
AN14848
i.MX RT700 OpenVG introduction
Rev. 1.0 — 10 November 2025 Application note

Document information
Information Content

Keywords AN14848, i.MX RT700, Vector graphics, VG Lite, embedded systems, GPU acceleration

Abstract This document introduces OpenVG implementation on the NXP i.MX RT700 platform, detailing its
hardware-accelerated 2D vector graphics capabilities for embedded systems. It covers the i.MX
RT700 graphics architecture, OpenVG API layering over VGLite, and provides practical guidance
for developers on rendering, transformations, paint techniques, and image handling.

https://www.nxp.com

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

1 Introduction

The i.MX RT700 features up to five computing cores designed to power smart AI-enabled edge devices such
as wearables, consumer medical, smart home, and HMI devices. Its compute subsystem includes a primary
Arm Cortex-M33 running at 325 MHz. Includes 2.5D GPU with vector graphics acceleration and frame buffer
compression and the NXP eIQ Neutron NPU accelerating AI workloads by up to 172x and integrates up to 7.5
MB of onboard SRAM.

This application note is designed to guide developers through the practical implementation of OpenVG for
embedded graphics, starting from basic rendering concepts to advanced UI designs.

It covers:

• An overview of the i.MX RT700 graphics architecture and how OpenVG is layered over the VGLite engine.
• A step-by-step tutorial on using OpenVG. This includes drawing shapes, applying transformations, strokes,

gradients, and image blitting.
• Detailed code examples with explanations of parameters and expected outputs.

2 OpenVG

This section introduces OpenVG, a cross-platform API tailored for hardware-accelerated 2D vector graphics.
It explains the advantages of vector graphics over raster images, particularly in embedded systems, and
highlights OpenVG role in delivering scalable, high-performance visuals. The section also outlines the
architecture of OpenVG on the NXP i.MX RT700 platform, detailing its integration with VGLite and GPU
hardware to enable efficient rendering for modern user interfaces.

2.1 Overview
OpenVG (Open Vector Graphics) is a cross-platform API designed specifically for hardware-accelerated 2D
vector graphics. Developed by the Khronos Group, OpenVG provides a standardized interface for rendering
scalable graphics such as paths, shapes, gradients, and fonts—making it ideal for applications that require
smooth, resolution-independent visuals.

OpenVG is well-suited for user interfaces in automotive clusters, smart appliances, medical devices, and
industrial controls, where crisp visuals and efficient rendering are critical. Its architecture supports antialiasing,
alpha blending, and transformations, enabling rich graphical experiences with minimal overhead.

On platforms like the NXP i.MX RT700 with integrated GPU support, OpenVG unlocks the full potential of the
hardware by providing a streamlined path to high-performance 2D graphics. Developers can build sophisticated
UIs and visualizations while maintaining low power consumption and high responsiveness.

2.2 Vector graphics vs raster images
Graphics in digital systems are typically represented in two fundamental ways: vector graphics and raster
images. Understanding the distinction between these formats is essential when working with graphics APIs like
OpenVG.

Vector graphics are composed of geometric primitives, such as points, lines, curves, and polygons. These
elements are defined mathematically. It allows vector images to be resolution-independent: they can be scaled
to any size without losing clarity or introducing pixelation. This makes them ideal for rendering crisp shapes,
icons, fonts, and UI elements.

OpenVG is optimized for vector graphics, providing hardware-accelerated rendering of paths, transformations,
gradients, and antialiasing. This enables smooth and efficient drawing of complex scenes, especially in
embedded systems where performance and memory are constrained.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
2 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

In contrast, raster images (also known as bitmap images) are made up of a grid of individual pixels, each
representing a specific color. Common formats include JPEG, PNG, and BMP. Raster graphics are resolution-
dependent, meaning scaling them can result in visible artifacts or blurring.

While OpenVG’s primary focus is vector rendering, it also includes support for raster image manipulation. This
allows developers to integrate bitmap images into vector-based scenes, apply transformations, blend modes,
and even perform basic image processing. This hybrid capability is useful for applications that combine UI
elements with photographic content or textures.

Figure 1. Vector graphics vs raster images

2.3 OpenVG architecture on i.MX RT700
The NXP i.MX RT700 features an integrated 2.5D GPU designed to accelerate vector graphics rendering. This
GPU is accessed through a low-level graphics driver known as VGLite, which provides direct control over the
hardware capabilities for drawing paths, shapes, and handling image data.

OpenVG sits above VGLite as a high-level API, offering a standardized and portable interface for developers.
Instead of interacting directly with the GPU through VGLite, applications written using OpenVG can apply
its abstraction layer to simplify development while still benefiting from the full performance of hardware
acceleration. The architecture is made up of:

• Application layer: Your application code interacts with OpenVG functions to define paths, transformations,
gradients, and image operations.

• OpenVG API: This layer translates high-level vector graphics commands into GPU-friendly instructions.
• VGLite driver: Acts as the bridge between OpenVG and the GPU, handling low-level rendering tasks and

memory management.
• GPU Hardware: Executes the rendering operations efficiently, offloading the CPU and enabling smooth, high-

performance graphics.
• EGL: is used to create and manage the rendering context for OpenVG, ensures that what OpenVG draws via

VGLite is properly displayed on screen.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
3 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

aaa-063471

Application

Open VG

Utilities

Device controller EGL

Hardware device display

VGLite

GPU hardware

API Engine

Figure 2. OpenVG Architecture

3 Basic initialization

Before rendering any graphics, the system must go through a series of initialization steps to prepare the GPU,
display, and rendering context. Here is a simplified overview of the process:

1. Prepare the VGLite controller: The i.MX RT700 uses VGLite as the low-level driver to control its 2D GPU.
This step ensures that the GPU is ready for rendering operations.

2. Create a native display and window: Using the framebuffer interface, a native display and window are
created. They are required for EGL to bind rendering surfaces.

3. Initialize EGL and OpenVG: This step sets up the EGL environment and binds it to OpenVG. It involves
several substeps:
a. Get and initialize the EGL display
b. Bind the OpenVG API
c. Choose EGL configuration
d. Create EGL surface and context

4. Set OpenVG Defaults: Basic rendering settings are applied to ensure consistent behavior.
5. Clear the screen and verify: A simple clear and buffer swap is performed to verify that everything works.

//Step 1: Prepare the VGLite Controller
status = BOARD_PrepareVGLiteController();

//Step 2: Create Native Display and Window
fbDpy = fbGetDisplay(NULL);
fbWin = fbCreateWindow(fbDpy, 0, 0, DEMO_WINDOW_WIDTH, DEMO_WINDOW_HEIGHT);

//Step 3: Initialize EGL and OpenVG
initialize_openvg(fbWin, &eglDisplay, &eglSurface, &eglContext);
eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(eglDisplay, NULL, NULL);
eglBindAPI(EGL_OPENVG_API);
choose_config(eglDisplay, &eglConfig)
eglSurface = eglCreateWindowSurface(...);
eglContext = eglCreateContext(...);
eglMakeCurrent(eglDisplay, eglSurface, eglSurface, eglContext);

//Step 4: Set OpenVG Defaults
vgSeti(VG_MATRIX_MODE, VG_MATRIX_PATH_USER_TO_SURFACE);
vgLoadIdentity();
vgSeti(VG_BLEND_MODE, VG_BLEND_SRC_OVER);
vgSeti(VG_FILL_RULE, VG_NON_ZERO);
vgSetfv(VG_CLEAR_COLOR, 4, (VGfloat[]){1.0f, 1.0f, 1.0f, 1.0f})

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
4 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

//Step 5: Clear the Screen and Verify
vgClear(0, 0, DEMO_WINDOW_WIDTH, DEMO_WINDOW_HEIGHT);
eglSwapBuffers(eglDisplay, eglSurface);

This setup ensures that the GPU is ready, the rendering context is active, and the screen is prepared for
drawing operations.

4 First drawing and path operations.

This section provides an overview of shape construction in OpenVG, covering manual path creation, drawing
commands, and the use of VGU utilities for simplified geometry generation. It explains how paths define vector
shapes through segment commands, demonstrates rectangle drawing using basic instructions, and introduces
VGU functions for quickly rendering common shapes like lines, circles, and arcs.

4.1 Path overview
This section introduces how to draw basic shapes using OpenVG. It covers path creation, drawing commands,
and the use of VGU utilities.

In OpenVG, a path is a fundamental building block for drawing shapes. It represents a sequence of drawing
commands and coordinate points that define geometric figures like lines, curves, and shapes.

Think of a path as a vector blueprint—it tells the GPU how to draw something, but not what color or how thick.
Those visual properties are handled separately by paints and styles.

There are several Path commands. The following table describes each segment command and the results of
the operations.

VGPathSegment Coordinates Description

VG_CLOSE_PATH none Closes the current subpath by connecting the last point to the starting
point.

VG_MOVE_TO Moves the "pen" to a new position without drawing. Starts a new subpath.

VG_LINE_TO
x0,y0

Draws a straight line from the current point to (x0, y0).

VG_HLINE_TO x0 Draws a horizontal line to x0 (y remains unchanged).

VG_VLINE_TO y0 Draws a vertical line to y0 (x remains unchanged).

VG_QUAD_TO x0,y0,x1,y1 Draws a quadratic Bézier curve using (x0, y0) as control and (x1, y1) as
end.

VG_CUBIC_TO x0,y0,x1,y1, x2, y2 Draws a cubic Bézier curve with two control points and an end point

VG_SQUAD_TO x1,y1 Draws a smooth quadratic Bézier curve using the previous control point.

VG_SCUBIC_TO x1,y1, x2, y2 Draws a smooth cubic Bézier curve using the previous control point.

VG_SCCWARC_TO Draws a small counterclockwise elliptical arc to (x0, y0).

VG_SCWARC_TO Draws a small clockwise elliptical arc to (x0, y0).

VG_LCCWARC_TO Draws a large counterclockwise elliptical arc to (x0, y0).

VG_LCWARC_TO

rh,rv,rot,x0,y0

Draws a large clockwise elliptical arc to (x0, y0).

Table 1. Segment commands

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
5 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

4.2 Simple rectangle
To draw a rectangle manually, define a path with commands and coordinates.

VGPath rectPath = vgCreatePath(
 VG_PATH_FORMAT_STANDARD,
 VG_PATH_DATATYPE_F,
 1.0f, 0.0f,
 segmentHint, coordHint,
 VG_PATH_CAPABILITY_ALL
);

VGubyte segments[] = {
 VG_MOVE_TO_ABS,
 VG_LINE_TO_ABS,
 VG_LINE_TO_ABS,
 VG_LINE_TO_ABS,
 VG_CLOSE_PATH
};

VGfloat coords[] = {
 50, 50, // Move to top-left
 150, 50, // Line to top-right
 150, 130, // Line to bottom-right
 50, 130 // Line to bottom-left
 // Close path connects back to (50, 50)
};

The segments define what we are going to do (move, draw, close) and the coordinates define where to top it (x,
y positions). Once the path is defined, it is possible to draw it:

vgAppendPathData(rectPath, 5, segments, coords);
vgSetPaint(paint, VG_FILL_PATH);
vgDrawPath(rectPath, VG_FILL_PATH);

Figure 3 illustrates how a rectangle is constructed using OpenVG path commands. It begins with a MoveTo
command to set the starting point, followed by three LineTo segments to define the edges. The shape is
completed with a ClosePath command that connects the last point back to the start. Each vertex is labeled with
its coordinates and the corresponding drawing instruction.

aaa-063472

Move to
(50, 130)

Line to
(150, 130)

Move to
(50, 50)

Close
path

Line to
(150, 50)

Figure 3. Rectangle draw

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
6 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

4.3 Vector graphics utilities VGU
VGU is a companion utility library for OpenVG that simplifies the creation of common geometric shapes. While
OpenVG provides the core API for rendering paths and graphics, VGU offers helper functions to generate
predefined shapes without manually specifying path segments and coordinates.

This is especially useful for developers who want to quickly draw basic shapes like rectangles, circles, and
ellipses, or perform operations like arc creation and curve fitting, without constructing paths from scratch. VGU
provides functions to create the following shapes:

Function Description

vguLine() Creates a straight line between two points.

vguRect() Generates a rectangle given position and size.

vguRoundRect() Similar to vguRect() but with rounded corners.

vguEllipse() Creates an ellipse or circle based on width and height.

vguArc() Generates an elliptical arc segment with specified angles and radio.

Table 2. Functions

The following peace of code is a representative example of how you can use the library to draw a simple circle:

VGPath circlePath = vgCreatePath(...);
vguEllipse(circlePath, 100, 100, 80, 80); // Circle with radius 40
vgSetPaint(fillPaint, VG_FILL_PATH);
vgDrawPath(circlePath, VG_FILL_PATH);

5 Paint and stroke fundamentals

OpenVG separates how shapes are drawn (geometry) from how they look (style). This is achieved through paint
objects and stroke properties that define the visual appearance of paths.

5.1 Paint objects
A VGPaint object defines the color or gradient used to fill or stroke a path. It is possible to create multiple paint
objects and assign them to different drawing operations.

VGPaint fillPaint = vgCreatePaint();
vgSetParameteri(fillPaint, VG_PAINT_TYPE, VG_PAINT_TYPE_COLOR);
VGfloat color[] = {1.0f, 0.0f, 0.0f, 1.0f}; // RGBA: Red
vgSetParameterfv(fillPaint, VG_PAINT_COLOR, 4, color);

VG_PAINT_TYPE_COLOR: Specifies solid color. RGBA values range from 0.0 to 1.0. It is possible to create
gradient paints (linear or radial), this section focuses on solid colors. Gradients are covered in the sections
below.

5.2 Fill vs stroke
OpenVG allows users to fill the interior of a path or stroke its outline. These are controlled using:

• VG_FILL_PATH: Fills the shape.
• VG_STROKE_PATH: Draws the outline.

vgSetPaint(fillPaint, VG_FILL_PATH); // Apply fill paint

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
7 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

vgSetPaint(strokePaint, VG_STROKE_PATH); // Apply stroke paint

The same paint object can be used for both fill and stroke, or separate ones for different styles. Figure 4
demonstrates the visual differences between OpenVG fill and stroke rendering modes. The first rectangle
uses only VG_FILL_PATH, showing a solid interior. The second uses VG_STROKE_PATH, outlining the shape
without filling it. The third combines both, displaying a filled shape with a visible border. This highlights how paint
assignment affects path rendering.

aaa-063473

Stroke Fill and strokeFill

Figure 4. Fill vs stroke

5.3 Stroke properties
Stroke settings define how the outline of a path is rendered, including end cap style, line join style, width, dash
pattern.

The end cap style includes:

• VG_CAP_BUTT: Each segment with a line is perpendicular to the tangent at each endpoint.
• VG_CAP_ROUND: Append a semicircle with a diameter equal to the line width centered on each endpoint.
• VG_CAP_SQUARE: Append a rectangle at each endpoint, whose vertical length is equal to the line width, and

the parallel length is equal to half the line width.

As shown in Figure 5, the red lines mean the real path data, the black and the gray are the drawn strokes where
the gray is added by end cap styles (the gray color is used to highlight, these areas have the same color as the
real path).

aaa-063574

VG_CAP_ROUNDVG_CAP_BUTT VG_CAP_SQUARE

Figure 5. Cap styles

The line join style determines the style of the intersection point of two lines, including:

• VG_JOIN_MITER: Connect the two segments by extending their outer edges until they meet. If this join style
is selected.

• VG_JOIN_ROUND: Append a wedge-shaped portion of a circle, centered at the intersection point, whose
diameter is equal to the line width.

• VG_JOIN_BEVEL: Connect two points of the outer border of two segments with a straight line.

As shown in Figure 6, the red lines mean the true path, the black and gray lines are the drawn strokes where
the gray is added by line join styles.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
8 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

aaa-063575

VG_LITE_JOIN_ROUNDVG_LITE_JOIN_MITER

Miter length

VG_LITE_JOIN_BEVEL

Figure 6. Join Styles

It is possible to create a dash pattern that defines alternating segments of "on" and "off" strokes, for example,
dashed or dotted lines. They can be specified by using an array of floats, where each value represents the
length of a dash or gap. The following examples create a patter with 10 pixels on and 5 off as shown in Figure 7.

VGfloat dashPattern[] = {10.0f, 5.0f}; // 10 pixels on, 5 pixels off

aaa-063576

10 10 10

55

Figure 7. Dash Pattern

On the software related to this document, a function to generate multiple dash patterns is included.

// Different dash patterns
 VGfloat solid[] = {}; // Solid line
 VGfloat dots[] = {2.0f, 8.0f}; // Small dots
 VGfloat dashes[] = {15.0f, 10.0f}; // Regular dashes
 VGfloat dotDash[] = {3.0f, 5.0f, 15.0f, 5.0f}; // Dot-dash
 VGfloat complex[] = {10.0f, 3.0f, 3.0f, 3.0f, 3.0f, 8.0f}; // Complex
 pattern

 struct {
 VGfloat* pattern;
 int count;
 const char* name;
 float yOffset;
 } patterns[] = {
 {NULL, 0, "Solid", 400},
 {dots, 2, "Dots", 350},
 {dashes, 2, "Dashes", 300},
 {dotDash, 4, "Dot-Dash", 250},
 {complex, 6, "Complex", 200}
 };

 for (int i = 0; i < 5; i++)
 {
 vgLoadIdentity();
 vgTranslate(0, patterns[i].yOffset);

 if (patterns[i].pattern == NULL)
 {
 vgSetfv(VG_STROKE_DASH_PATTERN, 0, NULL); // Solid
 }
 else
 {
 apply_advanced_dash_pattern(patterns[i].name, patterns[i].pattern,
 patterns[i].count);

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
9 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

 }

 vgDrawPath(testLine, VG_STROKE_PATH);
 }

The expected result is shown on Figure 8. From top to bottom, it displays a solid line, small dotted line, regular
dashed line, a dot-dash combination, and a complex repeating pattern. Each style is defined by a sequence of
visible and invisible segments, allowing expressive and customizable outlines in vector graphics.

aaa-063477

Complex pattern

Dot-dash

Regular dashes

Small dots

Solid line

Figure 8. Dash pattern example

6 Matrix transformation

OpenVG uses transformation matrices (3x3) to manipulate how graphics are positioned, scaled, and rotated on
the screen. These transformations are essential for building dynamic and responsive user interfaces.

OpenVG operates with two main coordinate systems:

• User coordinates: The logical space where you shapes and paths are defined.
• Surface coordinates: The physical pixel space of the display.

There are three main functions to apply transformation to a current matrix: translation vgTranslate(), scaling
vgScale(), rotation vgRotate(). Transformations are applied in reverse order of how they are written. For
example:

vgTranslate(100, 100);
vgRotate(30);
vgScale(2, 2);

This means that the object is first scaled, then rotated, then translated.

On the example reference there is an animation where a "house" shape rotates around a central point in
a circular orbit, while also spinning on its own axis. This demonstrates how matrix transformations can be
combined to create dynamic motion and rotation effects.

1. The loop runs from 0 degrees to 360 degrees in steps of 10, simulating 36 frames of animation:

for (int frame = 0; frame < 360; frame += 10) // 36 frames

2. Each frame starts by clearing the screen to prepare for fresh drawing:

vgClear(0, 0, DEMO_WINDOW_WIDTH, DEMO_WINDOW_HEIGHT);

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
10 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

3. A dashed circle is drawn to visualize the orbit:

draw_circle(centerX, centerY, radius, NULL, orbitColor, 1.0f, dashPattern,
 2);

4. The house is moved and rotated using a series of transformations:
a. The first vgRotate(frame) makes the house orbit.
b. The second vgRotate(frame * 3) makes the house spin as it orbits.
c. The final vgTranslate(-20, -25) centers the shape visually.

vgLoadIdentity(); // Reset matrix
vgTranslate(centerX, centerY); // Move origin to center
vgRotate(frame); // Rotate around center (orbit)
vgTranslate(radius, 0); // Move outward along orbit
vgRotate(frame * 3); // Spin the house itself
vgTranslate(-20, -25); // Center the house shape
vgDrawPath(house, VG_FILL_PATH); // Draw the house

5. The frame is rendered to the screen and a short delay (~50 ms) creates a smooth frame rate (~20 FPS):

eglSwapBuffers(eglDisplay, eglSurface);
vTaskDelay(pdMS_TO_TICKS(50));

aaa-063478

Orbit animation

Figure 9. House rotating

7 Fill rules

When rendering complex or self-intersecting shapes, OpenVG uses fill rules to determine which areas of a path
should be filled. These rules define how the interior of a shape is calculated based on the direction and overlap
of its segments.

Non-zero winding rule (VG_NON_ZERO):

This rule counts how many times a path winds around a point. If the result is non-zero, the point is considered
inside the shape and gets filled.

• Direction matters: Clockwise adds +1, counterclockwise subtracts -1.
• Useful for complex shapes with overlapping segments.

Even-Odd Rule (VG_EVEN_ODD):

This rule counts how many times a path crosses a line drawn from a point. If the count is odd, the point is
inside; if even, it is outside.

• Direction does not matter.
• Simpler and often used for star-like or nested shapes.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
11 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

The demo_fill_rules() function demonstrates both rules using a self-intersecting star shape:

VGPath path1 = create_intersecting_path(150, 300, 80);
VGPath path2 = create_intersecting_path(350, 300, 80);

// Non-Zero fill rule
vgSeti(VG_FILL_RULE, VG_NON_ZERO);
vgDrawPath(path1, VG_FILL_PATH | VG_STROKE_PATH);

// Even-Odd fill rule
vgSeti(VG_FILL_RULE, VG_EVEN_ODD);
vgDrawPath(path2, VG_FILL_PATH | VG_STROKE_PATH);

Figure 10 compares the two fill rules supported by OpenVG: Non-zero winding and even-odd. The left shape
uses the non-zero rule, filling all regions enclosed by overlapping paths. The right shape uses the even-odd
rule, which creates hollow areas based on the number of path crossings.

aaa-063479

Non-zero Even-odd

Figure 10. Fill rules

8 Gradients and advanced paint

OpenVG supports advanced paint types beyond solid colors, allowing for smooth transitions and textured fills
using gradients and patterns. These techniques enhance visual richness and realism in embedded UIs.

8.1 Linear gradient
A linear gradient is a smooth transition between two or more colors along a straight line. It is commonly used to
simulate lighting, depth, or visual transitions in UI elements. In OpenVG, gradients are applied using a VGPaint
object configured with the VG_PAINT_TYPE_LINEAR_GRADIENT type. Follow this step to create a linear
gradient.

1. Create the paint object: tells OpenVG that the paint will be a linear gradient rather than a solid color or
pattern using the VG_PAINT_TYPE_LINEAR_GRADIENT definition.

VGPaint gradientPaint = vgCreatePaint();
vgSetParameteri(gradientPaint, VG_PAINT_TYPE,
VG_PAINT_TYPE_LINEAR_GRADIENT);

2. Define the gradient vector: The gradient vector determines the direction and length of the gradient.

VGfloat gradientVector[] = {x0, y0, x1, y1};
vgSetParameterfv(gradientPaint, VG_PAINT_LINEAR_GRADIENT, 4, gradientVector);

a. x0, y0: The start point of the gradient.
b. x1, y1: The end point of the gradient.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
12 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

The gradient will interpolate colors from the start to the end point. For example:
• Horizontal gradient: {0, 0, 200, 0}
• Vertical gradient: {0, 0, 0, 200}
• Diagonal gradient: {0, 0, 200, 200}

3. Set color stops: color stops define the colors and their positions along the gradient vector.

VGfloat colorStops[] = {
 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Red at offset 0.0
 1.0f, 0.0f, 0.0f, 1.0f, 1.0f // Blue at offset 1.0
};
vgSetParameterfv(gradientPaint, VG_PAINT_COLOR_RAMP_STOPS, 10, colorStops);

Each stop consists of:
• Offset: A value between 0.0 and 1.0 indicating position along the gradient.
• RGBA: Red, Green, Blue, Alpha values (0.0 to 1.0).
It is possible to add more stops for complex gradients:

VGfloat multiStops[] = {
 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Red
 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Green
 1.0f, 0.0f, 0.0f, 1.0f, 1.0f // Blue
};

4. Apply the gradient to a path: once the gradient is configured, you can apply it to a path:

VGfloat colorStops[] = {
 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Red at offset 0.0
 1.0f, 0.0f, 0.0f, 1.0f, 1.0f // Blue at offset 1.0
};
vgSetParameterfv(gradientPaint, VG_PAINT_COLOR_RAMP_STOPS, 10, colorStops);

This fills the path using the gradient defined by the vector and color stops. Figure 11 shows three rectangles
filled with different types of linear gradients:
• Left: Horizontal gradient from red to blue
• Center: Vertical gradient from red to blue
• Right: Diagonal gradient transitioning from red to green to blue

Figure 11. Linear gradient

8.2 Radial gradient
A radial gradient is a smooth transition between colors that radiates outward from a central point. Unlike linear
gradients that interpolate colors along a straight line, radial gradients simulate depth, lighting, or focus effects by
blending colors in a circular or elliptical pattern.

This type of gradient is useful for:

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
13 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

• Simulating light sources (for example, glows, highlights)
• Creating circular UI elements with depth
• Emphasizing focal points in a design

Radial gradients are applied using a VGPaint object configured with the VG_PAINT_TYPE_RADIAL_GRADIENT
type. The gradient is defined by a center point, a focal point, and a radius.

1. Create the paint object: tells OpenVG that the paint will be a radial using the
VG_PAINT_TYPE_RADIAL_GRADIENT definition:

VGPaint paint = vgCreatePaint();
vgSetParameteri(paint, VG_PAINT_TYPE, VG_PAINT_TYPE_RADIAL_GRADIENT);

2. Defines the radial gradient parameters:

VGfloat radialGradient[5] = {
 200.0f, 200.0f, // Center of the gradient (cx, cy)
 200.0f, 200.0f, // Focal point (fx, fy) — same as center for symmetric
 gradient
 200.0f // Radius — covers the entire circle area
};
vgSetParameterfv(paint, VG_PAINT_RADIAL_GRADIENT, 5, radialGradient);

3. Define color ramp stops: Color ramp stops specify how colors transition along the gradient. Here is an
example with three colors: red, green, and blue:

VGfloat rampStops[] = {
 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Red at position 0.0
 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Green at position 0.5
 1.0f, 0.0f, 0.0f, 1.0f, 1.0f // Blue at position 1.0
};
vgSetParameterfv(paint, VG_PAINT_COLOR_RAMP_STOPS, 15, rampStops);

Figure 12. Radial gradient

9 Image handling

In OpenVG, images are managed using the VGImage type. These objects store pixel data and can be
rendered, transformed, or used as paint sources. OpenVG supports several formats:

• VG_sRGB_565: 16-bit RGB, no alpha
AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
14 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

• VG_sRGBA_8888: 32-bit RGBA
• VG_sRGBA_8888_PRE: Premultiplied alpha
• VG_lRGBx_8888: Luminance-based

We are going to use the NXP logo to show the image capabilities:

1. Load the Image into VGImage: Assuming the image is stored in memory or loaded from flash, it is possible
to use vgImageSubData() to populate a VGImage object:

VGImage nxpLogo = vgCreateImage(
 VG_sRGBA_8888, // Format with alpha
 128, 64, // Width and height of the logo
 VG_IMAGE_QUALITY_BETTER
);

// Assuming 'logoData' is a pointer to the raw RGBA pixel data
vgImageSubData(
 nxpLogo,
 logoData,
 128 * 4, // Stride: width * bytes per pixel
 VG_sRGBA_8888,
 0, 0,
 128, 64
);

2. Position and scale the logo: To center and scale the logo on screen, use:

vgSeti(VG_MATRIX_MODE, VG_MATRIX_IMAGE_TO_USER);
VGfloat matrix[9] = {
 1.5f, 0, 0,
 0, 1.5f, 0,
 100.0f, 50.0f, 1
};
vgLoadMatrix(matrix);

This scales the logo by 1.5× and positions it at (100, 50) in user space.
3. To draw the image, use:

 vgDrawImage(nxpLogo);

Figure 13. NXP logo

9.1 Image filters
Image filters in OpenVG allow users to apply pixel-level transformations to VGImage objects. Filters operate on
image data and produce a new image as an output that can then be drawn or used as a paint source. Several
built-in image filters are available via the vgColorMatrix() and vgConvolve() functions. Common filters
include:

Color matrix filters (vgColorMatrix)

Used to apply transformations like:

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
15 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

• Grayscale
• Sepia
• Color inversion
• Brightness/contrast adjustment

Convolution filters (vgConvolve)

Used for:

• Blurring
• Sharpening
• Edge detection

These filters use a kernel matrix to process pixel neighborhoods.

The following instructions show how to apply the color matrix filter (Grayscale) and the convolution kernel (blur)
to the NXP logo.

Grayscale (color matrix):

VGfloat grayscaleMatrix[20] = {
 0.299f, 0.587f, 0.114f, 0, 0,
 0.299f, 0.587f, 0.114f, 0, 0,
 0.299f, 0.587f, 0.114f, 0, 0,
 0, 0, 0, 1, 0
};
vgColorMatrix(outputImage, inputImage, grayscaleMatrix);

Blur (convolution filter):

 VGshort kernel[9] = {
 1, 2, 1,
 2, 4, 2,
 1, 2, 1
};
vgConvolve(outputImage, inputImage, 3, 3, 1, 1, kernel, 16, 0, VG_TILE_PAD);

Figure 14 shows the results of each filter applied to the NXP logo.

Figure 14. Image filters

9.2 Image as paint
It is possible to use an image as a paint source, meaning the image is tiled or stretched to fill shapes instead of
using solid colors or gradients. This is useful for:

• Creating textured fills
• Repeating patterns (for example, fabric, tiles)
• Simulating materials or branding elements

This technique is like using a texture in OpenGL, but OpenVG handles it through the pattern paint type.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
16 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

Figure 15 shows an example how the NXP logo fills a rectangle.

VGPath rect = createRectanglePath(0, 0, 300, 200); // Custom function to create
 a rectangle path

vgSeti(VG_MATRIX_MODE, VG_MATRIX_PAINT_TO_USER);
VGfloat matrix[9] = {
 1.0f, 0, 0,
 0, 1.0f, 0,
 0, 0, 1
};
vgLoadMatrix(matrix);

vgSetPaint(paint, VG_FILL_PATH);
vgDrawPath(rect, VG_FILL_PATH);

Figure 15. Image as paint

10 Conclusion

Throughout this application note, a comprehensive exploration of OpenVG on the NXP i.MX RT700 is
presented, highlighting its capabilities for efficient, hardware-accelerated 2D vector graphics. Beginning with
foundational concepts and advancing through sophisticated rendering techniques, users are now equipped with
a solid framework for developing rich graphical interfaces on embedded systems. The topics covered include:

• OpenVG basics: An overview of how OpenVG differs from raster graphics, its architecture on the i.MX RT700,
and the initialization of the graphics pipeline.

• Path drawing: Techniques for creating and manipulating vector paths, including rectangles and curves, using
both manual commands and VGU utilities.

• Paint and stroke: Methods for applying fills and strokes with customizable properties to enable precise visual
styling.

• Transformations: Application of matrix operations to dynamically scale, rotate, and position graphics—
essential for responsive UI design.

• Fill rules: Implementation of even-odd and non-zero winding rules to control the rendering of complex shapes.
• Advanced paint techniques: Use of linear and radial gradients to simulate lighting and depth.
• Image handling: Creation and rendering of images, application of transformations, and use of clipping to

manage visibility. Additional techniques include applying image filters such as grayscale and blur, and utilizing
images as paint sources for textured fills.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
17 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

11 References

i.MX RT700 Reference Manual (document IMXRT700RM)

i.MX RT VGLite API Reference Manual (document IMXRTVGLITEAPIRM)

i.MX RT1170 Heterogeneous Graphics Pipeline (document AN13075)

Porting VGLite Driver for Bare Metal or Single Task (document AN13778)

OpenVG 1.1 Lite Specification

12 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

13 Revision history

Document ID Release date Description

AN14848 v.1.0 10 November 2025 Initial public release

Table 3. Revision history

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
18 / 21

https://www.nxp.com/doc/IMXRT700RM
https://www.nxp.com/doc/IMXRTVGLITEAPIRM
https://www.nxp.com/doc/AN13075
https://www.nxp.com/doc/AN13778
https://github.com/KhronosGroup/OpenVG-Docs/blob/main/Lite-Specification/openvg_lite_spec.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
19 / 21

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

eIQ — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14848 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 10 November 2025 Document feedback
20 / 21

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

NXP Semiconductors AN14848
i.MX RT700 OpenVG introduction

Contents
1 Introduction .. 2
2 OpenVG ...2
2.1 Overview ..2
2.2 Vector graphics vs raster images 2
2.3 OpenVG architecture on i.MX RT700 3
3 Basic initialization ... 4
4 First drawing and path operations.5
4.1 Path overview .. 5
4.2 Simple rectangle ..6
4.3 Vector graphics utilities VGU7
5 Paint and stroke fundamentals 7
5.1 Paint objects .. 7
5.2 Fill vs stroke .. 7
5.3 Stroke properties ... 8
6 Matrix transformation10
7 Fill rules ..11
8 Gradients and advanced paint 12
8.1 Linear gradient ...12
8.2 Radial gradient .. 13
9 Image handling .. 14
9.1 Image filters ... 15
9.2 Image as paint ...16
10 Conclusion ... 17
11 References ..18
12 Note about the source code in the

document ..18
13 Revision history ...18

Legal information ...19

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 10 November 2025
Document identifier: AN14848

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14848

	1 Introduction
	2 OpenVG
	2.1 Overview
	2.2 Vector graphics vs raster images
	2.3 OpenVG architecture on i.MX RT700

	3 Basic initialization
	4 First drawing and path operations.
	4.1 Path overview
	4.2 Simple rectangle
	4.3 Vector graphics utilities VGU

	5 Paint and stroke fundamentals
	5.1 Paint objects
	5.2 Fill vs stroke
	5.3 Stroke properties

	6 Matrix transformation
	7 Fill rules
	8 Gradients and advanced paint
	8.1 Linear gradient
	8.2 Radial gradient

	9 Image handling
	9.1 Image filters
	9.2 Image as paint

	10 Conclusion
	11 References
	12 Note about the source code in the document
	13 Revision history
	Legal information
	Contents

