock root
	3.3  Software implementation

	4  Inter-core communication
	4.1  Software implementation
	4.2  Hardware implementation
	4.2.1  Shared memory
	4.2.2  Inter-core interrupt
	4.2.2.1  Messaging unit (MU)
	4.2.2.2  Arm to EZH-V and EZH-V to Arm interrupt



	5  Running the demo
	5.1  Apply the patch to the MCUXpresso SDK
	5.2  Hardware and PC setup
	5.3  Build the i.MX RT700 multi-core application project
	5.3.1  Build HiFi4 and HiFi1
	5.3.2  Build EZH-V
	5.3.3  Build CPU1
	5.3.4  Build CPU0

	5.4  Result
	5.5  Debug the i.MX RT700 multi-core application project
	5.5.1  Debug CPU0/CPU1
	5.5.2  Debug HiFi4/HiFi1
	5.5.3  Debug EZH-V


	6  Linker customization
	6.1  Configure linker for HiFi4/HiFi1
	6.2  Configure linker for EZH-V
	6.3  Configure linker for CPU0/CPU1
	6.3.1  IAR Embedded Workbench for Arm
	6.3.2  Arm Keil MDK/GCC (MCUXpresso IDE)


	7  Acronyms
	8  Note about the source code in the document
	9  Revision history
	Legal information
	Contents

