
AN14618
Multi-core Application Development on i.MX RT700
Rev. 2.0 — 10 November 2025 Application note

Document information
Information Content

Keywords AN14618, i.MX RT700, multi-core application

Abstract The i.MX RT700 features five domains, with compute and sense as primary processors. This
application note outlines strategies for managing memory, cache, boot sequence, and inter-core
communication to develop multi-core application.

https://www.nxp.com

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

1 Introduction

The i.MX RT700 MCU includes five independent functional domains:

• Compute
• Sense
• Common
• Digital Signal Processing (DSP)
• Media

The compute and sense domains act as the primary processing domains. Each of these two domains integrates
an Arm Cortex-M33 core (processor), colocated with a Cadence Tensilica HiFi4/HiFi1 DSP core, as shown in
Figure 1.

The media domain also features a Reduced Instruction Set Computer-V (RISC-V) core called EZH-V, primarily
implemented to provide a SmartDMA engine for postprocessing graphics data assembled by the GPU and/or
CPU. The EZH-V core then passes this data to the Flexible Input/Output (FlexIO) or Mobile Industry Processor
Interface Display Serial Interface (MIPI DSI) for output. Processing operations include data packing and byte
and bit order adjustment.

EZH-V handles any required general-purpose tasks and supports an extensive selection of trigger inputs from
General-Purpose Input/Output (GPIO) and most on-chip peripherals.

The single i.MX RT700 MCU includes the following five heterogeneous cores:

• 2x Cortex-M33
• HiFi4 DSP
• HiFi1 DSP
• EZH-V

Therefore, i.MX RT700 users must properly manage communication between each core and memory
allocations to avoid resource conflict and optimize performance.

This application note explains how to manage memory, cache, boot sequence, and inter-core communication
in i.MX RT700. The i.MX RT700 also includes a Neural Processing Unit (NPU) to accelerate neural network
operations, but this application note does not cover the NPU.

EZH-V CPU0

HiFi4

CPU1

Media Compute Sense

HiFi1

Figure 1. The compute and sense domains have an Arm Cortex-M33 core processor, colocated with a DSP and the
media domain has a RISC-V core called EZH-V

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
2 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

2 Memory usage in i.MX RT700 multi-core applications

This section explains how i.MX RT700 MCU manages memory across different domains and cores. It also
describes memory architecture, cache controllers, memory maps, and memory allocation strategies.

2.1 Memory architecture
In a multi-core application development, developers decide the physical location of code, data, and shared
buffers to avoid resource conflict and optimize performance. Figure 2 shows the memory architecture of the
i.MX RT700 family. The figure highlights which memory is tightly coupled to each core.

The following Random Access Memory (RAM) arbiter modules manage access to the on-chip shared RAM
memory partitions:

• RAM_ARBITER0, located in the VDD2_COM power domain, manages accesses to VDD2 shared memory
partitions (P0-P17).

• RAM_ARBITER1, located in the VDD1_SENSE power domain, manages accesses to VDD1 shared memory
partitions (P18-P29).

This shared RAM is divided into multiple partitions with variable sizes. Some partitions are intentionally larger,
for example, for frame buffers or DMA descriptors, while others are smaller for stack or heap, or control
structures. Each arbiter enforces access rules for every partition. Contention occurs only when two masters
target the same partition. Accesses to different partitions proceed independently. CPU0 takes a performance hit
for accessing partitions, P18-P30 and CPU1 takes a performance hit for accessing partitions, P0-P17.

HiFi4

CPU0
SystemCode

EZH-V

XCACHE1 XCACHE0

CPU1NPU

HiFi1RAM_ARBITER1
(P18 ~ P29)

I/D cache

NIC DSP AXBS EZHV

XSPI2

NIC media 1

XSPI1XSPI0

P busM bus

CACHE64_CTRL1CACHE64_CTRL0

RAM_ARBITER0
(P0 ~ P17)

S bus

DTCM ITCM

DTCM ITCM

Figure 2. Simplified memory architecture of i.MX RT700 MCU

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
3 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

The subsections that follow explain the memory architecture of different i.MX RT700 functional domains.

2.1.1 Compute domain

The compute domain includes the following main cores and components:

• Cortex-M33 (CPU0)
• HiFi4 DSP
• NPU
• A diverse set of peripherals

One architectural enhancement in i.MX RT700 is the cache support for CPU0. In this scheme, shared Static
Random Access Memory (SRAM) is cached, while CPU0 directly accesses the peripherals. There are separate
cache controllers for the CPU0 code and system buses. The SRAM is shared, but it can be configured partially
as cacheable, with the remainder configured as uncached.

The compute domain uses a split-bus architecture consisting of the following:

• Memory Bus (M-Bus) matrix connects the core initiators to the shared memory.
• Peripheral Bus (P-Bus) matrix interfaces to peripherals.

XSPI0 primarily executes code from off-chip Serial Peripheral Interface (SPI) flash memory. XSPI0 supports
Execute-in-Place (XIP) and, if required, On-the-Fly (OTF) decryption using the PRINCE module. It also provides
a mechanism to shift designated addresses to a different region of off-chip memory to support dual-image boot.

XSPI1, if used at all, primarily accesses data from pSRAM efficiently. The HiFi4 DSP and CPU0 access the
XSPI1.

Both the XSPI0 and XSPI1 interfaces include a 32 KB cache with a CACHE64 cache controller.

2.1.2 Common domain

The common domain holds a shared SRAM (RAM_ARBITER0).

2.1.3 DSP domain

The HiFi4 DSP core has a private cache controller, independent of CPU0 accesses to the shared memory. It
also has a dedicated 64 KB Data Tightly Coupled Memory (DTCM) and a 64 KB Instruction Tightly Coupled
Memory (ITCM), which are accessible by CPU0. These memories store HiFi4 vectors and time-critical code and
data.

2.1.4 Sense domain

The sense domain has its own bus, S-Bus, which connects the other Cortex-M33 core (CPU1), a HiFi1 DSP
core, and two Direct Memory Access (DMA) controllers as core initiators.

CPU1 cannot execute in XIP mode and does not have cache memory. The domain has a shared SRAM that
can be accessed through RAM_ARBITER1. CPU1 in the sense domain can access SRAM for code and data.
The SRAM is also accessible by CPU0, but the frequency is SENSE_RAM_CLK, which is slower than the
RAM_ARBITER0 clock (COMMON_RAM_CLK) in many cases.

The HiFi1 DSP does not have private cache memory. Instead, its dual-memory TCM bus interfaces connect to
the shared memory. HiFi1 cannot access RAM_ARBITER0.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
4 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

2.1.5 Media domain

The purpose of the media domain is to hold peripherals that require high performance. The media domain has
cross-links to the compute and sense domains and direct access to all partitions of the shared memory.

EZH-V has dedicated 32 KB ITCM and 32 KB DTCM, which are appropriate areas for EZH-V to access code
and data frequently. EZH-V does not have cache memory.

XSPI2 is primarily used to access data from pSRAM or HyperRAM, particularly for Graphics Processing Unit
(GPU) or LCD Interface (LCDIF), efficiently.

2.2 Cache controllers
CPU0 and HiFi4 have cache memories. While cache improves performance, software issues can occur in multi-
core development due to cache coherency, if not managed carefully. Therefore, it is important to determine
whether a shared resource among multiple cores is cacheable.

The subsections that follow describe how to configure the cache for different i.MX RT700 cores.

2.2.1 CPU0

The CPU0 and CPU1 code buses access memory and peripherals, as shown in Figure 2. CPU0 code bus
access is routed to XCACHE1. This XCACHE1 controller processes cacheable accesses as needed, while
bypassing noncacheable accesses or forwarding cache write-through and cache miss accesses to downstream
memories through the controller port of the cache controller.

All system bus accesses are routed to the target address in destination memories through a multilayer
Advanced High-performance Bus (AHB) matrix slave port. The CPU0 system bus access is routed to
XCACHE0.

The CPU0 Memory Protection Unit (MPU) defines the cache policy. In the Armv8-M architecture, memory
attributes are not defined for each region differently as in the Armv7-M architecture (for example, Cortex-M3
and Cortex-M7). Instead, the Memory Attribute Indirection Registers (MAIR), specifically MPU_MAIR0 and
MPU_MAIR1, define memory attributes that are indirectly referenced by the configuration of each memory
region.

In the attached project (AN14618SW), MPU_MAIR0 and MPU_MAIR1 are defined according to Table 1. For a
detailed explanation of the memory attributes, refer to the Arm document, MPU Memory Attribute Indirection
Registers 0 and 1.

Attribute index Memory attribute

0 Device-nGnRnE

1 Normal memory, noncacheable

2 Write-through transient, read-allocation

Table 1. MPU_MAIR0 and MPU_MAIR1 configuration

The following code snippet implements the configuration in Table 1:

/* Attr0: device memory. */
ARM_MPU_SetMemAttr(0U, ARM_MPU_ATTR(ARM_MPU_ATTR_DEVICE,
 ARM_MPU_ATTR_DEVICE_nGnRnE));
/* Attr1: non-cacheable. */
ARM_MPU_SetMemAttr(1U, ARM_MPU_ATTR(ARM_MPU_ATTR_NON_CACHEABLE,
 ARM_MPU_ATTR_NON_CACHEABLE));
/* Attr2: nontransient, write-through, read-allocate. */
attr = ARM_MPU_ATTR_MEMORY_(0U, 0U, 1U, 0U);

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
5 / 30

https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-memory-attribute-indirection-registers-0-and-1
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-memory-attribute-indirection-registers-0-and-1
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

ARM_MPU_SetMemAttr(2U, ARM_MPU_ATTR(attr, attr));

Region Base Address Register (MPU_RBAR) and Region Limit Address Register (MPU_RLAR) are defined
according to Table 2 to specify memory regions. Region 0 is accessed under the write-through and read-
allocation policy, while Region 1 is noncacheable. Region 2 is accessed under nongathering, non-reordering,
and non-early-write-acknowledge policy. For a detailed explanation of the memory attributes, refer to the Arm
documents, MPU Region Base Address Register and MPU Region Limit Address Register.

Region
index Address Shareable Access permission Execute

never
Attribute
index

0 0x0 - 0x1FFFFFFF N R/W by any privilege
level Permitted 2

1
{nonCacheStart}
-
{nonCacheStart + nonCacheSize - 1}

Outer R/W by any privilege
level Permitted 1

2 0x40000000 - 0x5FFFFFFF N R/W by any privilege
level Permitted 0

Table 2. MPU_RBAR and MPU_RLAR register

The following code snippet implements the configuration in Table 2:

/* Region 0: [0x0, 0x1FFFFFFF], nonshareable, read/write, any privileged,
 executable. Attr 2 (write-through). */
ARM_MPU_SetRegion(0U, ARM_MPU_RBAR(0U, ARM_MPU_SH_NON, 0U, 1U, 0U),
 ARM_MPU_RLAR(0x1FFFFFFFU, 2U));
/* Region 1 setting : outter-shareable, read-write, nonprivileged, executable.
 Attr 1. (non-cacheable) */
ARM_MPU_SetRegion(1U, ARM_MPU_RBAR(nonCacheStart, ARM_MPU_SH_OUTER, 0U, 1U, 0U),
ARM_MPU_RLAR(nonCacheStart + nonCacheSize - 1, 1U));
/* Region 2 (Peripherals): [0x40000000, 0x5FFFFFFF], nonshareable, read/write,
 nonprivileged, executable. Attr 0
* (device). */
ARM_MPU_SetRegion(2U, ARM_MPU_RBAR(0x40000000U, ARM_MPU_SH_NON,
 0U, 1U, 0U), ARM_MPU_RLAR(0x5FFFFFFF, 0U)); ARM_MPU_SetMemAttr(1U,
 ARM_MPU_ATTR(ARM_MPU_ATTR_NON_CACHEABLE, ARM_MPU_ATTR_NON_CACHEABLE));

2.2.2 CPU1

CPU1 does not have cache memory.

2.2.3 HiFi4

The HiFi4 system bus accesses the system memory and peripherals, as shown in Figure 3. The HiFi4 system
bus access is routed to an internal cache controller. Memory Management Unit (MMU) defines the cache policy.

In the HiFi4 core of the i.MX RT700 MCU, the MMU includes a region-protection feature that divides the 32-
bit address space into eight segments of 512 MB each. Table 3 shows the example of MMU configuration. The
software can control protection settings depending on the requirements, as discussed in Section 6.1.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
6 / 30

https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-region-base-address-register
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-region-limit-address-register
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Cache

Bypass

Memory
peripheralPIF

N
IC

 D
SP

Core pipeline

Figure 3. HiFi4 cache controller

Segment Start address Policy

0 0x00000000 Write-through

1 0x20000000 Bypass

2 0x40000000 Bypass

3 0x60000000 Write-back

4 0x80000000 Illegal

5 0xA0000000 Illegal

6 0xC0000000 Illegal

7 0xE0000000 Illegal

Table 3. HiFi4 MMU configuration (example)

2.2.4 HiFi1

HiFi1 does not have cache memory.

2.3 Memory map
Table 4 shows the memory map. The system bus is defined as an alias for the code bus and uses the 28th bit
for identification.

Address Allocation CPU0 CPU1 HiFi4 HiFi1 NPU eDMA0 eDMA1 eDMA2 eDMA3
Media
domain
controllers

0x00000000 SRAM P0-P17
(system) ✓ 　 　 　 　 　 　 　 　

0x00580000 SRAM P18-P30
(system) ✓ ✓ 　 ✓ 　 　 　 　 　

0x00780000 Reserved 　 　 　 　 　 　 　 　 　

0x08000000 XSPI1 ✓ 　 ✓ 　 　 ✓ ✓ 　 　 ✓

0x20000000
SRAM P0-P17
(code)

✓ ✓ ✓ 　 ✓ ✓ ✓ ✓ ✓ ✓

0x20540000
SRAM P18-P30
(code)

✓ ✓ ✓ 　 ✓ ✓ ✓ ✓ ✓ ✓

0x20780000 Reserved 　 　 　 　 　 　 　 　 　

0x24000000 HiFi4_DTCM ✓ 　 　 　 　 ✓ ✓ 　 　

0x24010000 Reserved 　 　 　 　 　 　 　 　 　

Table 4. Memory map and accessibility

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
7 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Address Allocation CPU0 CPU1 HiFi4 HiFi1 NPU eDMA0 eDMA1 eDMA2 eDMA3
Media
domain
controllers

0x24020000 HiFi4_ITCM ✓ 　 　 　 　 ✓ ✓ 　 　

0x24030000 Reserved 　 　 　 　 　 　 　 　 　

0x24100000 EZHV_ITCM ✓ ✓ 　 　 　 　 　 　 　 ✓

0x24108000 EZHV_DTCM ✓ ✓ 　 　 　 　 　 　 　 ✓

0x24112000 Reserved 　 　 　 　 　 　 　 　 　 　

0x28000000 XSPI0 ✓ 　 ✓ 　 　 ✓ ✓ 　 　 ✓

0x40000000 Peripheral 　 　 　 　 　 　 　 　 　 　

0x40520000 NPU ✓ ✓ 　 　 　 ✓ ✓ ✓ ✓ ✓

0x60000000 XSPI2 ✓ ✓ ✓ 　 　 ✓ ✓ ✓ ✓ ✓

0xE0000000 PPB_INT ✓ ✓ 　 　 　 　 　 　 　

0xE0040000 PPB_EXT ✓ ✓ 　 　 　 　 　 　 　

Table 4. Memory map and accessibility...continued

2.4 Memory allocation
The software on each core needs individual and shared resources. Each object must reside in the correct
memory area to ensure that multiple cores boot properly and compute efficiently.

In the attached project (AN14618SW), each object is placed according to Table 5. You can change the start
address and the size depending on your requirements, as discussed in Section 6. The shared region is used for
inter-core communication, as discussed in Section 4.

Address range Allocation Objects

0x00000000-0x0003FFFF SRAM P0-P5 CPU0 noncache data (secure)

0x00040000-0x0005FFFF SRAM P6 CPU0 noncache data (nonsecure)

0x00060000-0x00067FFF SRAM P7 Shared by CPU0 (secure) and CPU1

0x00068000-0x0006FFFF SRAM P7 Shared by CPU0 (secure) and EZH-V

0x00070000-0x0007FFFF SRAM P7 Shared by CPU0 (secure) and HiFi4

0x000C0000-0x000FFFFF SRAM P9 CPU0 data/code/stack (secure)

0x00100000-0x0013FFFF SRAM P10 CPU0 vector table/code (nonsecure)

0x00140000-0x0017FFFF SRAM P10 CPU0 data/stack (nonsecure)

0x00400000-0x0057FFFF SRAM P14-P17 HiFi4 data/code/stack

0x00580000-0x00587FFF SRAM P18 HiFi1 vector table

0x005B0000-0x005BFFFF SRAM P23 Shared by CPU1 and HiFi1

0x005C0000-0x005FFFFF SRAM P24-25 CPU1 data/stack

0x00600000-0x0067FFFF SRAM P26 CPU1 boot Image

0x00680000-0x006FFFFF SRAM P27 HiFi1 code

0x00700000-0x0077FFFF SRAM P28-P29 HiFi1 data/stack

Table 5. Memory allocation for multi-core applications

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
8 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Address range Allocation Objects

0x24000000-0x2400FFFF HiFi4_DTCM HiFi4 data

0x24020000-0x2402FFFF HiFi4_ITCM HiFi4 code

0x24100000-0x24107FFF EZHV_ITCM EZH-V code

0x24108000-0x2410FFFF EZHV_DTCM EZH-V data

0x28000000-0x2FFFFFFF XSPI0

Flash configuration
CPU0 vector table (secure)
CPU0 boot image (secure)
Veneer table

Table 5. Memory allocation for multi-core applications...continued

3 Boot sequence

In a multi-core application, the cores must be booted following the correct procedure.

3.1 Boot sequence overview
After a power-on reset or warm reset, CPU0 executes the ROM bootloader from internal Read-only Memory
(ROM). The ROM bootloader loads the CPU0 boot image from eMMC, NOR flash, or serial communication,
depending on the boot configuration.

At reset, CPU1, HiFi1, HiFi4, and EZH-V are clock gated. To boot each core, follow the steps below:

1. Enable the clock and power for SRAM or TCM and the core.
2. Load the image into an appropriate RAM area.
3. Set the offset of the vector table, if needed.
4. Send the reset signal to the core.
5. Clear the stall status bit.

Figure 4 illustrates the boot sequence in the attached project (AN14618SW):

1. CPU0 boots from the QSPI NOR flash memory at reset.
2. CPU0 boots CPU1, HiFi4, and EZH-V.
3. CPU1 boots HiFi1.

CPU0 image

Flash SRAM

CPU1 image

HiFi1 image

CPU1 image

HiFi1 image HiFi1 image

HiFi4 image

EZH-V image

HiFi4 image

EZH-V image
Copied

Copied

CopiedCopied

HiFi4 DTCM/ITCM

SRAM

EZH-V ITCM

Boot

Boot

Boot

Boot

Boot

Figure 4. Boot sequence

3.2 Clock root
Table 6 shows how each core works under a different clock root. Each clock root operates independently and
supports individual configuration, as shown in Figure 5.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
9 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Processor Clock root CLKCTL instance

CPU0 COMPUTE_MAIN_CLK CLKCTL0

HiFi4 DSP_CLK CLKCTL0

HiFi1 SENSE_DSP_CLK CLKCTL1

CPU1 SENSE_MAIN_CLK CLKCTL3

EZH-V MEDIA_MAIN_CLK CLKCTL4

Table 6. Clock root of each core

00

01

10

11

baseclk_cmpt MAINCLKDIV[DIV]

COMPUTE_MAIN_CLK

MAINCLKSEL[SEL] (1)

Clock source Clock select and enable Clock divider Clock root

DIV
main_pll_pfd0

fro0_max

audio_pll_pfd1

00

01

10

11

baseclk_sense SENSEDSPCPUCLKDIV[DIV]

SENSE_DSP_CLK

SENSEDSPCPUCLKSEL[SEL] (1)

DIV
fro2_max

audio_pll_pfd1

fro1_max

00

01

10

11

baseclk_dsp DSPCPUCLKDIV[DIV]

DSP_CLK

DSPCPUCLKSEL[SEL] (1)

[SEL_EN]

DIVcg
main_pll_pfd0

fro0_max

audio_pll_pfd1

[SEL_EN]

cg

00

01

10

11

baseclk_sense SENSEMAINCLKDIV[DIV]
SENSE_MAIN_CLK/
SENSE_MAIN_CLK_1

MAINCLKSEL[SEL] (1)

DIV
fro2_max

audio_pll_pfd3

fro1_max

00

01

10

11

baseclk_md2 MEDIAMAINCLKDIV[DIV]

MEDIA_MAIN_CLK

MEDIAMAINCLKSEL[SEL] (1)

DIV
main_pll_pfd0

fro0_max

main_pll_pfd2

Figure 5. Clock root selector and divider for each core

3.3 Software implementation
The CPU0 source files implement the HiFi4 boot sequence. The following code snippet boots HiFi4. As listed in
Table 5, it is important to note that the binary is copied to three isolated regions.

/* Initialize PMIC */
/* BOARD_InitPmic(); */
PMC0->PDRUNCFG2 &= ~0x0003C000; /* power up dsp used SRAM. */

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
10 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

PMC0->PDRUNCFG3 &= ~0x0003C000;
POWER_DisablePD(kPDRUNCFG_PD_VDD2_DSP);
POWER_ApplyPD();
/* Let's DSP run on PLL clock. */
CLOCK_AttachClk(kMAIN_PLL_PFD0_to_DSP);
CLOCK_SetClkDiv(kCLOCK_DivDspClk, 2U);
/* Initializing DSP core */
DSP_Init();
/* Copy literals to DSP DTCM */
DSP_CopyImage(&literal_image);
/* Copy vectors to DSP ITCM */
DSP_CopyImage(&text_image);
/* Copy application from RAM to DSP_RAM */
DSP_CopyImage(&data_image);
/* Only for HiFi4 */
XCACHE_CleanInvalidateCacheByRange((uint32_t)data_image.destAddr,
 data_image.size);
/* Copy ncache section to DSP_RAM */
DSP_CopyImage(&ncache_image);
/* Run DSP core */
DSP_Start();

The CPU1 source files implement the HiFi1 boot sequence. The following code snippet boots HiFi1. As listed in
Table 5, it is important to note that the binary is copied to three isolated regions.

CLOCK_AttachClk(kSENSE_BASE_to_SENSE_DSP);
CLOCK_EnableClock(kCLOCK_SenseAccessRamArbiter0);
CLOCK_EnableClock(kCLOCK_Syscon1);
CLOCK_EnableClock(kCLOCK_Sleepcon1);
/* Enable SENSE private clock. */
POWER_DisablePD(kPDRUNCFG_SHUT_SENSEP_MAINCLK);
/* Initializing DSP core */
DSP_Init();
/* Copy literals to DSP RAM */
DSP_CopyImage(&vector_image);
/* Copy vectors to DSP ITCM */
DSP_CopyImage(&text_image);
/* Copy application from RAM to DSP_RAM */
DSP_CopyImage(&data_image);
/* Copy ncache section to DSP_RAM */
DSP_CopyImage(&ncache_image);
/* Run DSP core */
DSP_Start();

The CPU0 source files implement the EZH-V boot sequence. The following code snippet boots EZH-V.

CLOCK_EnableClock(kCLOCK_Ezhv);
CLOCK_EnableClock(kCLOCK_AxbsEzh);
POWER_DisablePD(kPDRUNCFG_APD_EZHV_TCM);
POWER_DisablePD(kPDRUNCFG_PPD_EZHV_TCM);
POWER_ApplyPD();
EZHV_InstallFirmware(&ezhv_image));
XCACHE_CleanInvalidateCacheByRange(ezhv_image.destAddr, ezhv_image.size);
EZHV_Boot(EZHV_ITCM_ADDRESSESS);

The CPU0 source files implement the CPU1 boot sequence. The following code snippet boots CPU1.

BOARD_CopyCore1Image(CORE1_BOOT_ADDRESS);
BOARD_ReleaseCore1Power();

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
11 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

BOARD_BootCore1((CORE1_BOOT_ADDRESS & 0x0FFFFFFF), (CORE1_BOOT_ADDRESS &
 0x0FFFFFFF));

4 Inter-core communication

In a multi-core application, the different cores need to interact with each other. This section explains how inter-
core communication happens.

RPMsg-Lite is a middleware, that enables one-to-one communication between cores. In this model, one core
acts as the master and the other as the remote. Furthermore, RPMsg endpoints provide logical connections on
top of the RPMsg channel, allowing you to bind multiple callbacks on the same channel. This mechanism works
like a port number used in the TCP/UDP protocol. You can register callbacks for each endpoint. The endpoint
address can be announced dynamically to the name service endpoint.

Here, the software implementation is discussed first, and the hardware implementation is explained later.

4.1 Software implementation
The master first initializes the Virtual Input/Output (VirtIO) queue, which is shared with the remote. Each VirtIO
queue contains a Used buffer and an Avail buffer. These buffers hold elements that point to the buffer descriptor
index, as shown in Figure 6. Each buffer descriptor includes the address and length of the buffer, which is used
to exchange data between master and remote.

The two VirtIO queues have initially been created.

• Master TVQ (= Remote RVQ from the perspective of remote):
– The Used buffer contains elements with buffer descriptor index.
– The Avail buffer remains empty.

• Remote TVQ (= Master RVQ from the perspective of master):
– The Avail buffer contains elements with a buffer descriptor index.
– The Used buffer remains empty.

Buffer descripter

Index Address Length

0 xxx xxx
1 xxx xxx

Buffer descripter

Index Address Length

0 xxx xxx
1 xxx xxx

Used

Master TVQ

Master RVQ

Avail

Avail Used

Figure 6. Two VirtIO queues initialized by the master

When the master sends data to the remote, the master and remote processors follow the below procedure, as
shown in Figure 7:

1. The master dequeues the descriptor index from the Used buffer in the master Transmit VirtIO Queue (TVQ).
2. The master updates the buffer.
3. The master enqueues the descriptor index into the Avail buffer in the master TVQ.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
12 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

4. The master kicks the remote.
5. The remote dequeues the descriptor index from the Avail buffer in the remote Receive VirtIO Queue (RVQ).
6. The remote reads the buffer.
7. The remote enqueues the descriptor index from the Avail buffer in the remote RVQ.

Master Remote

vq_tx_alloc_master:
dequeue

vq_rx_free_remote:
enqueue

vq_tx_master:
enqueue

vq_rx_remote:
dequeue

Used
Descriptor

index
Descriptor

indexAvail

Master TVQ (= remote RVQ)

Used

Kick

Figure 7. The master sends data to the remote

When the remote sends data to the master, each processor follows the procedure shown in Figure 8. When the
remote sends a message to the master, the roles of the Avail and Used buffers are swapped.

1. The remote dequeues the descriptor index from the Avail buffer in the remote TVQ.
2. The remote updates the buffer.
3. The remote enqueues the descriptor index into the Used buffer in the remote TVQ.
4. The remote kicks the master.
5. The master dequeues the descriptor index from the Used buffer in the master RVQ.
6. The master reads the buffer.
7. The master enqueues the descriptor index from the Used buffer in the master RVQ.

Remote Master

vq_tx_alloc_remote:
dequeue

vq_rx_free_master:
enqueue

vq_tx_remote:
enqueue

vq_rx_master:
dequeue

Avail
Descriptor

index
Descriptor

indexUsed

Remote TVQ (= Master RVQ)

Avail

Kick

Figure 8. The remote sends data to the master

4.2 Hardware implementation
RPMsg-Lite requires the following two basic components in hardware perspective:

• Shared memory
• Inter-core interrupt

This section explains how the shared memory and inter-core interrupt are implemented in the i.MX RT700 MCU.

4.2.1 Shared memory

RPMsg-Lite uses the VirtIO queue to exchange data, and this queue resides in the shared memory. The start
address and size of the shared memory must remain fixed during initialization time on both the master and
remote sides. In the attached project (AN14618SW), the shared memory is allocated as listed in Table 7.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
13 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

In RPMsg-Lite v5.1.3 or higher, the shared regions is either cacheable or noncacheable. If it is cacheable, the
library maintains cache coherency.

Master and remote Address Size

CPU0 and CPU1 0x20060000 0x8000

CPU0 and EZH-V 0x20068000 0x8000

CPU0 and HiFi4 0x20070000 0x8000

CPU1 and HiFi1 0x205B0000 0x8000

Table 7. Shared memory placement

4.2.2 Inter-core interrupt

RPMsg-Lite uses inter-core interrupts to notify target core (such as CPU1, HiFi4, HiFi1, or EZH-V) about VirtIO
queue updates. The subsections that follow explain how inter-core communication can happen using interrupts.

4.2.2.1 Messaging unit (MU)

The MU enables one processor to signal the other processor using interrupts. The MU consists of the following
two interfaces as shown in Figure 9:

• MUA: MUA can generate interrupts to processor A when interrupts are enabled.
• MUB: MUB can generate interrupts to processor B when interrupts are enabled.

Processor A Processor BMU

MUA MUB

Processor A
peripheral

bus

Processor B
peripheral

bus

TX and RX
registers

Status and
control

registers

Sync and
control

registers

Generate
interrupts

TX and RX
registers

Status and
control

registers

Sync and
control

registers

Generate
interrupts

Interrupts to
processor A

interrupt
controller

Interrupts to
processor B

interrupt
controller

Figure 9. MU block diagram

The i.MX RT700 MCU includes five MU instances, with processor pairings, as listed in Table 8.

MU instance Processor A Processor B

MU0 CPU0 HiFi1

MU1 CPU0 CPU1

Table 8. Processor A and processor B for each MU instance

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
14 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

MU instance Processor A Processor B

MU2 HiFi4 CPU1

MU3 CPU1 HiFi1

MU4 CPU0 HiFi4

Table 8. Processor A and processor B for each MU instance...continued

4.2.2.2 Arm to EZH-V and EZH-V to Arm interrupt

The Arm core can generate an interrupt to EZH-V core directly without using the MU, and EZH-V core can also
signal the Arm core in the same way.

The following mechanisms are used for the two types of processors:

• For the Arm core: The Arm core uses the EZHV2ARM_INT_CHAN register to identify which VirtIO queue has
been updated.

• For EZH-V: EZH-V uses the machine software input interrupt and machine external input interrupt to
determine which VirtIO queue has been updated.

5 Running the demo

This section explains how to build and run the i.MX RT700 multi-core application project in IAR Embedded
Workbench for Arm.The same basic procedure applies to other toolchains. The i.MX RT700 multi-core
application demonstrates exchanging message by RPMsg Lite between each cores.

5.1 Apply the patch to the MCUXpresso SDK
RPMsg-Lite does not support EZH-V in MCUXpresso SDK 24.12.00. Therefore, a software patch must be
applied to the MCUXpresso SDK. To apply the patch, follow the steps below:

1. Download the MCUXpresso SDK 24.12.00 and unzip it to a path of your choice.
2. Copy rpmsg-lite_ezhv.patch to the SDKroot directory.
3. Change the current directory to the SDK root directory.
4. Apply the patch using the following command:

patch -p1 < rpmsg-lite_ezhv.patch

5.2 Hardware and PC setup
To set up the hardware and PC for the i.MX RT700 multi-core application demo, follow the steps below:

1. On the MIMXRT700-EVK board, ensure that the jumper JP18 is open if you use the onboard debugger;
otherwise, short JP18.

2. To see two COM ports from the PC, open the jumper JP27.
3. Open two terminal consoles:

• One for CPU0, HiFi4, and EZH-V
• The other for CPU1 and HiFi1

4. Configure both consoles with the following settings:
• 115,200 baud rate
• 8 data bits
• No parity
• One stop bit

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
15 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

• No flow control

5.3 Build the i.MX RT700 multi-core application project
To build all components of the i.MX RT700 multi-core application, follow the step-by-step procedures mentioned
in the following subsections. The order of building is important because some images are embedded into other
images (for example, the CPU1 image includes the HiFi1 image).

5.3.1 Build HiFi4 and HiFi1

To build the HiFi4 and HiFi1 DSP using Xtensa Xplorer, follow the steps below:

1. To set up Xtensa Xplorer, follow the Getting Started with Xplorer for MIMXRT700-EVK (document
GSXMIMXRT700UG).

2. Download the attached project (AN14618SW) and unzip it to boards\mimxrt700evk\demo_apps.
3. Import the project from the file system, as shown in Figure 10.

Figure 10. Import projects from file system
4. Build the project, as shown in Figure 11 and Figure 12. Use correct configurations for each project in the

pulldown as shown in Figure 13:
• rt700_hifi4_RI23_11_nlib for HiFi4
• rt700_hifi1_RI23_11_nlib for HiFi1

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
16 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Figure 11. Build HiFi4 project in Xtensa Xplorer

Figure 12. Build HiFi1 project in Xtensa Xplorer

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
17 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Figure 13. Use the correct configuration depending on the project
5. Find the generated binary images in:

• rpmsg_lite\Hifi4\binary
• rpmsg_lite\Hifi1\binary

5.3.2 Build EZH-V

To build the EZH-V project using LLVM/Clang toolchains, follow the steps below:

1. To set up the LLVM/Clang toolchains, follow Developing Environment Setup for i.MX RT700 EZH-V
(document AN14614)

2. In the command prompt, open the ezhv/riscvllvm directory.
3. Run build_debug.bat or build_release.bat, as shown in Figure 14.
4. Find the generated binary images in rpmsg_lite\ezhv\binary. The build log is saved in

build_log.txt.

Figure 14. Running build script in command prompt

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
18 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

5.3.3 Build CPU1

To build the CPU1 project using IAR Embedded Workbench, follow the steps below:

1. Install the IAR Embedded Workbench IDE 9.60.3 or higher.
2. Open the workspace file rpmsg_lite_cm33_core1.eww.
3. Build the project in the release configuration.

5.3.4 Build CPU0

To build and download the CPU0 project using IAR Embedded Workbench (EWARM), follow the steps below:

1. Open the workspace file rpmsg_lite_cm33_core0.eww in EWARM.
2. Build the project in the flash_release configuration.
3. Download the project to the MIMXRT700-EVK board.

5.4 Result
After building and downloading all projects, verify that the demo runs successfully by checking the serial
console output. The console output displays messages exchanged between the following pairs of cores as
shown in Figure 15 and Figure 16:

• CPU0 ↔ CPU1
• CPU0 ↔ EZH-V
• CPU0 ↔ HiFi4
• CPU1 ↔ HiFi1

Note:

• CPU0, EZH-V, and HiFi4 share the same serial COM port.
• CPU1 and HiFi1 share another COM port.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
19 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Figure 15. The log of CPU0, HiFi4, and EZH-V

Figure 16. The log of CPU1 and HiFi1

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
20 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

5.5 Debug the i.MX RT700 multi-core application project
To debug each core of the i.MX RT700 multi-core application, use the tools and methods described in the
following subsections:

5.5.1 Debug CPU0/CPU1

Use one of the following IDEs to debug CPU0 and CPU1 cores:

• IAR Embedded Workbench for Arm
• Arm Keil MDK
• MCUXpresso IDE

5.5.2 Debug HiFi4/HiFi1

You can debug HiFi4 and HiFi1 cores using Xtensa Xplorer. To set up Xtensa Xplorer and learn the debugging
steps, including updating the EVK debug drivers to J-Link, refer to Getting Started with Xplorer for MIMXRT700-
EVK (document GSXMIMXRT700UG).

5.5.3 Debug EZH-V

You can debug EZH-V cores using J-Link Ozone. For detailed debugging instructions, refer to Developing
Environment Setup for i.MX RT700 EZH-V.

6 Linker customization

The linker is configured properly to realize the memory allocation according to Table 5. The configuration
method varies depending on the toolchains.

6.1 Configure linker for HiFi4/HiFi1
The Xtensa toolchain, called Linker Support Package (LSP), defines the memory allocation, so you do not need
to modify the linker scripts manually.

LSP consists of three major components:

• memmap.xmm defines which object resides in which region memory. It also provides memory attributes for
the objects (for example, executable, writable, uncached). MMU is initialized automatically according to this
file.

• The specification file defines the standard object files and libraries to include in the linker command line for the
final application executable.

• The specification file references the object files and libraries.

You can access Xtensa tool documentation at the below location after the installation of Xtensa Xplorer:

C:/usr/xtensa/XtDevTools/downloads/RI-2023.11/docs/index.html

The memmap.xmm file for HiFi4 defines memory allocation as shown below. Compare it to Table 5 to
understand how memmap.xmm defines the memory allocation. You can also use the GUI tool called memory
map editor to edit the memory description, as shown in Figure 17.

BEGIN dsp_core
0x20400000: sysram : dsp_core : 0x180000 : executable, writable ;
 dsp_core : C : 0x20400000 - 0x2057ffff : dsp_core.data dsp_core.bss;
END dsp_core

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
21 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

BEGIN dram0
0x24000000: dataRam : dram0 : 0x10000 : writable ;
 dram0_0 : C : 0x24000000 - 0x2400ffff : STACK : HEAP :
 __llvm_prf_names .data .rodata .literal .dram0.rodata .ResetVector.literal
 .Level2InterruptVector.literal .Level3InterruptVector.literal
 .DebugExceptionVector.literal .NMIExceptionVector.literal
 .KernelExceptionVector.literal .UserExceptionVector.literal
 .DoubleExceptionVector.literal .iram0.literal .dram0.data .dram0.bss .bss;
END dram0

BEGIN iram0
0x24020000: instRam : iram0 : 0x10000 : executable, writable ;
 iram0_0 : F : 0x24020000 -
 0x240203ff : .ResetVector.text .ResetHandler.literal .ResetHandler.text;
 iram0_1 : F : 0x24020400 - 0x2402057b : .WindowVectors.text;
 iram0_2 : F : 0x2402057c - 0x2402059b : .Level2InterruptVector.text;
 iram0_3 : F : 0x2402059c - 0x240205bb : .Level3InterruptVector.text;
 iram0_4 : F : 0x240205bc - 0x240205db : .DebugExceptionVector.text;
 iram0_5 : F : 0x240205dc - 0x240205fb : .NMIExceptionVector.text;
 iram0_6 : F : 0x240205fc - 0x2402061b : .KernelExceptionVector.text;
 iram0_7 : F : 0x2402061c - 0x2402063b : .UserExceptionVector.text;
 iram0_8 : F : 0x2402063c -
 0x2402ffff : .DoubleExceptionVector.text .iram0.text .text;
END iram0

BEGIN iocached
0x70000000: io : iocached : 0xda00000 : executable, writable ;
END iocached

BEGIN rpmsg_sh_mem
0x20070000: sysram : rpmsg_sh_mem : 0x8000 : executable, writable ;
END rpmsg_sh_mem

BEGIN rambypass
0x80000000: sysram : rambypass : 0x10000000 : device, executable, writable ;
END rambypass

BEGIN iobypass
0x90000000: io : iobypass : 0xda00000 : device, executable, writable ;
END iobypass

Figure 17. Running a GUI tool to edit memory description

There are some standard LSPs in Xtensa Xplorer, for example:

• gdbio builds an application that uses a connected debugger (gdb), if any, for all console and file I/Os.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
22 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

• min-rt builds an application to run in most systems or simulations, but without any board-specific support, such
as the character I/O.

For more details, refer to the Xtensa Linker Support Packages (LSPs) Reference Manual.

After editing memmap.xmm based on standard LSPs, to generate linker scripts from it, follow the steps below:

1. Set the configuration to rt700_hifi4_RI23_11_nlib.
2. Right-click the project and select Open Command Shell as shown in Figure 18.
3. Execute the following command under the HiFi4 directory, as shown in Figure 19:

xt-genldscripts -b gdbio

4. The linker script (*.ld) is generated automatically as shown in Figure 19.

Figure 18. Clicking Open Command Shell

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
23 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Figure 19. xt-genldscripts -b gdbio command generates linker scripts

To implement the memory allocation according to Table 5, HiFi4 image must be copied into three different
areas, as specified in Table 9. Use the post-build.bat file to generate these three separate images. If you modify
the memmap.xmm file, update the post-build.bat file to match your memmap.xmm file.

Sections Destination address Binary name

dsp_core.data 0x20400000 dsp_data_release.bin

.data

.rodata

.literal

.rtos.rodata

.Level3InterruptVector.literal

.DebugExceptionVector.literal

.NMIExceptionVector.literal

.rtos.percpu.data

0x24000000 dsp_literal_release.bin

.ResetVector.text

.WindowVectors.text

.Level2InterruptVector.text

.Level3InterruptVector.text

.DebugExceptionVector.text

.NMIExceptionVector.text

0x24200000 dsp_text_release.bin

Table 9. Image destination

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
24 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Sections Destination address Binary name
.KernelExceptionVector.text
.UserExceptionVector.text
.DoubleExceptionVector.text.text

Table 9. Image destination...continued

6.2 Configure linker for EZH-V
LLVM/Clang toolchain is compatible with the GNU ld. For example, the shared region for RPMsg Lite is defined
as an uninitialized data section using the following code snippet.

/* Uninitialized data section */
/* NOINIT section for rpmsg_sh_mem */
.noinit_rpmsg_sh_mem (NOLOAD) : ALIGN(4)
{
 __RPMSG_SH_MEM_START__ = .;
 (.noinit.$rpmsg_sh_mem)
 . = ALIGN(4) ;
 __RPMSG_SH_MEM_END__ = .;
} > rpmsg_sh_mem

6.3 Configure linker for CPU0/CPU1
For CPU0 and CPU1, configure the linker to generate a monolith image for downloading into the QSPI NOR
flash memory. The linker configuration must ensure that each image contains the required components:

1. The CPU1 image includes the HiFi1 image.
2. The CPU0 image includes the CPU1, HiFi4, and EZH-V images.

Note: The configuration method varies depending on the toolchain.

6.3.1 IAR Embedded Workbench for Arm

In the IAR linker, use the --image_input option to embed a binary into an image. For example, in the CPU0
configuration, the following option is used. This option defines cm33_core1.bin as the __core1_bin symbol in
the __core1_image section with 4-byte alignment. Include the --keep option because the software does not
explicitly reference the symbol.

--image_input=$PROJ_DIR$/../../cm33_core1/iar/binary/
cm33_core1.bin,__core1_bin,__core1_image,4
--keep=__core1_bin

For detailed information about these options, refer to the IAR document.

6.3.2 Arm Keil MDK/GCC (MCUXpresso IDE)

In Armclang and Gcc assembly, use the .incbin directive to embed a binary into an image. For example, in the
CPU0 configuration, use the following assembly code.

The core1_image.bin is included in the section named .core1_code, and its start address, end address, and
size are defined as core1_image_start, core1_image_end, and core1_image_size.

 .section .core1_code, "ax" @progbits @preinit_array
 .global core1_image_start
 .type core1_image_start, %object

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
25 / 30

https://wwwfiles.iar.com/arm/webic/doc/EWARM_DevelopmentGuide.ENU.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

 .align 4
core1_image_start:
 .incbin "core1_image.bin"
 .global core1_image_end
 .type core1_image_end, %object
core1_image_end:
 .global core1_image_size
 .type core1_image_size, %object
 .align 4
core1_image_size:
 .int core1_image_end - core1_image_start
 .end

For detailed information about other options, refer to the GNU document.

7 Acronyms

Table 10 lists the acronyms used in this document along with their descriptions.

Acronym Description

DTCM Data Tightly Coupled Memory

DSP Digital Signal Processing

FlexIO Flexible Input/Output

GPIO General-Purpose Input/Output

GPU Graphics Processing Unit

MIPI DSI Mobile Industry Processor Interface Display Serial Interface

MPU Memory Protection Unit

LCDIF LCD Interface

LSP Linker Support Package

M-Bus Memory Bus

MMU Memory Management Unit

NPU Neural Processing Unit

OTF On-the-Fly

P-Bus Peripheral Bus

RAM Random Access Memory

RISC-V Reduced Instruction Set Computer-V

ROM Read-only Memory

RVQ Receive VirtIO Queue

SPI Serial Peripheral Interface

SRAM Static RAM

TVQ Transmit VirtIO Queue

VirtIO Virtual Input/Output

XIP Execute-in-Place

Table 10. Acronyms

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
26 / 30

https://ftp.gnu.org/old-gnu/Manuals/gas/html_chapter/as_7.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9 Revision history

Table 11 summarizes the revisions to this document.

Document ID Release date Description

AN14618 v.2.0 10 November 2025 • Initial public release
• Updates:

– Made several technical and editorial changes
– Added Section 5.5

AN14618 v.1.0 23 April 2025 Initial internal release

Table 11. Revision history

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
27 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
28 / 30

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

IAR — is a trademark of IAR Systems AB.

AN14618 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 10 November 2025 Document feedback
29 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

NXP Semiconductors AN14618
Multi-core Application Development on i.MX RT700

Contents
1 Introduction .. 2
2 Memory usage in i.MX RT700 multi-core

applications .. 3
2.1 Memory architecture ..3
2.1.1 Compute domain ... 4
2.1.2 Common domain ... 4
2.1.3 DSP domain .. 4
2.1.4 Sense domain ..4
2.1.5 Media domain .. 5
2.2 Cache controllers ...5
2.2.1 CPU0 ... 5
2.2.2 CPU1 ... 6
2.2.3 HiFi4 ...6
2.2.4 HiFi1 ...7
2.3 Memory map ..7
2.4 Memory allocation ... 8
3 Boot sequence ...9
3.1 Boot sequence overview 9
3.2 Clock root .. 9
3.3 Software implementation 10
4 Inter-core communication12
4.1 Software implementation 12
4.2 Hardware implementation13
4.2.1 Shared memory ... 13
4.2.2 Inter-core interrupt ... 14
4.2.2.1 Messaging unit (MU) 14
4.2.2.2 Arm to EZH-V and EZH-V to Arm interrupt 15
5 Running the demo ...15
5.1 Apply the patch to the MCUXpresso SDK 15
5.2 Hardware and PC setup 15
5.3 Build the i.MX RT700 multi-core application

project .. 16
5.3.1 Build HiFi4 and HiFi1 16
5.3.2 Build EZH-V ...18
5.3.3 Build CPU1 .. 19
5.3.4 Build CPU0 .. 19
5.4 Result ...19
5.5 Debug the i.MX RT700 multi-core

application project ..21
5.5.1 Debug CPU0/CPU1 ...21
5.5.2 Debug HiFi4/HiFi1 ... 21
5.5.3 Debug EZH-V .. 21
6 Linker customization21
6.1 Configure linker for HiFi4/HiFi1 21
6.2 Configure linker for EZH-V 25
6.3 Configure linker for CPU0/CPU1 25
6.3.1 IAR Embedded Workbench for Arm 25
6.3.2 Arm Keil MDK/GCC (MCUXpresso IDE)25
7 Acronyms ... 26
8 Note about the source code in the

document ..27
9 Revision history ...27

Legal information ...28

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 10 November 2025
Document identifier: AN14618

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14618

	1 Introduction
	2 Memory usage in i.MX RT700 multi-core applications
	2.1 Memory architecture
	2.1.1 Compute domain
	2.1.2 Common domain
	2.1.3 DSP domain
	2.1.4 Sense domain
	2.1.5 Media domain

	2.2 Cache controllers
	2.2.1 CPU0
	2.2.2 CPU1
	2.2.3 HiFi4
	2.2.4 HiFi1

	2.3 Memory map
	2.4 Memory allocation

	3 Boot sequence
	3.1 Boot sequence overview
	3.2 Clock root
	3.3 Software implementation

	4 Inter-core communication
	4.1 Software implementation
	4.2 Hardware implementation
	4.2.1 Shared memory
	4.2.2 Inter-core interrupt
	4.2.2.1 Messaging unit (MU)
	4.2.2.2 Arm to EZH-V and EZH-V to Arm interrupt

	5 Running the demo
	5.1 Apply the patch to the MCUXpresso SDK
	5.2 Hardware and PC setup
	5.3 Build the i.MX RT700 multi-core application project
	5.3.1 Build HiFi4 and HiFi1
	5.3.2 Build EZH-V
	5.3.3 Build CPU1
	5.3.4 Build CPU0

	5.4 Result
	5.5 Debug the i.MX RT700 multi-core application project
	5.5.1 Debug CPU0/CPU1
	5.5.2 Debug HiFi4/HiFi1
	5.5.3 Debug EZH-V

	6 Linker customization
	6.1 Configure linker for HiFi4/HiFi1
	6.2 Configure linker for EZH-V
	6.3 Configure linker for CPU0/CPU1
	6.3.1 IAR Embedded Workbench for Arm
	6.3.2 Arm Keil MDK/GCC (MCUXpresso IDE)

	7 Acronyms
	8 Note about the source code in the document
	9 Revision history
	Legal information
	Contents

