

AN14889

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Rev. 1.0 — 5 February 2026

Application note

Document information

Information	Content
Keywords	AN14889, FRDM-MCXW72 board, Radio Frequency (RF) evaluation, test setup, test description, test results
Abstract	This document provides the RF evaluation test results of the FRDM-MCXW72 board for Bluetooth Low Energy (Bluetooth LE) 2FSK modulation and IEEE 802.15.4 OQPSK modulation applications. It also includes the test setup and description.

1 Introduction

This document provides the radio frequency (RF) evaluation test results of the FRDM-MCXW72 board for Bluetooth Low Energy (2FSK modulation) and IEEE 802.15.4 (OQPSK modulation) applications. It includes the test setup description and the tools used to perform the tests on your own. For more information about the Bluetooth LE and IEEE 802.15.4 radio parameters, see the *FRDM-MCXW72 Data Sheets*.

For more information about the FRDM-MCXW72 board, refer to the Board User Manual (document [UM12222](#)). The schematic and design files are available on the below URL on NXP webpage:

[FRDM-MCXW72 Design Resources](#).

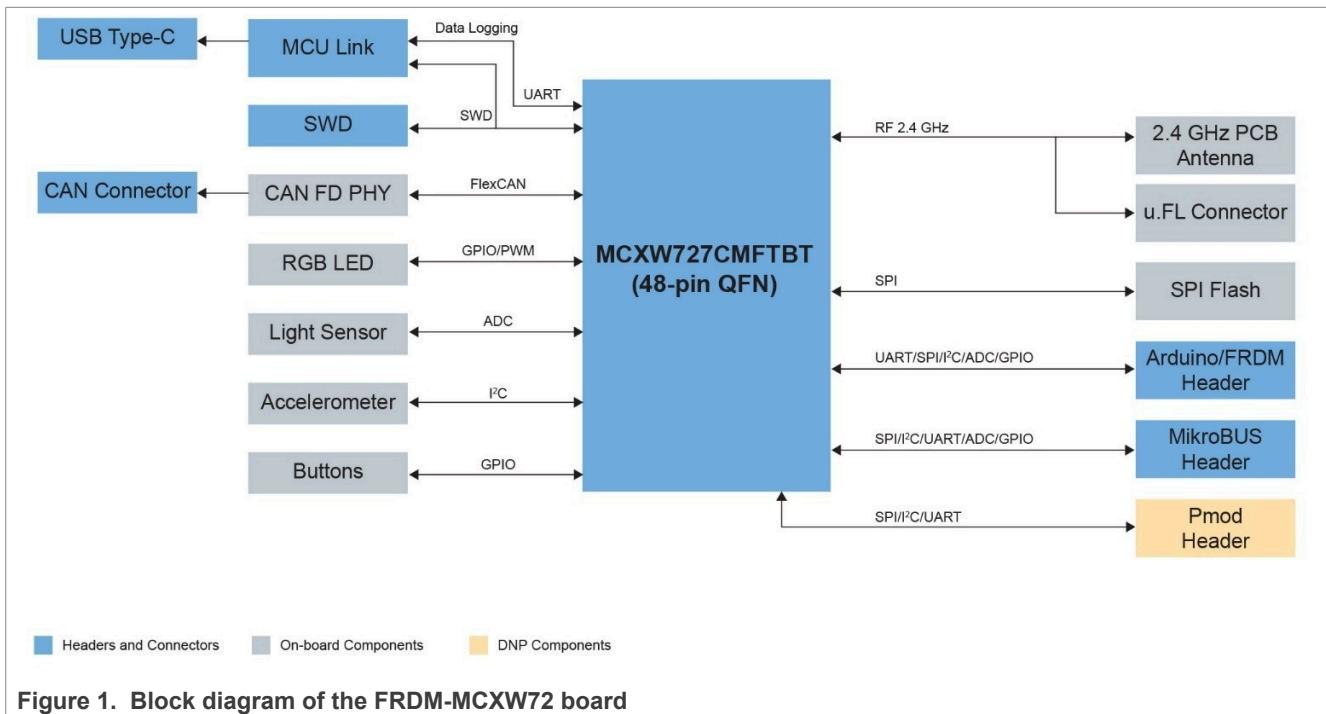


Figure 1. Block diagram of the FRDM-MCXW72 board

[Figure 2](#) shows the FRDM-MCXW72 board.

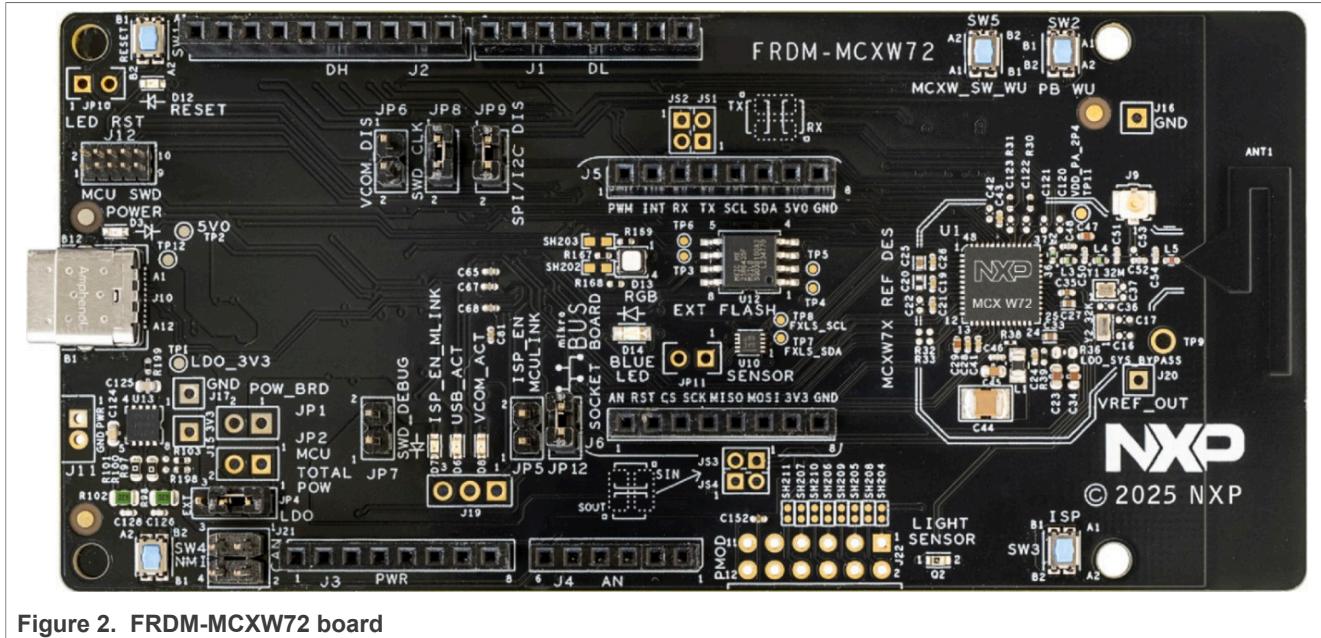


Figure 2. FRDM-MCXW72 board

1.1 Software and list of equipment

Before you measure the test performances, you must load a binary code (connectivity software) into the flash memory of the board.

The [FRDM-MCXW72](#) webpage describes how to use the FRDM-MCXW72 board to load the code for the Bluetooth Low Energy or IEEE 802.15.4. The binary code that is used for the following tests are:

- The Connectivity Software package supports both the Bluetooth LE and the IEEE 802.15.4 protocols. Refer to the below documentation for details of the setting: [Connectivity Test Tool User Guide](#).
- The `HCI_blackbox` demo example must be used for Bluetooth LE tests only.

A serial terminal emulator is used to communicate with the MCX W72 MCU.

1.1.1 List of equipment used for Bluetooth Low Energy (Bluetooth LE) tests

The below equipment is used for performing receiver (RX) and transmitter (TX) measurements for Bluetooth LE tests:

1. Spectrum analyzer - 25 GHz for harmonic measurements up to H10
2. Rhode & Schwarz SFU - used as an interference source
3. Rhode & Schwarz SMBV100B
4. Rhode & Schwarz CMW270 (`HCI_bb` software)
5. Agilent 33250A
6. Rhode & Schwarz ZND vector network analyzer (for S11 measurements)
7. RF shielded box (*to avoid interferers*)
8. Power supply
9. PC equipped with a general-purpose interface bus (GPIB) card

Note: All Bluetooth RF test measurements were performed using the FRDM-MCXW72 board L125362095.

1.1.2 List of equipment used for IEEE 802.15.4 tests

The below equipment is used for performing receiver (RX) and transmitter (TX) measurements for IEEE 802.15.4 tests:

1. Rhode & Schwarz FSV – spectrum analyzer with IEEE 802.15.4 PHY EVM test option
2. Keysight N5182B
3. Keysight E8267D – *used as an interferer source for IEEE 802.15.4*
4. Spectrum analyzer – 25 GHz for harmonic measurements up to H10
5. Rhode & Schwarz ZND Vector Network analyzer – *for S11 measurements*
6. Shielded room

Note: All IEEE 802.15.4 RF test measurements were performed using the FRDM-MCXW72 board LI24180019.

2 Bluetooth LE application

This section provides the list of tests for TX and RX measurements for Bluetooth LE.

2.1 List of tests

Following is the list of tests conducted for Bluetooth LE:

- TX tests include:
 - [Frequency accuracy](#)
 - [Phase noise](#)
 - [Transmitter power](#): Bluetooth LE 1 Mbit/s, 2 Mbit/s, 500 kbit/s (LR S=2), 125 kbit/s (LR S=8)
 - [Transmitter power In Band](#)
 - [Transmitter spurious](#): H2 to H10, ETSI, and FCC
 - [Lower Band edge \(MIIT-China\)](#)
 - Upper band edge
 - [Upper Band Edge – MIIT China](#)
 - [Upper Band Edge \(FCC ANSI C63.10, 58074 D01 DTS\)](#)
 - Out Of Band
 - Out Of Band (ETSI 300 328 chapter 5.4.8.2.1)
 - Out Of Band (ARIB STD T-66)
 - Maximum Transmitter output power: 1 Mbit/s, 2 Mbit/s, 500 kbit/s (LR S=2), and 125 kbit/s (LR S=8)
 - Bluetooth LE Transmitter output spectrum: 1 Mbit/s and 2 Mbit/s
 - Modulation characteristics: 1 Mbit/s, 2 Mbit/s, 125 kbit/s LR (S=8)
 - Carrier frequency offset and drift: 1 Mbit/s, 2 Mbit/s, 125 kbit/s LR (S=8)
- Receiver (RX) tests include:
 - Sensitivity: 1 Mbit/s, 2 Mbit/s, LR (S=2 and S=8)
 - Bathtub: 1 Mbit/s, 2 Mbit/s, LR (S=2 and S=8)
 - Receiver maximum input level: 1 Mbit/s, 2 Mbit/s, LR (S=2 and S=8)
 - Receiver spurious: from 30 MHz to 12.5 GHz
 - Receiver interference rejection performances include:
 - Adjacent, alternate, and co-channel rejection:
 - 1 Mbit/s, 2 Mbit/s, 500 kbit/s (LR S=2), 125 kbit/s (LR S=8)
 - Receiver blocking: 1 Mbit/s – category 1 and category 2
 - Blocking interferers
 - Intermodulation

2.2 Summary of transmission and reception tests

RF PHY Bluetooth Test Specification: **RFPHY.TS.p23ed2 (2025-06-25)**

To view the list of measurements for transmission and reception tests provided to Europe and the United States (US), use the following links:

- [Transmission tests for Europe](#)
- [Reception tests for Europe](#)
- [Miscellaneous tests for US](#)
- [Transmission tests for US](#)

[Table 1](#) shows the transmission tests for Europe.

Table 1. Transmission tests for Europe

Transmission	Reference	Limits	Status
TX Maximum Output Power	Bluetooth LE 6.0, BV-01-C	-20 dBm \leq PAVG \leq +10 dBm EIRP	Pass
TX Power In band (1 Mbit/s)	Bluetooth LE 6.0, BV-03-C	PTX \leq -20 dBm for (f _{TX} +/- 2 MHz)	Pass
		PTX \leq -30 dBm for (f _{TX} +/- [3+n] MHz)	
TX Power In band (2 Mbit/s)	Bluetooth LE 6.0, BV-08-C	P _{TX} \leq -20 dBm for (f _{TX} +/- 4 MHz) and (f _{TX} +/- 5 MHz)	Pass
		P _{TX} \leq -30 dBm for (f _{TX} +/- [3+n] MHz)	
Modulation characteristics 1 Mbit/s, LE coded (S=8)	Bluetooth LE 6.0, BV-05-C	225 kHz \leq delta f _{1avg} \leq 275 kHz	Pass
	Bluetooth LE 6.0, BV-13-C		
Modulation characteristics 2 Mbit/s	Bluetooth LE 6.0, BV-10-C	450 kHz \leq delta f _{1avg} \leq 550 kHz	Pass
Carrier frequency offset and drift	Bluetooth LE 6.0, BV-06-C	f _{TX} - 150 kHz \leq f _n \leq f _{TX} + 150 kHz where f _{TX} is the nominal transmit frequency and n=0,1,2,3...k	Pass
1 Mbit/s		f ₀ - f _n \leq 50 kHz where n=2,3,4...k	
2 Mbit/s	Bluetooth LE 6.0, BV-12-C	<ul style="list-style-type: none"> f₀ - f₃ \leq 19.2 kHz f₀ - f_(n-3) \leq 19.2 kHz where n=7,8,9,...k	Pass
Carrier frequency offset and drift LE coded (S=8)	Bluetooth LE 6.0, BV-14-C	<ul style="list-style-type: none"> f_{TX} - 150 kHz \leq f_n \leq f_{TX} + 150 kHz where f_{TX} is the nominal transmit frequency and n=0,1,2,3...k f₀ - f_n \leq 50 kHz, where n=2,3,4...k 	Pass
Spurious 30 MHz – 1 GHz	ETSI EN 300 328 v2.2.2 (2019-07)	-36 dBm or -54 dBm (depends on frequency) (100 kHz BW)	Pass
Spurious 1 GHz – 12.75 GHz	ETSI EN 300 328 v2.2.2 (2019-07)	-30 dBm (1 MHz BW)	Pass
EIRP TX spectral density		10 dBm/MHz	
Phase noise (unspread)	NA	NA	For information

[Table 2](#) shows the reception tests for Europe.

Table 2. Reception tests for Europe

Reception Tests	Reference	Limits	Result
RX Sensitivity - 1 Msps	Bluetooth LE 6.0, BV-01-C	Packet error rate (PER) 30.8 % with a minimum of 1500 packets	Pass
RX Sensitivity - 2 Msps	Bluetooth LE 6.0, BV-08-C	PER 30.8 % with a minimum of 1500 packets	Pass
RX Sensitivity - LE coded (S=2)	Bluetooth LE 6.0, BV-26-C	PER 30.8 % with a minimum of 1500 packets	Pass
RX Sensitivity - LE coded (S=8)	Bluetooth LE 6.0, BV-27-C	PER 30.8 % with a minimum of 1500 packets	Pass
Co-channel - 1 Msps	Bluetooth LE 6.0, BV-03-C	> 21 dB	Pass
Adjacent channel interference rejection (N+/-1, 2, 3+ MHz) 1 Msps	Bluetooth LE 6.0, BV-03-C	> 15 dB, -17 dB, -27 dB	Pass
Co-channel - 2 Msps	Bluetooth LE 6.0, BV-09-C	> 21 dB	Pass
Adjacent channel interference rejection (N+/-2, 4, 6+ MHz) - 2 Msps	Bluetooth LE 6.0, BV-09-C	> 15 dB, -17 dB, -27 dB	Pass
Co-channel - LE coded (S=2)	Bluetooth LE 6.0, BV-28-C	> 17 dB	Pass
Adjacent channel interference rejection (N+/-2, 4, 6+ MHz) LE coded (S=2)	Bluetooth LE 6.0, BV-09-C	> 11 dB, -21 dB, -31 dB	Pass
Co-channel - LE coded (S=8)	Bluetooth LE 6.0, BV-28-C	> 12 dB	Pass
Adjacent channel interference rejection (N+/-2, 4, 6+ MHz) LE coded (S=8)	Bluetooth LE 6.0, BV-09-C	> 6 dB, -26 dB, -36 dB	Pass
Blocking Interferers 1 Mbit/s	Bluetooth LE 6.0, BV-04-C	-30 dBm (30 MHz to 2 GHz and 3 GHz to 12.5 GHz)	Pass
Blocking Interferers 2 Mbit/s	ETSI v2.2.2	-35 dBm (2003 MHz to 2399 MHz and 2484 MHz to 2997 MHz)	
Intermodulation 1 Mbit/s 2 Mbit/s	Bluetooth LE 6.0, BV-05-C Bluetooth LE 6.0, BV-11-C	PER 30.8% with a minimum of 1500 packets	
RX Maximum input level 1 Mbit/s	Bluetooth LE 6.0, BV-06-C	PER 30.8 % with a minimum of 1500 packets	Pass
2 Msps	Bluetooth LE 6.0, BV-12-C		
RX emissions 30 MHz – 1 GHz	ETSI EN 300 328 v2.2.2 (2019-07)	-57 dBm (100 kHz)	Pass

Table 2. Reception tests for Europe...continued

Reception Tests	Reference	Limits	Result
RX emissions 1 GHz – 12.5 GHz	ETSI EN 300 328 v2.2.2 (2019-07)	-47 dBm (1 MHz)	Pass

Table 3. Miscellaneous tests for US

Return loss	Return loss mode	Status
Return loss (S11)	Return loss in TX mode	For information
	Return loss in RX mode	

Table 4. Transmission tests for US

Transmission test type	Reference	Limit	Status
TX maximum power	FCC part15.247	PAVG \leq 100 mW +20 dBm EIRP	Pass
Spurious 1 GHz – 25 GHz	FCC part15.249	Field strength $<$ 500 μ m @3m -41.25 dBm (1 MHz BW)	Pass

2.3 Conducted tests

This section describes the tests conducted for Bluetooth Low Energy transmission and reception.

2.3.1 TX tests

This section describes the test setup, method, and results for Bluetooth LE applications transmission tests.

2.3.1.1 Test setup N1

[Figure 3](#) shows the test setup to conduct generic TX Bluetooth LE tests.

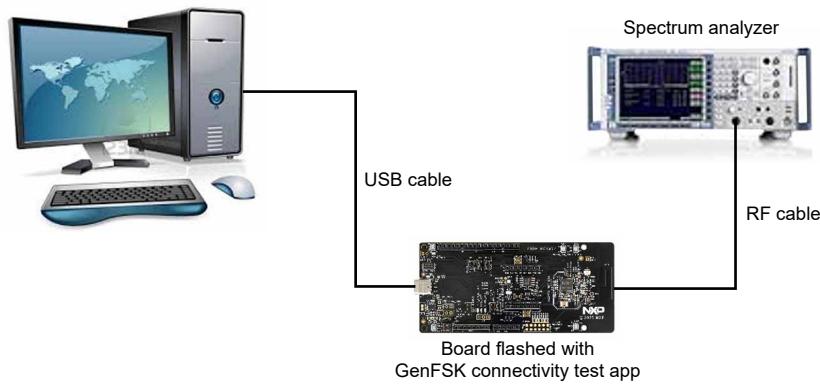
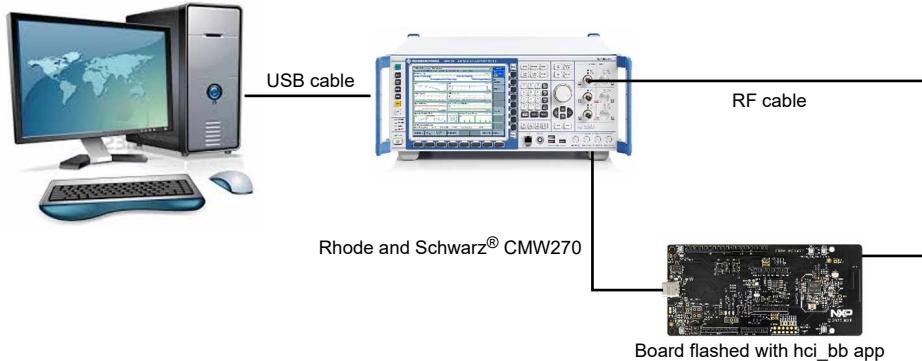



Figure 3. Test setup N1

2.3.1.2 Test setup N2

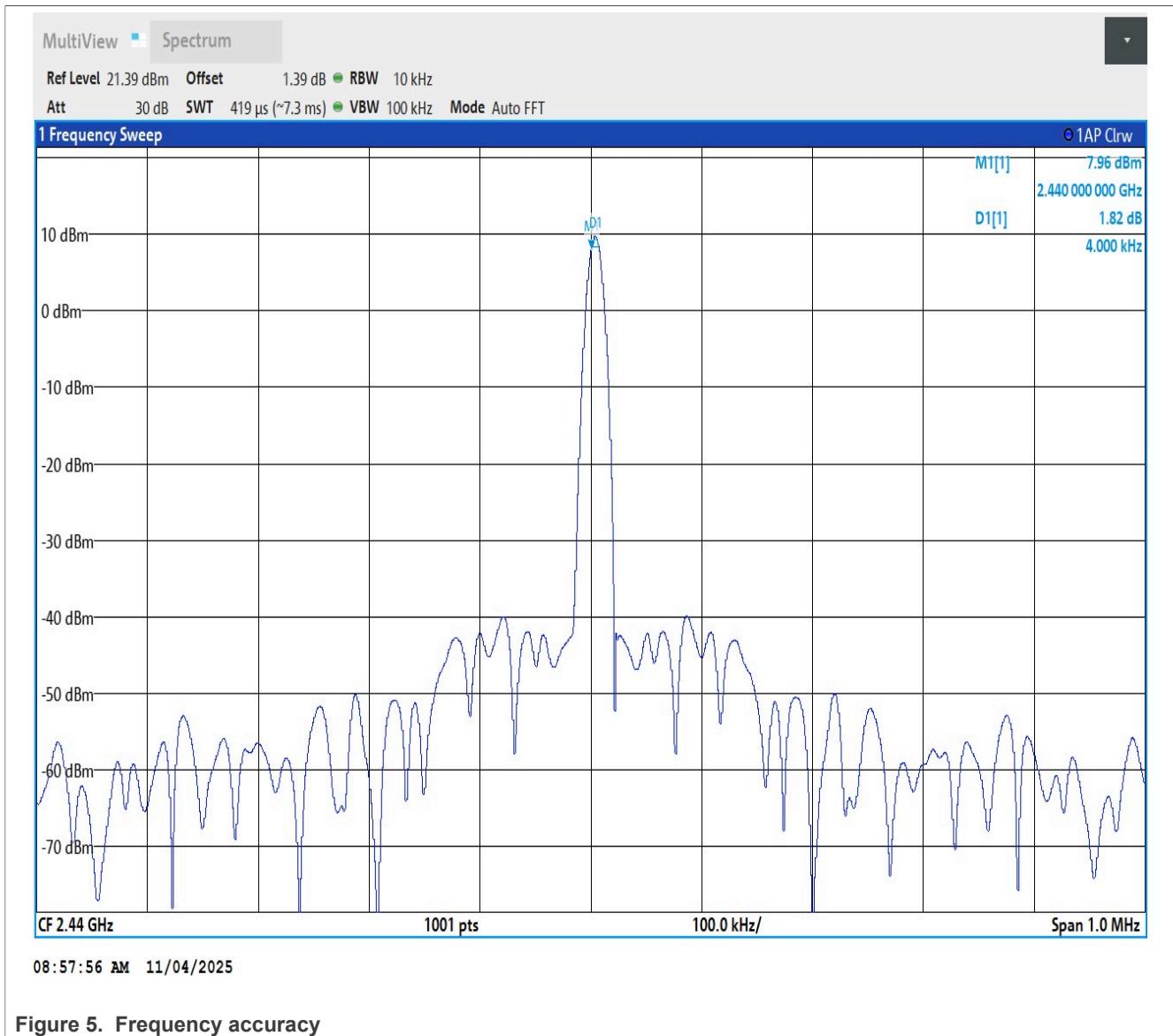
[Figure 4](#) shows the test setup to conduct specific TX Bluetooth LE tests.

Test setup N2 - used for specific conducted Tx Bluetooth LE

aaa-064156

Figure 4. TX Bluetooth LE test setup (Test setup N2)

2.3.1.3 Frequency accuracy


This section describes the test method and result of frequency accuracy measurements done using the FRDM-MCXW72 board.

2.3.1.3.1 Test method

Follow the test method described below:

- N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, continuous waveform (CW), continuous emitting mode, frequency: Bluetooth LE Channel 17 (2.440 GHz)
- Set the analyzer to:
 - Center frequency = 2.44 GHz, span = 1 MHz
 - Reference amplitude = 20 dBm
 - RBW (resolution bandwidth) = 10 kHz
 - VBW (video bandwidth) = 100 kHz
- Measure the continuous waveform (CW) frequency with the marker of the spectrum analyzer.

2.3.1.3.2 Result

Figure 5. Frequency accuracy

- Measured frequency: 2.440004 GHz
- ppm value = $(2.440004 - 2.44) / 2.44 = 1.6 \text{ ppm}$

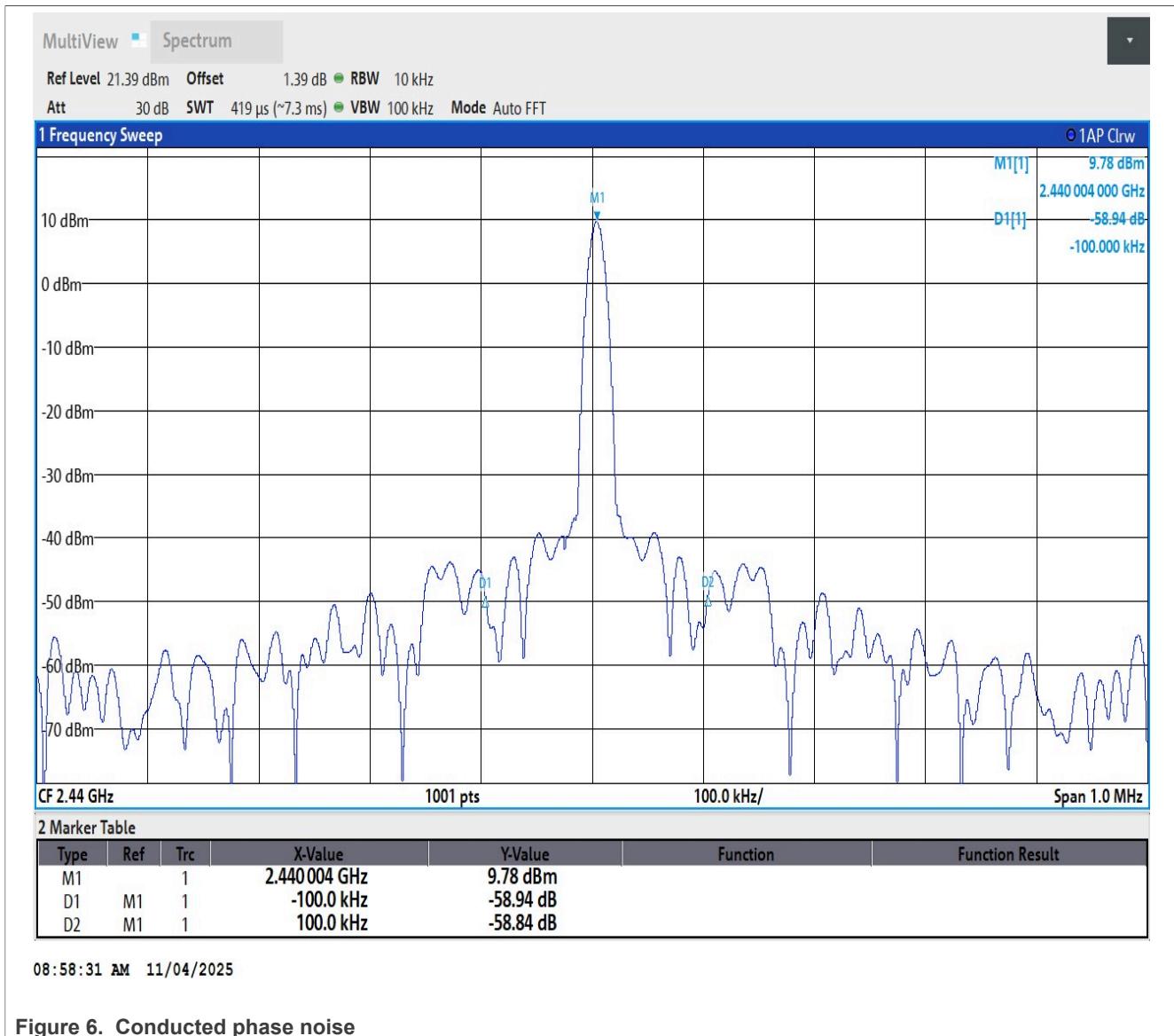
Table 5. Frequency accuracy

Frequency accuracy	
Result	Target
1.6 ppm	+/-25 ppm

The frequency accuracy depends on the XTAL model. The model used on the board is NX1612SA 32 MHZ EXS00A CS14160.

Conclusion:

- The frequency accuracy complies with the data sheet.


2.3.1.4 Phase noise

This section explains the test method used to measure the phase noise and provides the corresponding results.

2.3.1.4.1 Test method

- N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, continuous waveform (CW), continuous emitting mode, frequency: Bluetooth LE Channel 17 (2.440 GHz)
- Set the analyzer to:
 - Center frequency = 2.440 GHz, span = 1 MHz, Reference amplitude = 20 dBm, RBW = 10 kHz, VBW = 100 kHz
- Measure the phase noise at the 100-kHz offset frequency:
 - RBW (spectrum analyzer) = 10 kHz ($20\log(10 \text{ kHz}) = 40 \text{ dBc}$)

2.3.1.4.2 Result

Figure 6. Conducted phase noise

- Marker value (delta) = $-56.68 \text{ dBm} / 100 \text{ kHz} = -106.68 \text{ dBc/Hz}$

The phase noise is just for informational purposes. No specific issue on this parameter.

2.3.1.5 TX power (fundamental)

This section explains the test method used to measure the TX power (fundamental) and provides the corresponding results.

2.3.1.5.1 Test method

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode, data rate (1 Mbit/s, 2 Mbit/s, 500 kbit/s, and 125 kbit/s for Bluetooth LE)
- Set the analyzer to:
 - Start frequency= 2.392 GHz
 - Stop frequency= 2.49 GHz
 - Reference amplitude = 10 dBm
 - Sweep time = 100 ms
 - RBW = 3 MHz
 - VBW = 3 MHz
 - Max Hold mode
 - Detector = RMS
- Sweep all the channels from Bluetooth LE channel 37(2.402 GHz) to Bluetooth LE channel 39 (2.480 GHz).
Note: The software tool allows sweep from GenFSK Channel 0 (2.360 GHz) to GenFSK Channel 127 (2.488 GHz).

2.3.1.5.2 Result

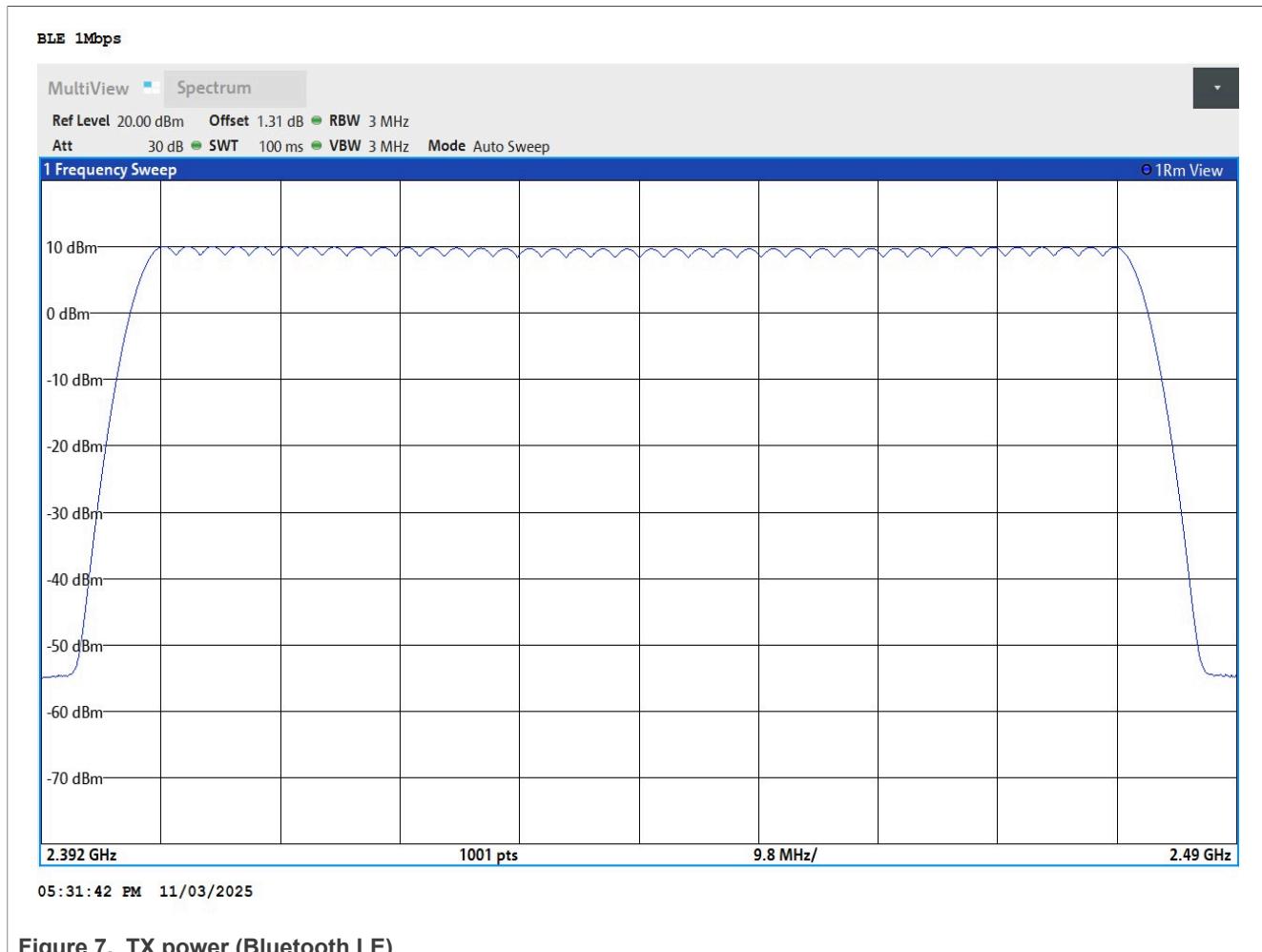


Figure 7. TX power (Bluetooth LE)

- Maximum power is on channel 17.0: 9.68 dBm
- Minimum power is on channel 37.0: 10.07 dBm
- Tilt over frequencies is: 0.39 dB

2.3.1.5.3 Conclusion

- The default TX power is too high in line with the expected results.
- The TX power is flat over frequencies.

2.3.1.6 TX power In Band

This section explains the test method used to measure the TX Power In Band and provides the corresponding results.

2.3.1.6.1 Test method

Test method:

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode, data rate (1 Mbit/s, 2 Mbit/s, 500 kbit/s, and 125 kbit/s)
- Set the analyzer to:
 - Start frequency= 2.35 GHz
 - Stop frequency= 2.5 GHz
 - Reference amplitude = 10 dBm
 - sweep time = 100 ms
 - RBW = 100 kHz, VBW = 300 kHz
 - Max Hold mode
 - Detector = RMS
 - Number of Sweeps = 10
- Sweep on Bluetooth LE channels
 - Channel 37 (2.402 GHz)
 - Channel 17 (2.440 GHz)
 - Channel 39 (2.480 GHz)

2.3.1.6.2 Result

2.3.1.6.2.1 Channel 37

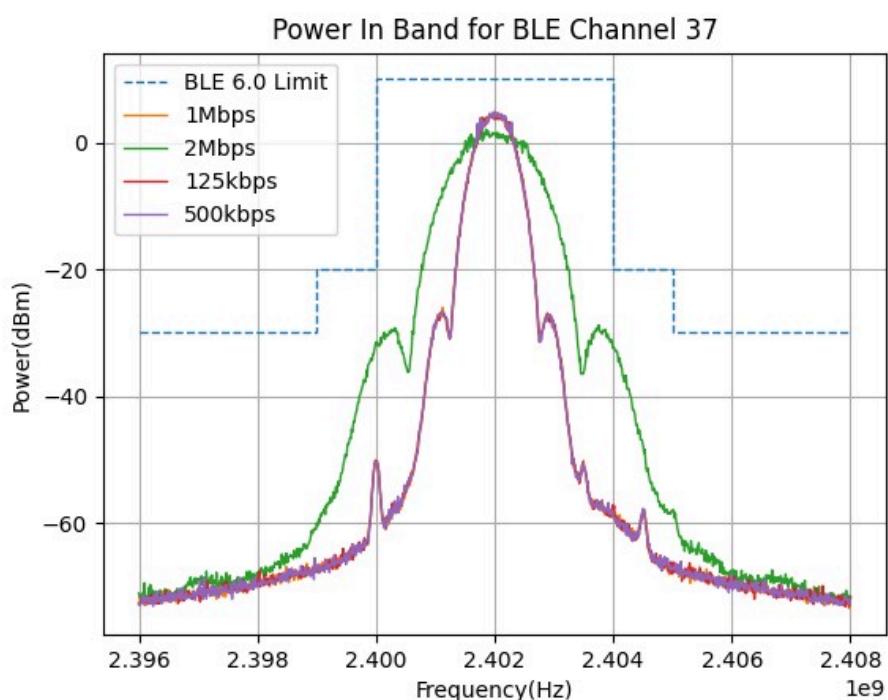


Figure 8. TX power In Band – Channel 37

Table 6. Bluetooth LE 1 Mbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-50.41	dBm	2.400 GHz
Max peak level >=+2 MHz	-59.09	dBm	2.404 GHz
Max peak level <=-3 MHz	-66.54	dBm	2.399 GHz
Max peak level >=+3 MHz	-66.54	dBm	2.405 GHz

Table 7. Bluetooth LE 2 Mbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-31.65	dBm	2.404 GHz
Max peak level >=+2 MHz	-32.46	dBm	2.408 GHz
Max peak level <=-3 MHz	-60.06	dBm	2.403 GHz
Max peak level >=+3 MHz	-60.06	dBm	2.411 GHz

Table 8. Bluetooth LE 500 kbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-51.0	dBm	2.404 GHz
Max peak level >=+2 MHz	-59.2	dBm	2.408 GHz
Max peak level <=-3 MHz	-67.63	dBm	2.403 GHz
Max peak level >=+3 MHz	-67.63	dBm	2.411 GHz

Table 9. Bluetooth LE 125 kbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-50.59	dBm	2.404 GHz
Max peak level >=+2 MHz	-59.29	dBm	2.408 GHz
Max peak level <=-3 MHz	-68.11	dBm	2.403 GHz
Max peak level >=+3 MHz	-68.11	dBm	2.411 GHz

2.3.1.6.2.2 Channel 17

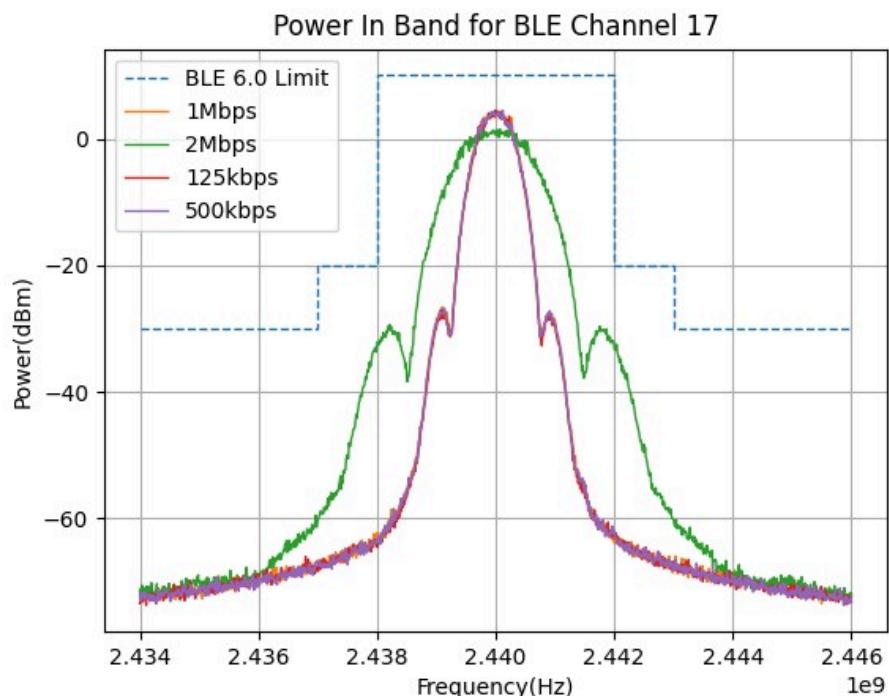


Figure 9. TX power In Band – Channel 17

Table 10. Channel 17, Bluetooth LE 1 Mbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <= -2 MHz	-62.95	dBm	2.438 GHz
Max peak level >= +2 MHz	-63.9	dBm	2.442 GHz
Max peak level <= -3 MHz	-68.33	dBm	2.437 GHz
Max peak level >= +3 MHz	-68.18	dBm	2.443 GHz

Table 11. Channel 17, Bluetooth LE 2 Mbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <= -2 MHz	-33.47	dBm	2.438 GHz
Max peak level >= +2 MHz	-33.75	dBm	2.442 GHz
Max peak level <= -3 MHz	-60.32	dBm	2.437 GHz
Max peak level >= +3 MHz	-60.16	dBm	2.443 GHz

Table 12. Channel 17, Bluetooth LE 500 kbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <= -2 MHz	-63.82	dBm	2.438 GHz
Max peak level >= +2 MHz	-63.06	dBm	2.442 GHz
Max peak level <= -3 MHz	-66.77	dBm	2.437 GHz

Table 12. Channel 17, Bluetooth LE 500 kbit/s...continued

Max peak level frequency	Value	Unit	Condition
Max peak level >=+3 MHz	-67.36	dBm	2.443 GHz

Table 13. Channel 17, Bluetooth LE 125 kbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-63.91	dBm	2.438 GHz
Max peak level >=+2 MHz	-63.11	dBm	2.442 GHz
Max peak level <=-3 MHz	-68.34	dBm	2.437 GHz
Max peak level >=+3 MHz	-66.96	dBm	2.443 GHz

2.3.1.6.2.3 Channel 39

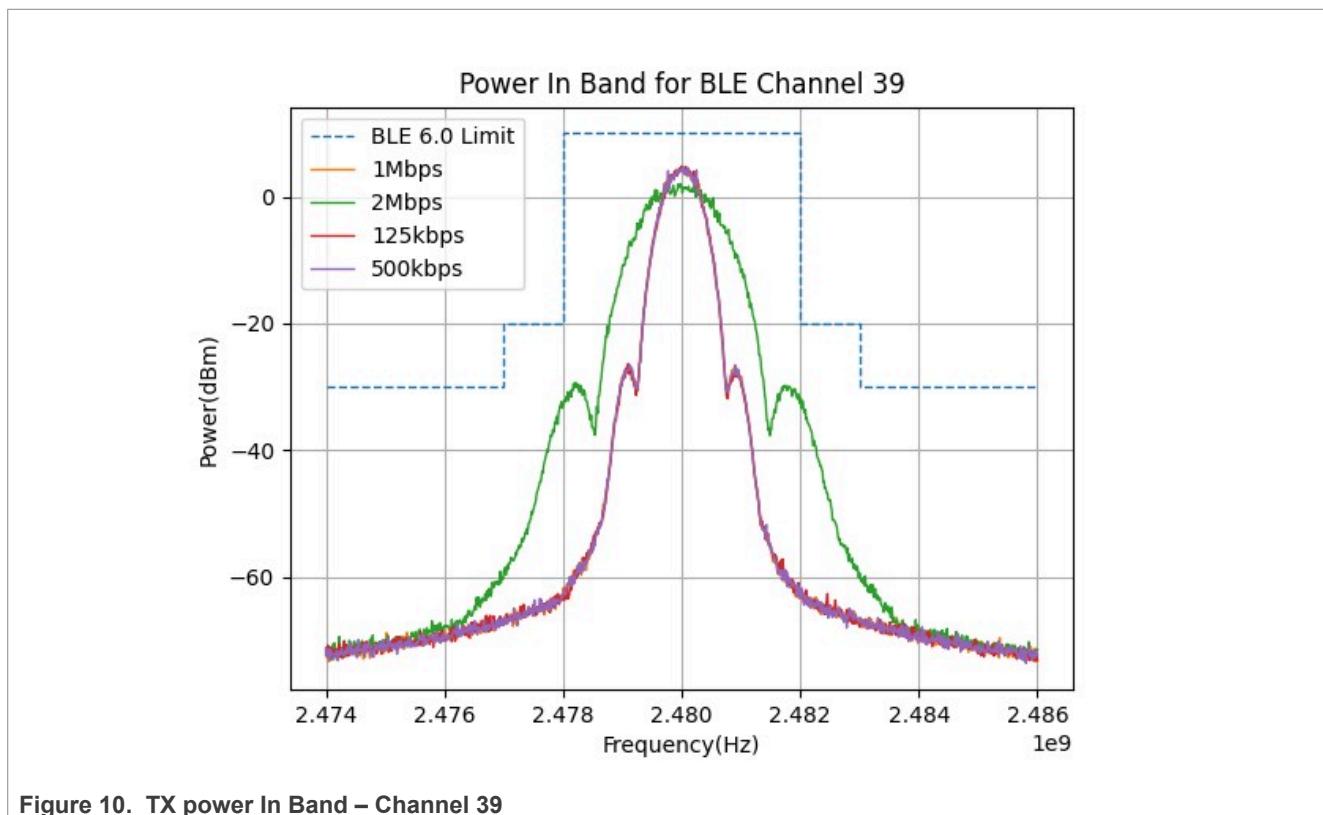


Figure 10. TX power In Band – Channel 39

Table 14. Channel 39, Bluetooth LE 1 Mbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-62.54	dBm	2.478 GHz
Max peak level >=+2 MHz	-62.51	dBm	2.482 GHz
Max peak level <=-3 MHz	-68.56	dBm	2.477 GHz
Max peak level >=+3 MHz	-66.53	dBm	2.483 GHz

Table 15. Channel 39, Bluetooth LE 2 Mbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-33.43	dBm	2.478 GHz
Max peak level >=+2 MHz	-31.71	dBm	2.482 GHz
Max peak level <=-3 MHz	-61.18	dBm	2.477 GHz
Max peak level >=+3 MHz	-59.36	dBm	2.483 GHz

Table 16. Channel 39, Bluetooth LE 500 kbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-62.91	dBm	2.478 GHz
Max peak level >=+2 MHz	-63.58	dBm	2.482 GHz
Max peak level <=-3 MHz	-68.02	dBm	2.477 GHz
Max peak level >=+3 MHz	-67.17	dBm	2.483 GHz

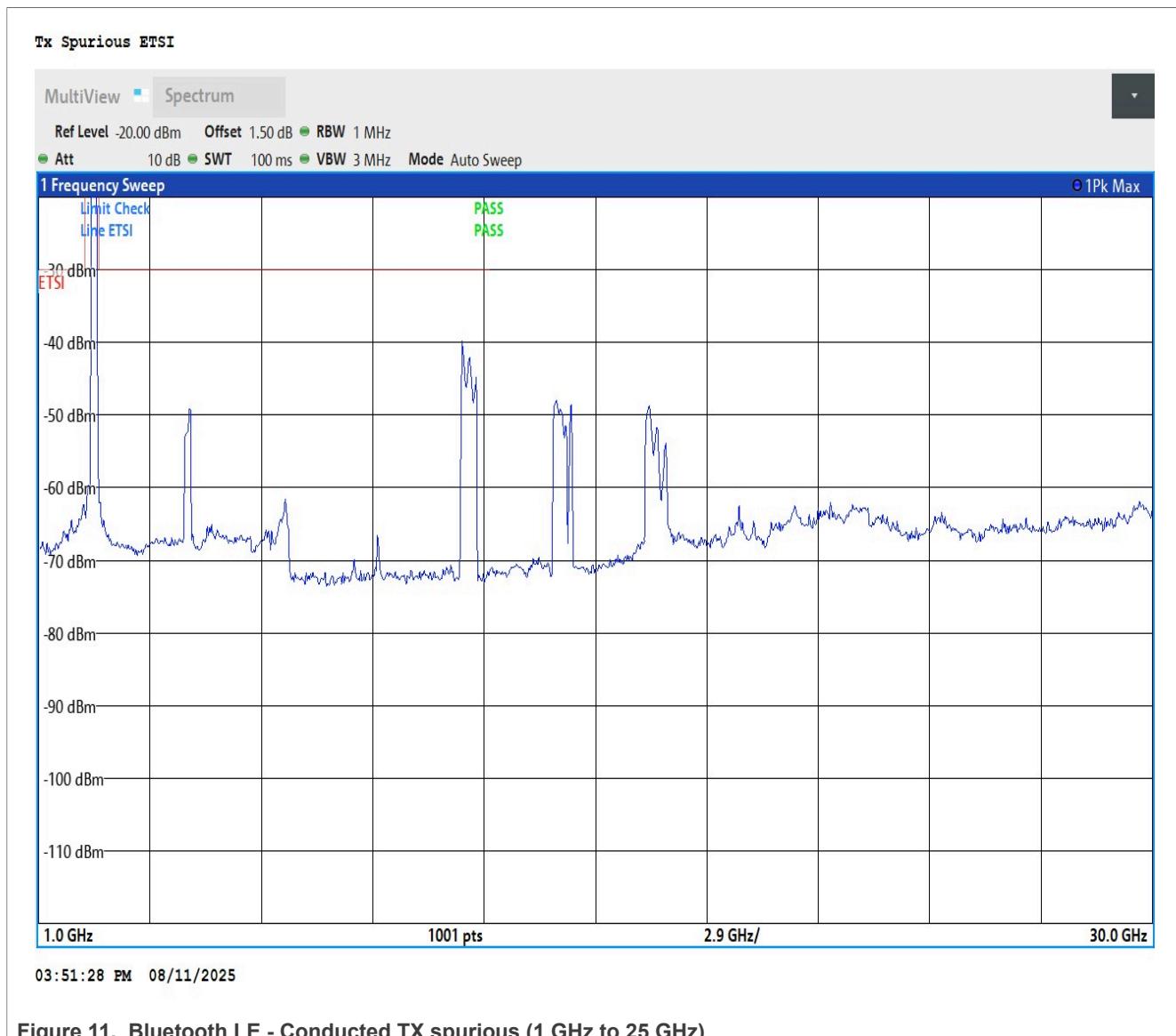
Table 17. Channel 39, Bluetooth LE 125 kbit/s

Max peak level frequency	Value	Unit	Condition
Max peak level <=-2 MHz	-64.02	dBm	2.478 GHz
Max peak level >=+2 MHz	-63.22	dBm	2.482 GHz
Max peak level <=-3 MHz	-66.55	dBm	2.477 GHz
Max peak level >=+3 MHz	-67.84	dBm	2.483 GHz

Conclusion:

- The FRDM-MCXW72 board is within the expected limits and passes the Bluetooth LE 6.0 certification in the Power In Band test.

2.3.1.7 TX spurious


This section describes the TX spurious tests (including harmonics ETSI and FCC).

2.3.1.7.1 Test results (Conducted TX spurious)

This section provides the spurious overview of the full band when the device is in the transmission mode for:

- 1 GHz to 25 GHz
- 30 MHz to 25 GHz

1 GHz to 25 GHz

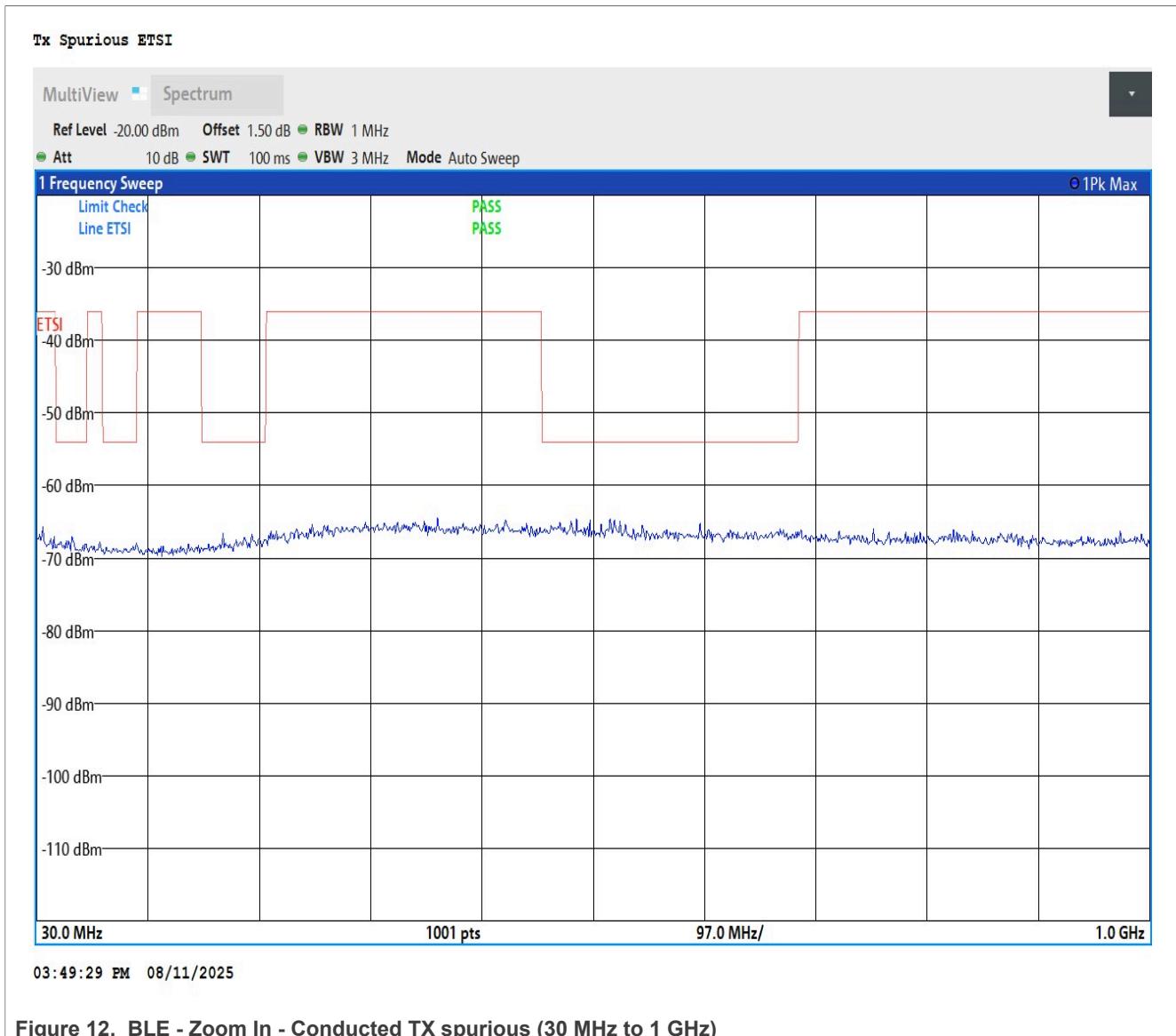


Figure 12. BLE - Zoom In - Conducted TX spurious (30 MHz to 1 GHz)

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

2.3.1.7.2 Conclusion

- The FRDM-MCXW72 passes the ETSI TX Spurious Certification with a margin of 8.88 dB.
- Harmonics are specifically measured in the following sections.

2.3.1.7.2.1 H2 (ETSI test conditions, peak measurement)

Test method:

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency= 4.7 GHz
 - Stop frequency= 5 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 100 ms
 - RBW = 1 MHz
 - VBW = 3 MHz
 - Max Hold mode
 - Detector: Peak
- Sweep all the channels from
 - Bluetooth Low Energy: channel 0 to channel 39

H2 Results

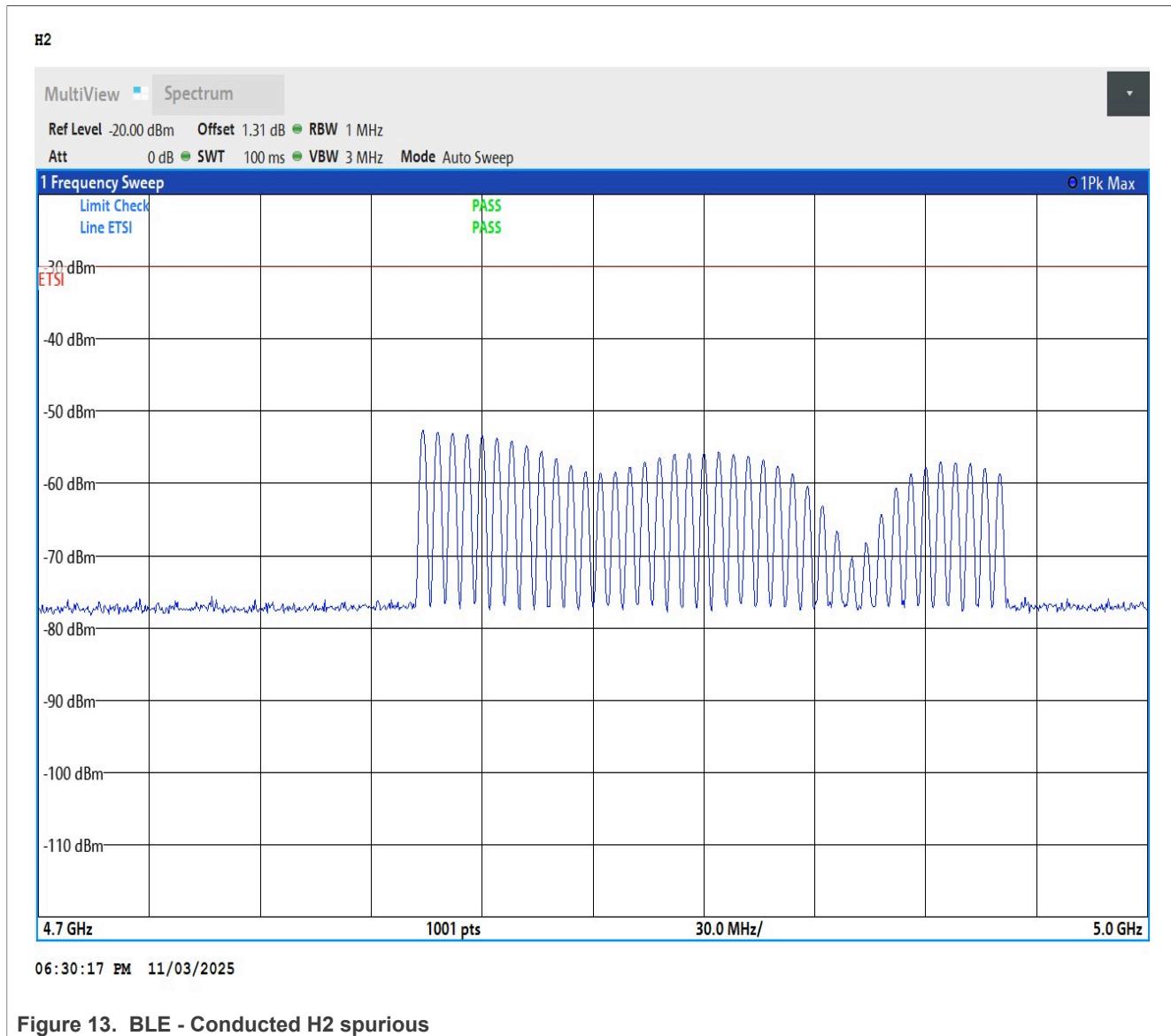
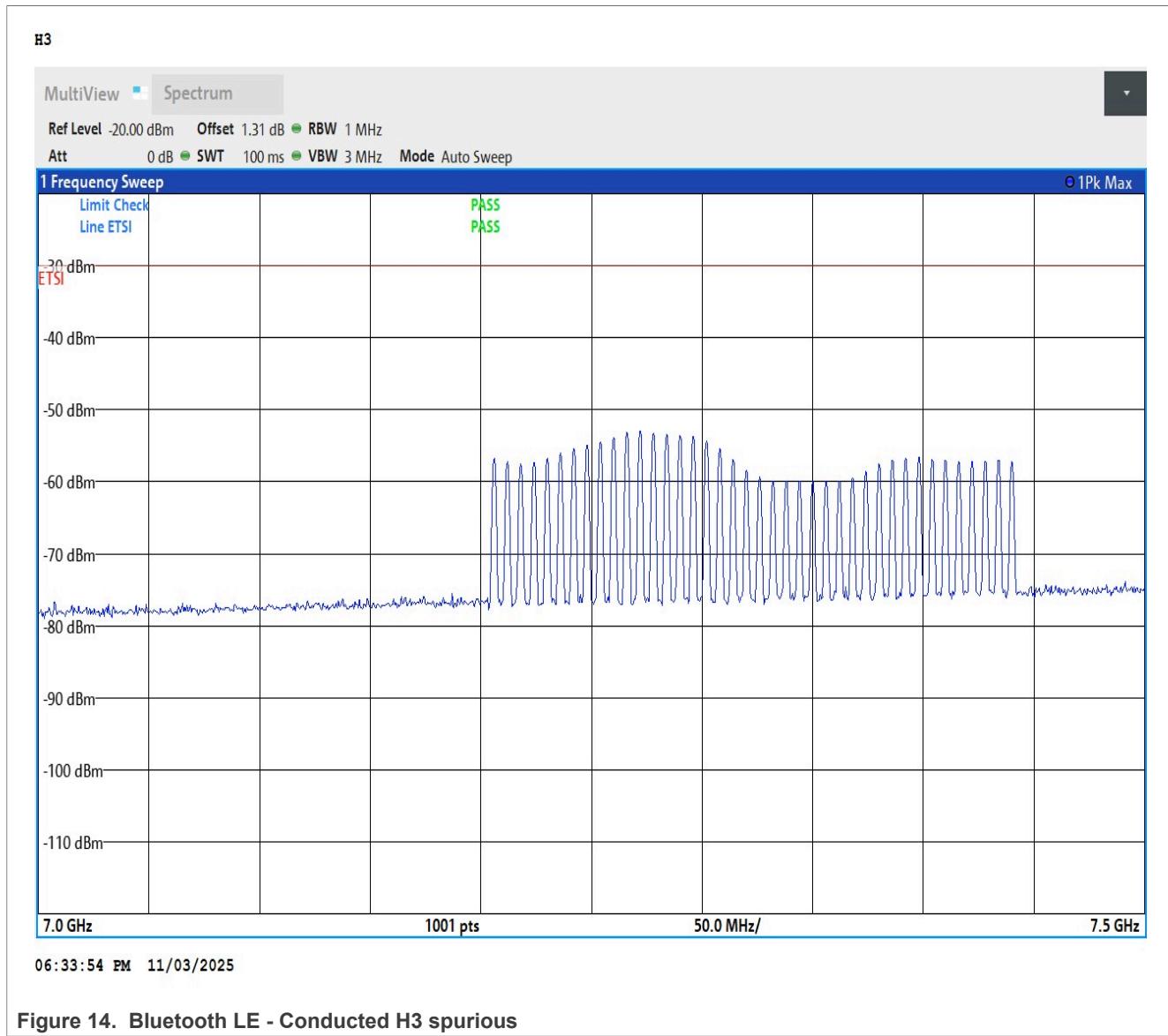


Figure 13. BLE - Conducted H2 spurious

- The maximum power is at frequency 4.95 GHz: -52.75dBm


Conclusion

- There is more than 22.8 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.2 H3 (ETSI test conditions, peak measurement)

This test uses the same method as the [H2](#), except that the spectrum analyzer frequency start/stop is set to 7.0 and 7.5 GHz.

H3 Results

Figure 14. Bluetooth LE - Conducted H3 spurious

The maximum power is at frequency 7.27 GHz: -53.08 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion There is more than 23.1 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.3 H4 (ETSI test conditions, peak measurement)

This test follows the same method as for [H2](#), except that the spectrum analyzer frequency span is set from 9.4 GHz to 10.0 GHz.

H4 Results

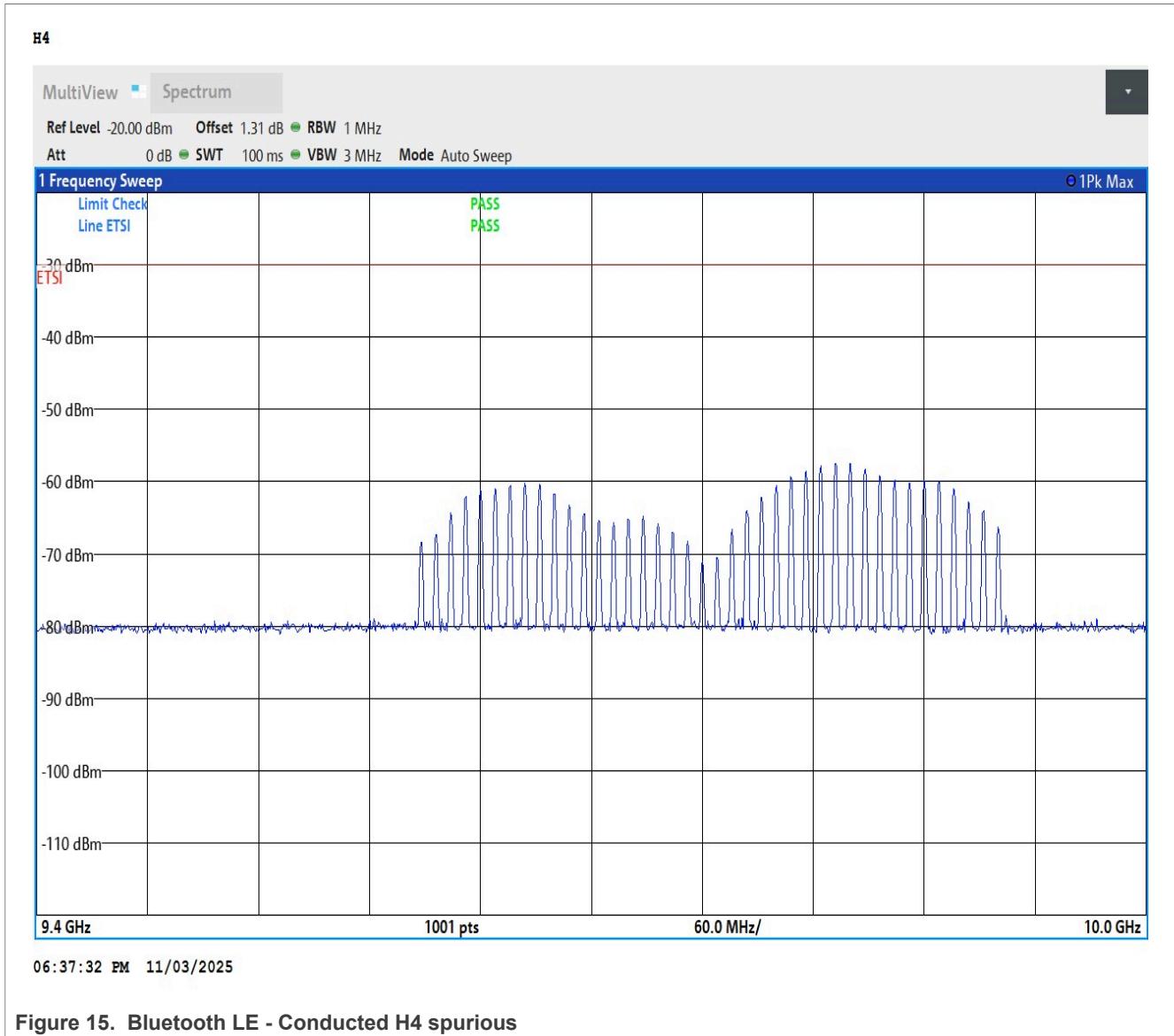
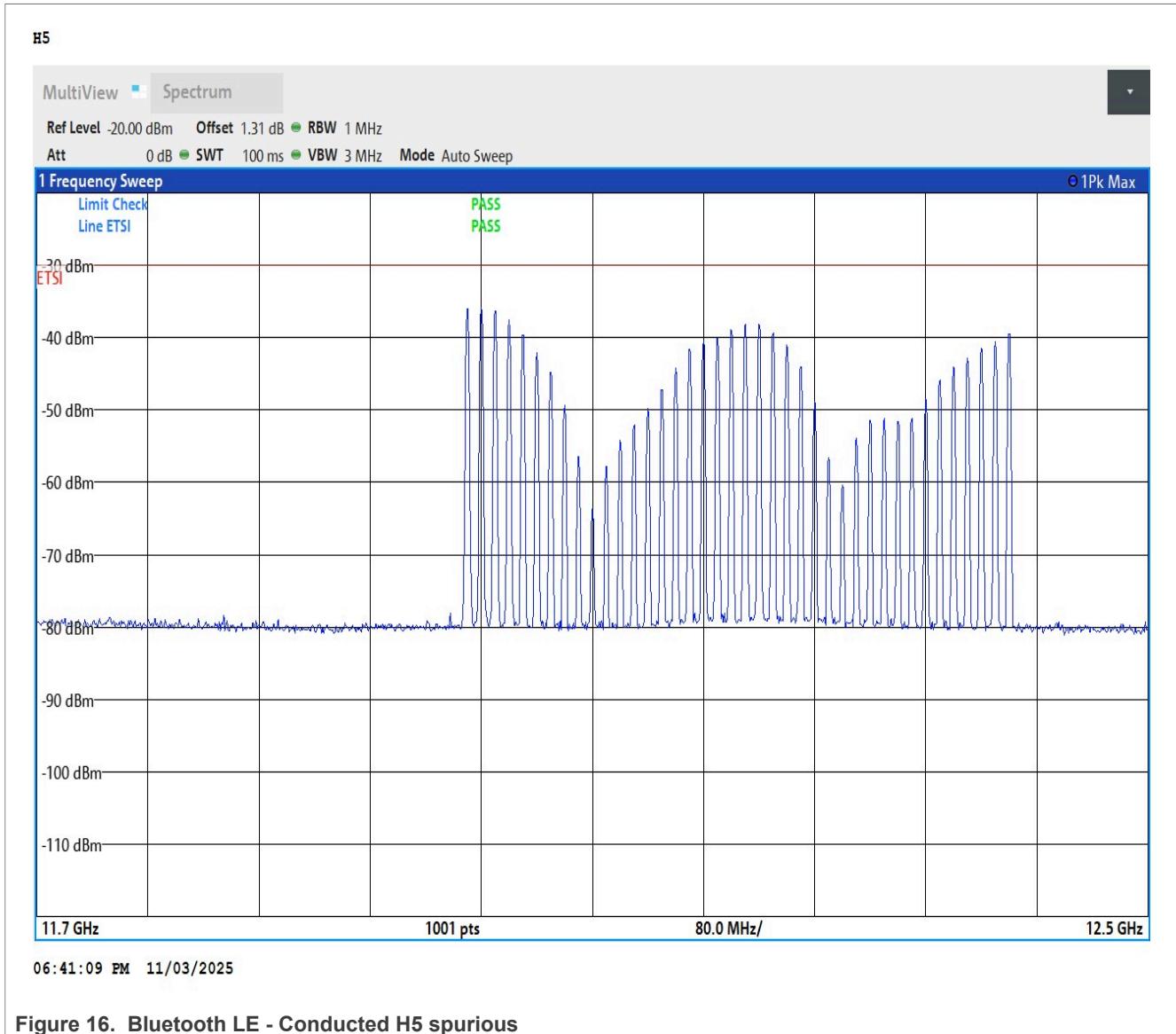


Figure 15. Bluetooth LE - Conducted H4 spurious

Maximum power is at frequency 9.82 GHz: -57.54 dBm


Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion There is more than 27.5 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.4 H5 (ETSI test conditions, peak measurement)

This test uses the same method as the [H2](#), except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

H5 Results

06:41:09 PM 11/03/2025

Figure 16. Bluetooth LE - Conducted H5 spurious

- The maximum power is at the frequency 12.01 GHz: -35.78 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

There is more than 5.8 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.5 H6 (ETSI test conditions, peak measurement)

This test uses the same method as the [H2](#), except that the spectrum analyzer frequency span is set from 14.1 GHz to 15 GHz. Result:

H6 Results

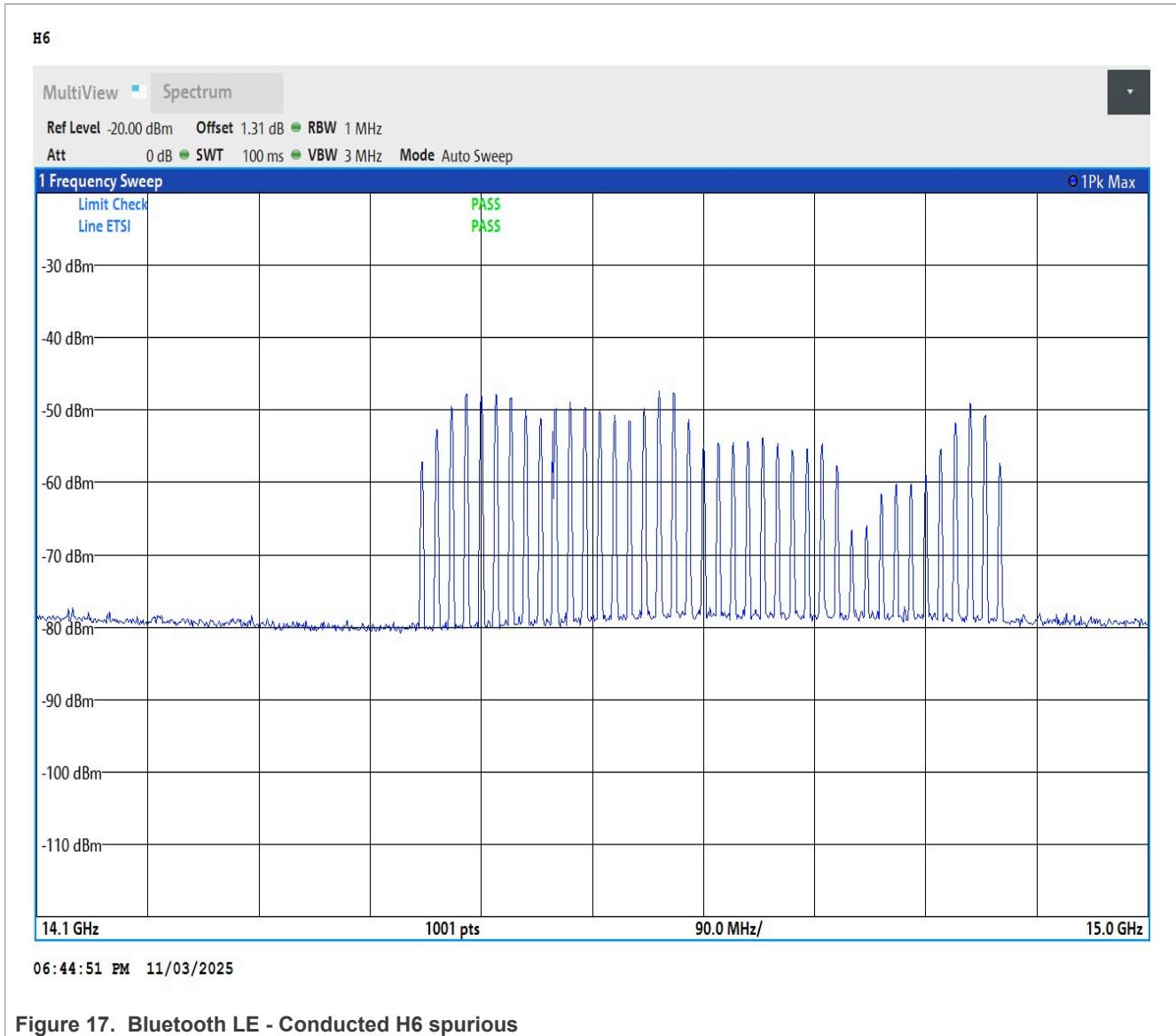
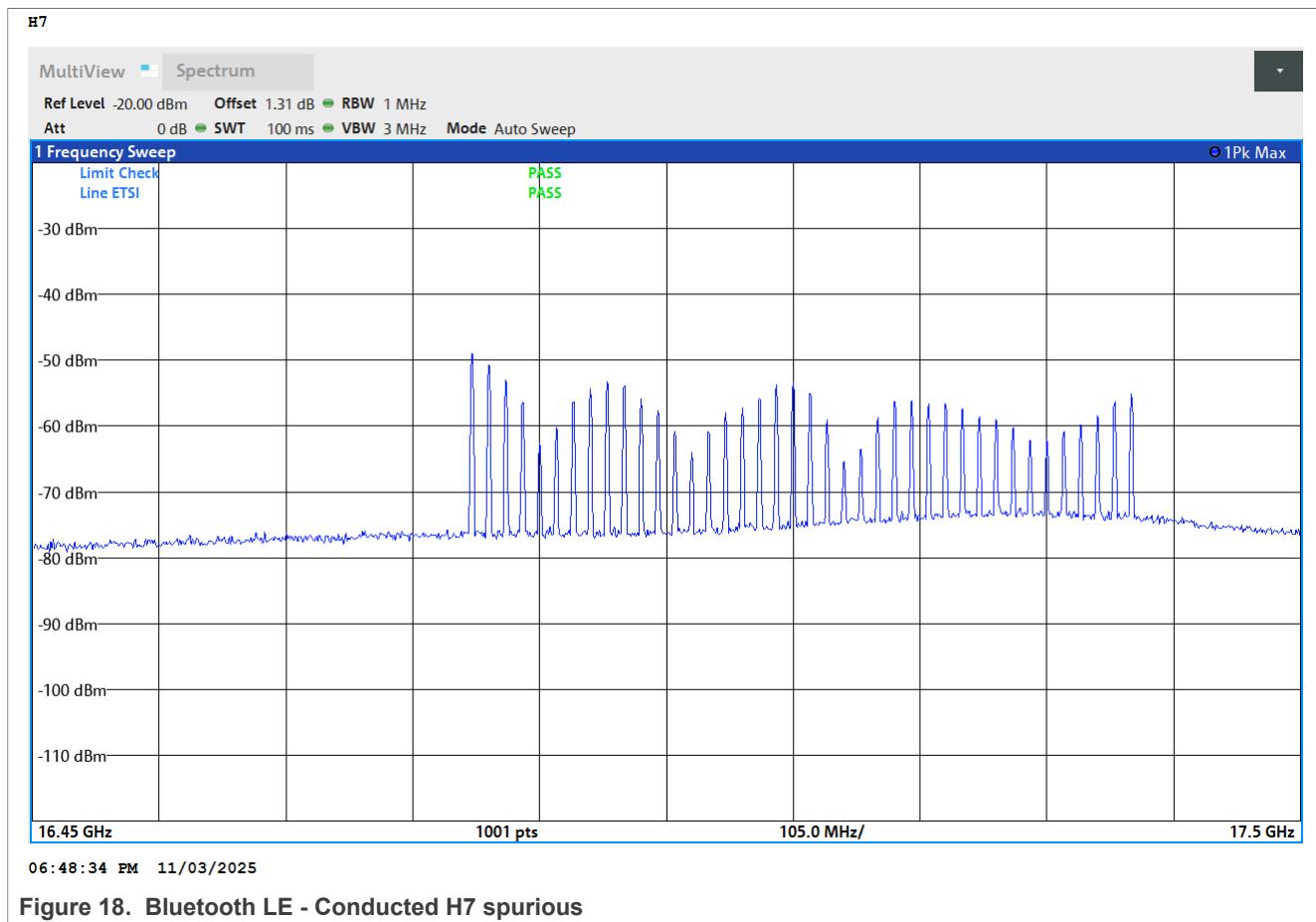


Figure 17. Bluetooth LE - Conducted H6 spurious

- Maximum power is at frequency 14.58 GHz - 47.38 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.


Conclusion:

- There is more than 17.4 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.6 H7 (ETSI test conditions, peak measurement)

This test uses the same method as the [H2](#), except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz. Result:

H7 Results

Figure 18. Bluetooth LE - Conducted H7 spurious

- Maximum power is at frequency 17.33 GHz: -49.07 dBm

Conclusion:

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

- There is more than 19.1 dB margin for Bluetooth LE to the ETSI limit

2.3.1.7.2.7 H8 (ETSI test conditions, peak measurement)

Use the same method as the test for [H2](#), except that the spectrum analyzer frequency span is set from 18.8 GHz to 20 GHz.

H8 results

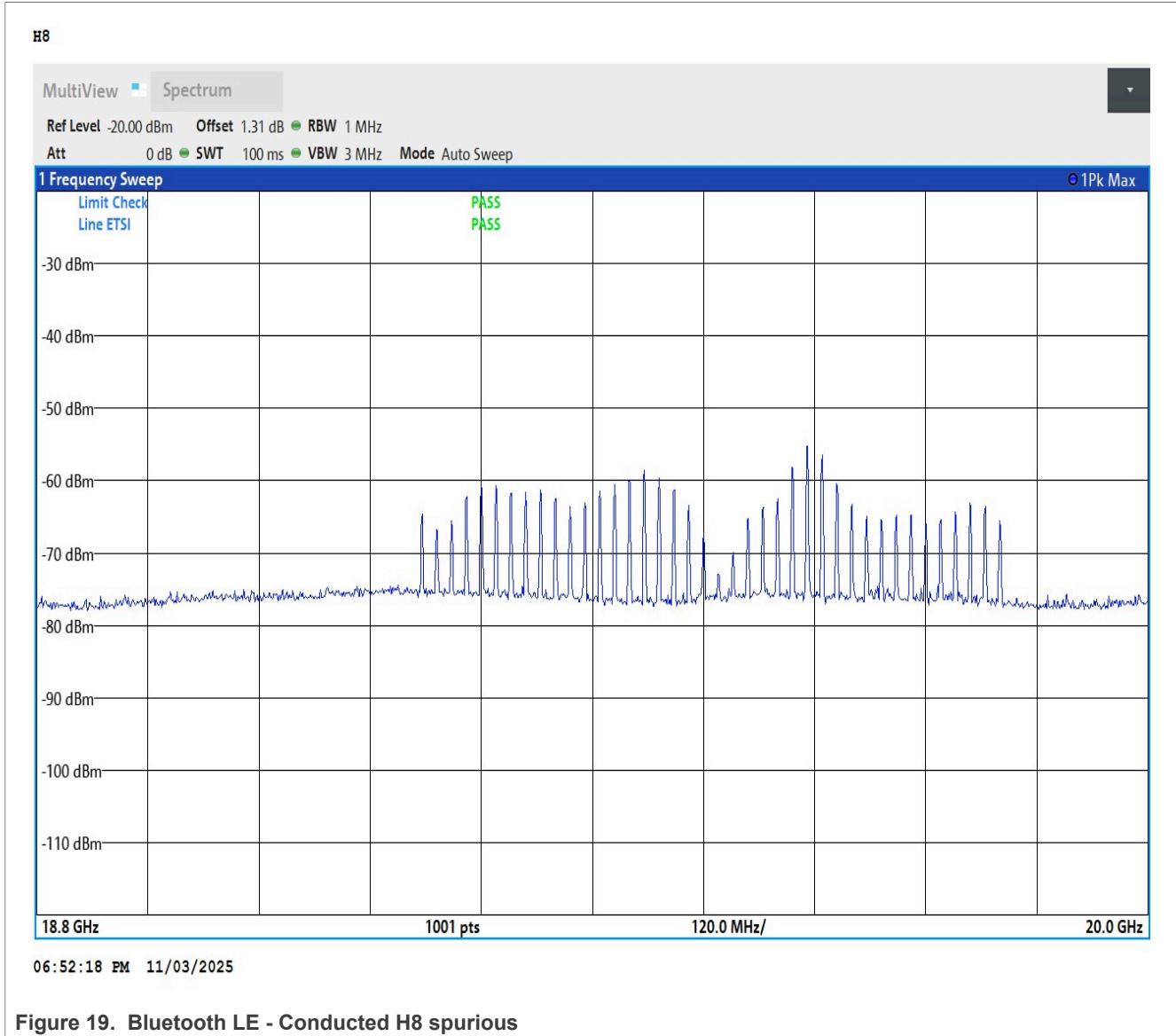


Figure 19. Bluetooth LE - Conducted H8 spurious

- Maximum power is at frequency 19.6 GHz -55.42 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 25.4 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.8 H9 (ETSI test conditions, peak measurement)

Use the same method as the test for [H2](#), except that the spectrum analyzer frequency span is set from 21.15 GHz to 22.5 GHz.

H9 Results

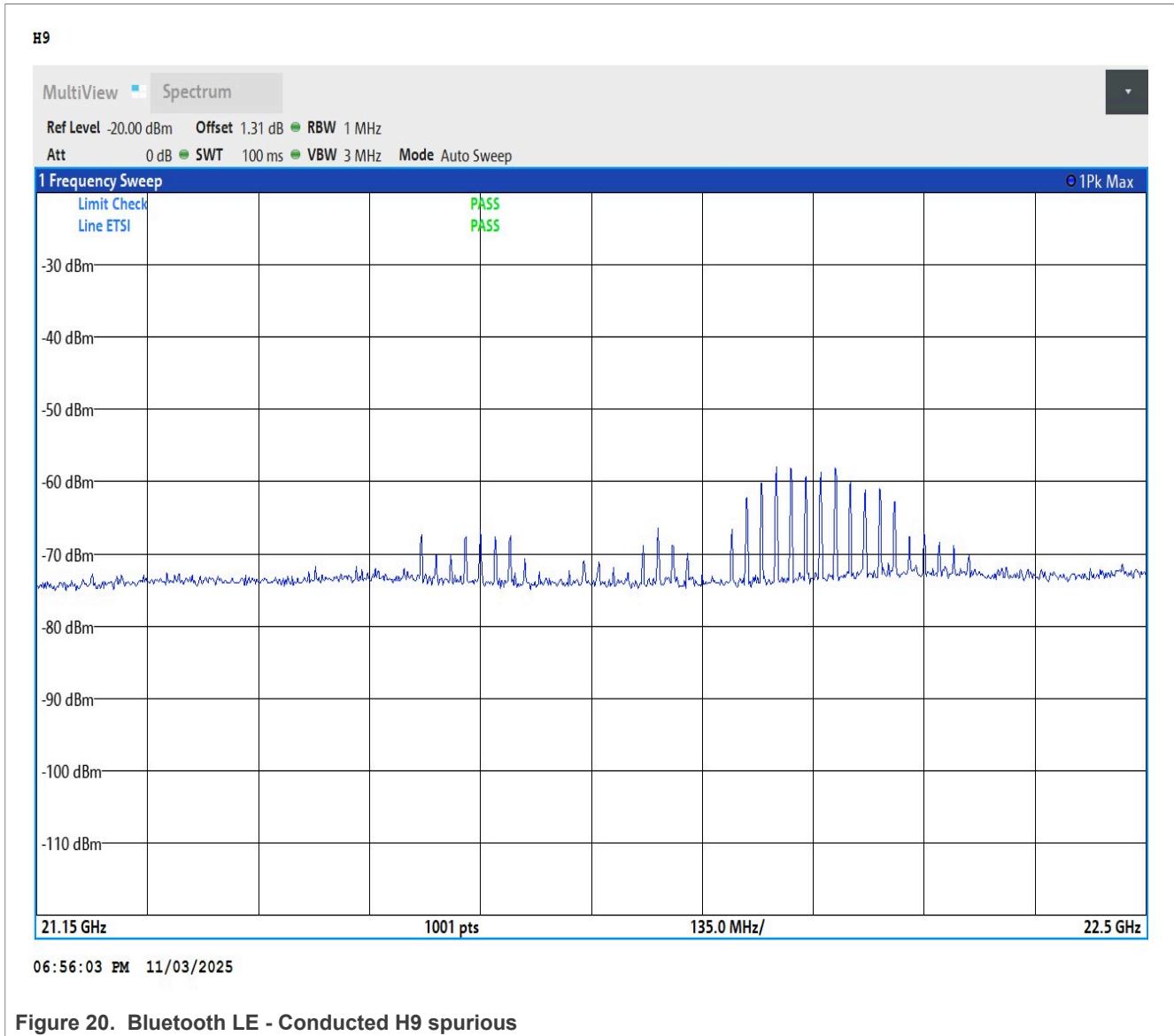


Figure 20. Bluetooth LE - Conducted H9 spurious

- Maximum power is at frequency 22.03 GHz: -58.09 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

There is more than 28.1 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.9 H10 (ETSI test conditions, peak measurement)

This test uses the same method as the [H2](#), except that the spectrum analyzer frequency span is set from 23.35 GHz to 25 GHz. Result:

H10 Results

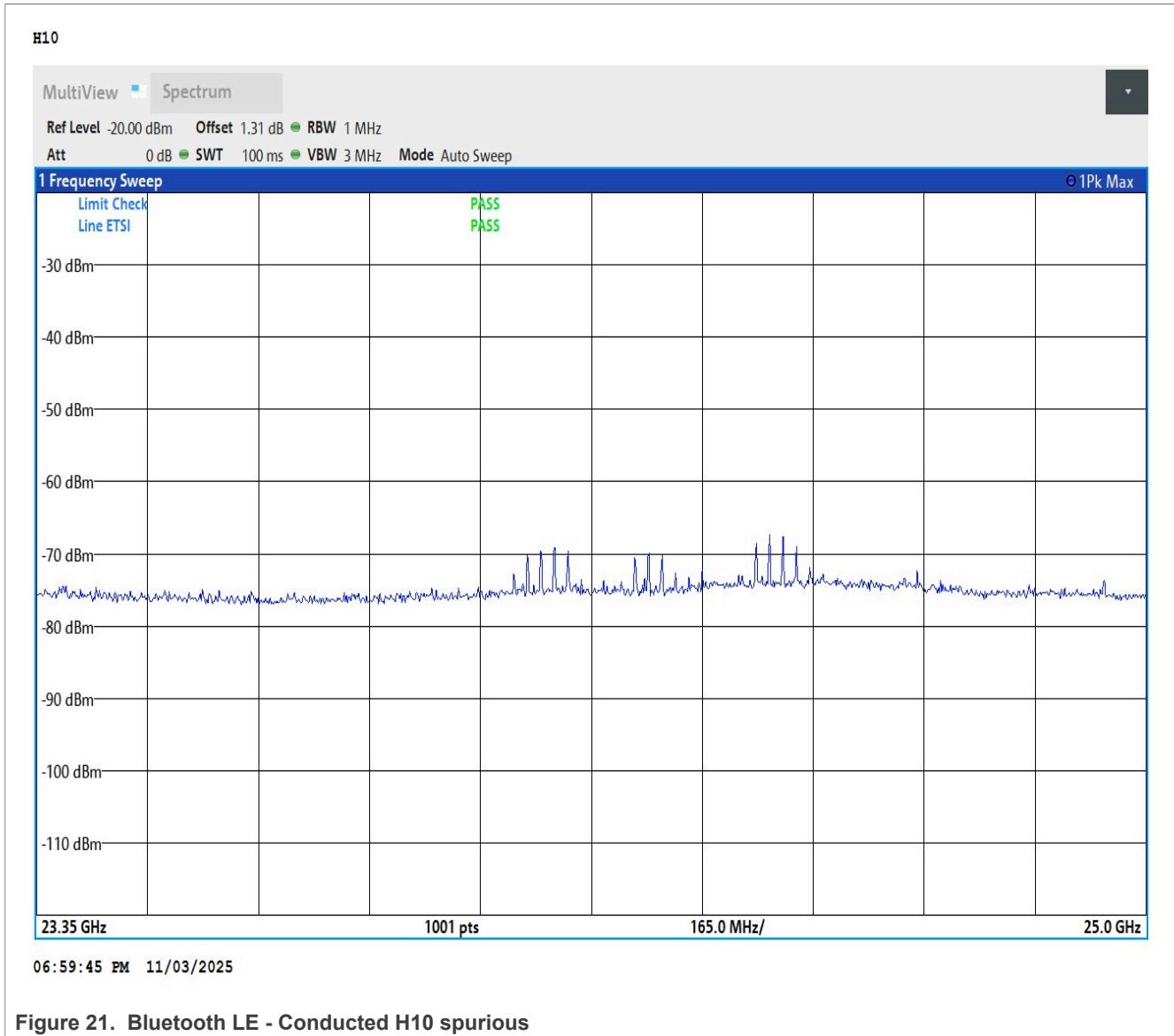


Figure 21. Bluetooth LE - Conducted H10 spurious

- Maximum power is at frequency 24.43 GHz: -67.3 dBm.

Conclusion:

- There is more than 37.3 dB margin for Bluetooth LE to the ETSI limit.

2.3.1.7.2.10 H2 (FCC test conditions, average measurement)

Test method:

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency= 4.7 GHz
 - Stop frequency= 5 GHz
 - Reference amplitude = -20 dBm
 - sweep time = 100 ms
 - RBW = 1 MHz
 - VBW = 3 MHz
 - Trace: Max Hold mode
 - Detector: RMS
- Sweep all the Bluetooth LE channels from:
 - Channel 0 to Channel 39

Results

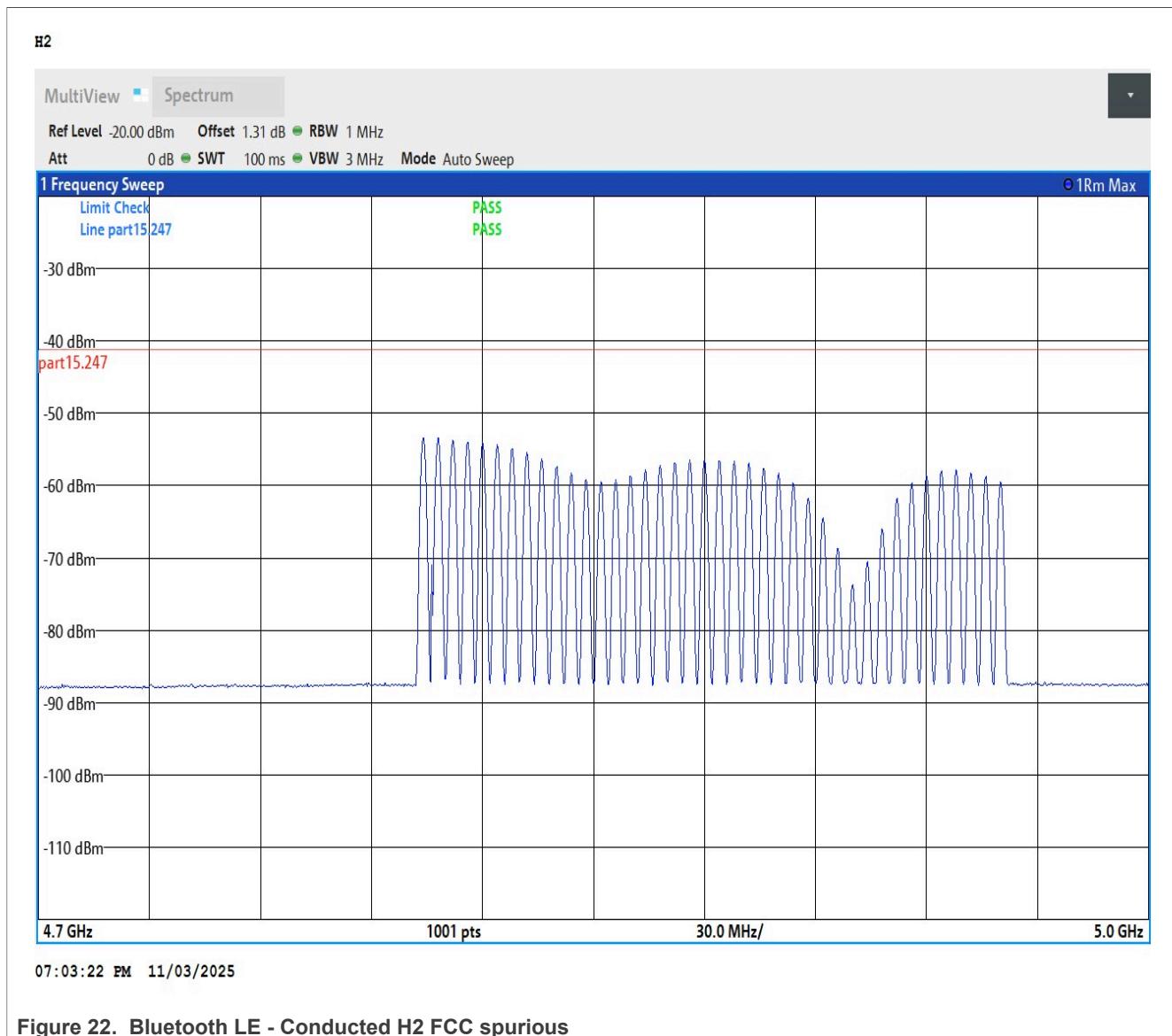
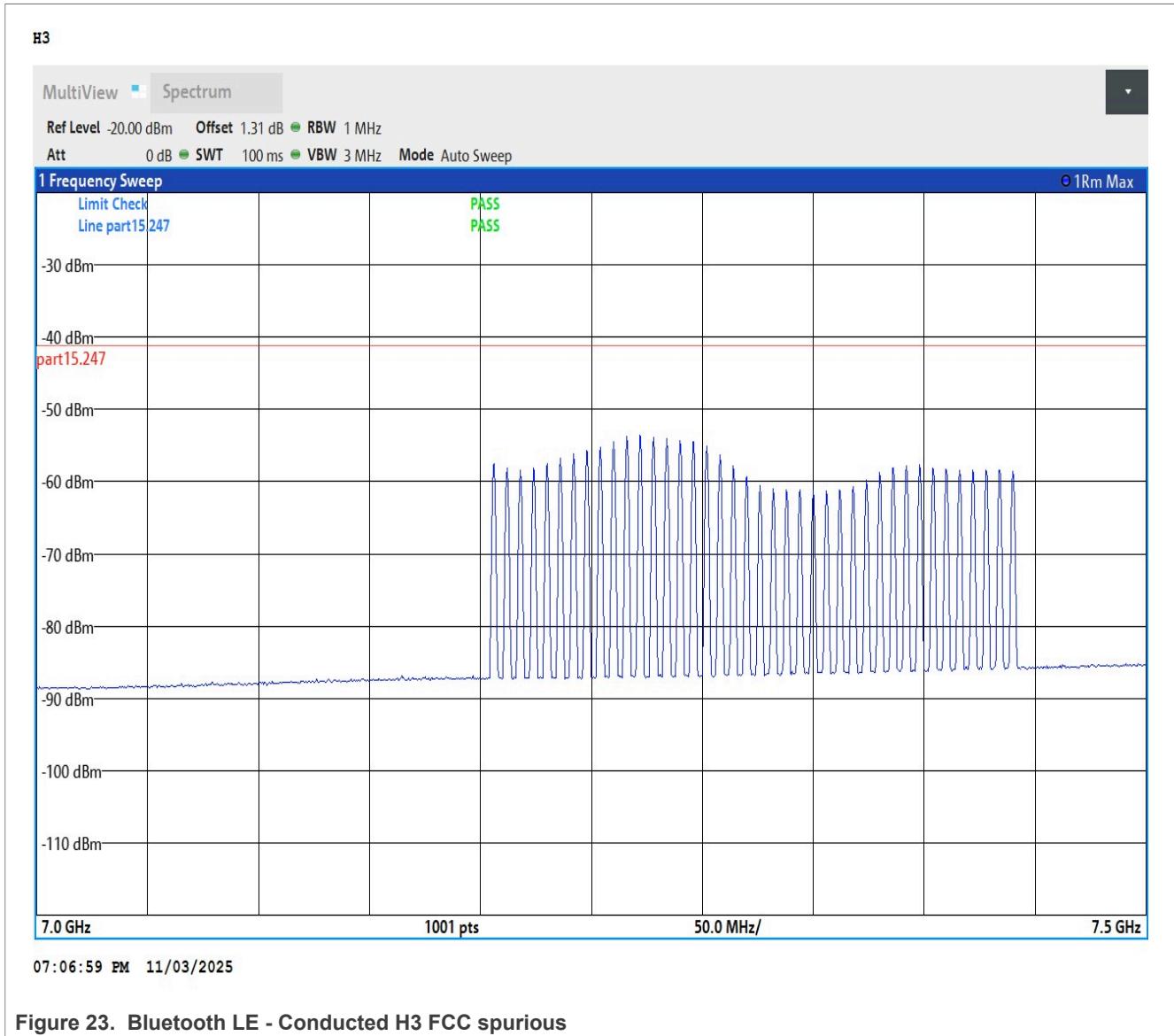


Figure 22. Bluetooth LE - Conducted H2 FCC spurious

- Maximum power is at frequency 4.95 GHz -53.37 dBm


Conclusion:

- There is more than 12.2 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.11 H3 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 7.0 GHz to 7.5 GHz.

Results

07:06:59 PM 11/03/2025

Figure 23. Bluetooth LE - Conducted H3 FCC spurious

- Maximum power is at frequency 7.27 GHz: -53.56 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 12.4 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.12 H4 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 9.4 GHz to 10 GHz.

Results

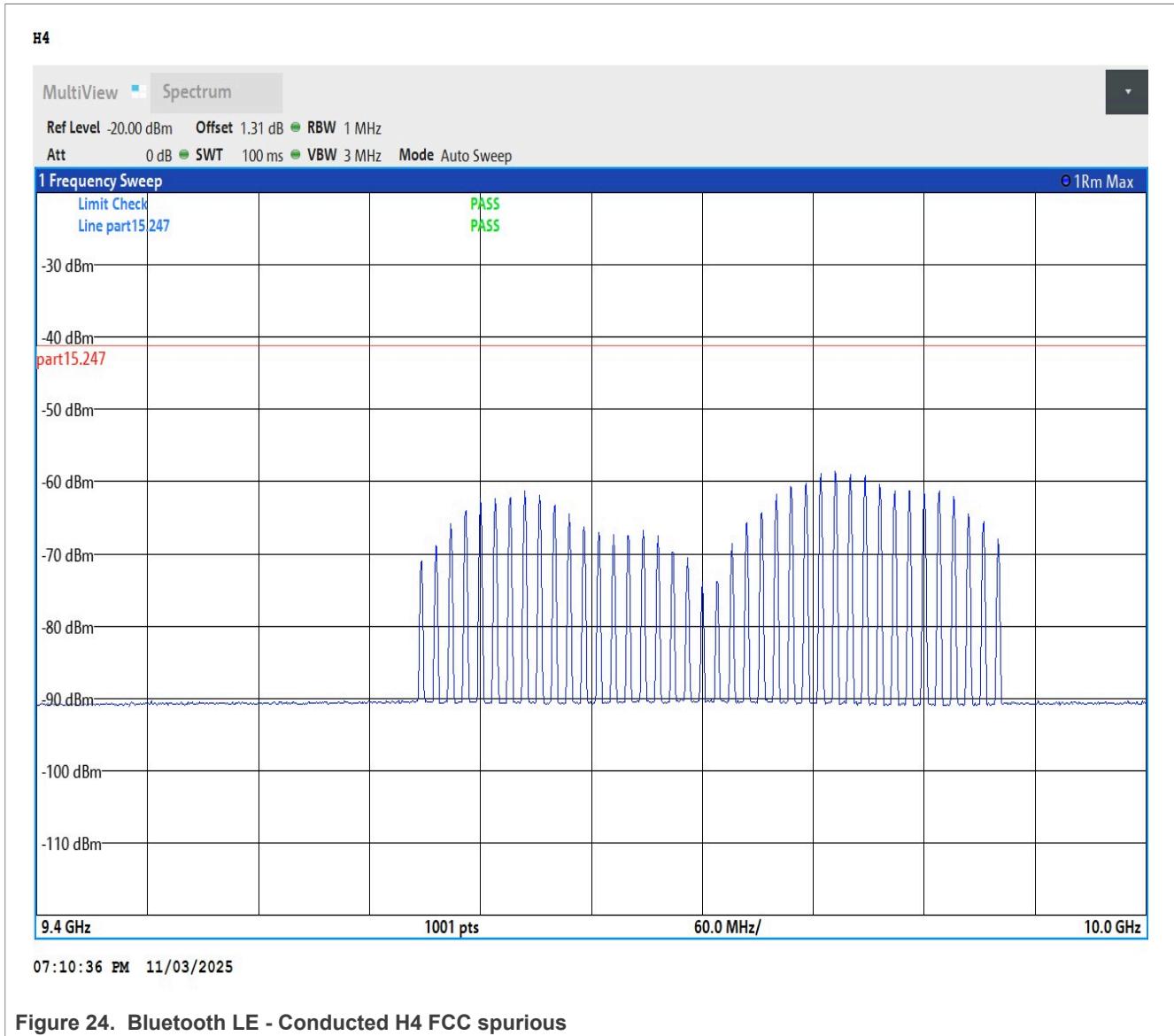


Figure 24. Bluetooth LE - Conducted H4 FCC spurious

- Maximum power is at frequency 9.82 GHz: -58.53 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion

- There is more than 17.4 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.13 H5 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

Results

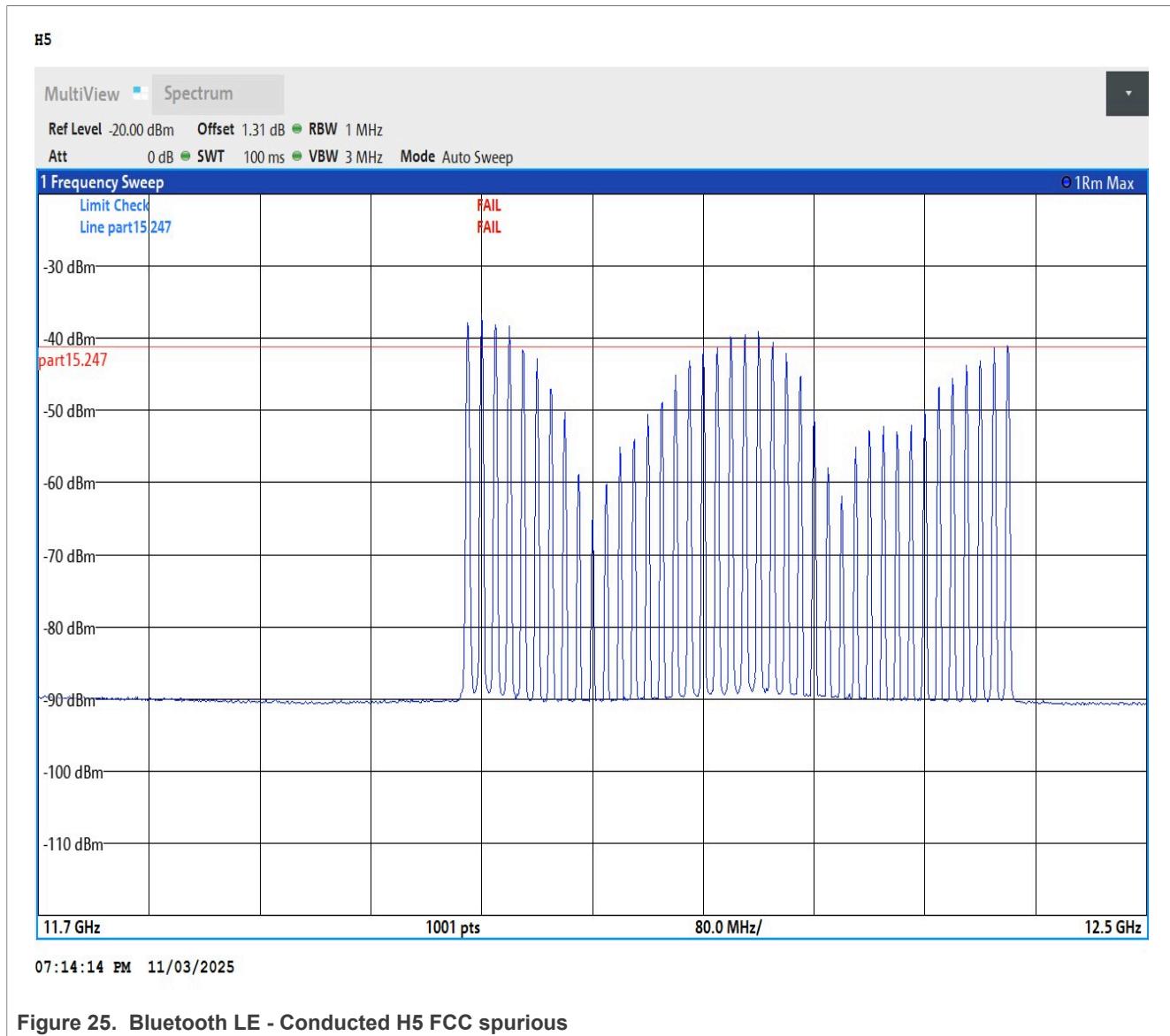


Figure 25. Bluetooth LE - Conducted H5 FCC spurious

- Maximum power is at frequency 12.01 GHz: -36.53 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion

- The output power level may be lowered to pass the H5 test, depending on the board used.

2.3.1.7.2.14 H6 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 14.1 GHz to 15 GHz.

Results

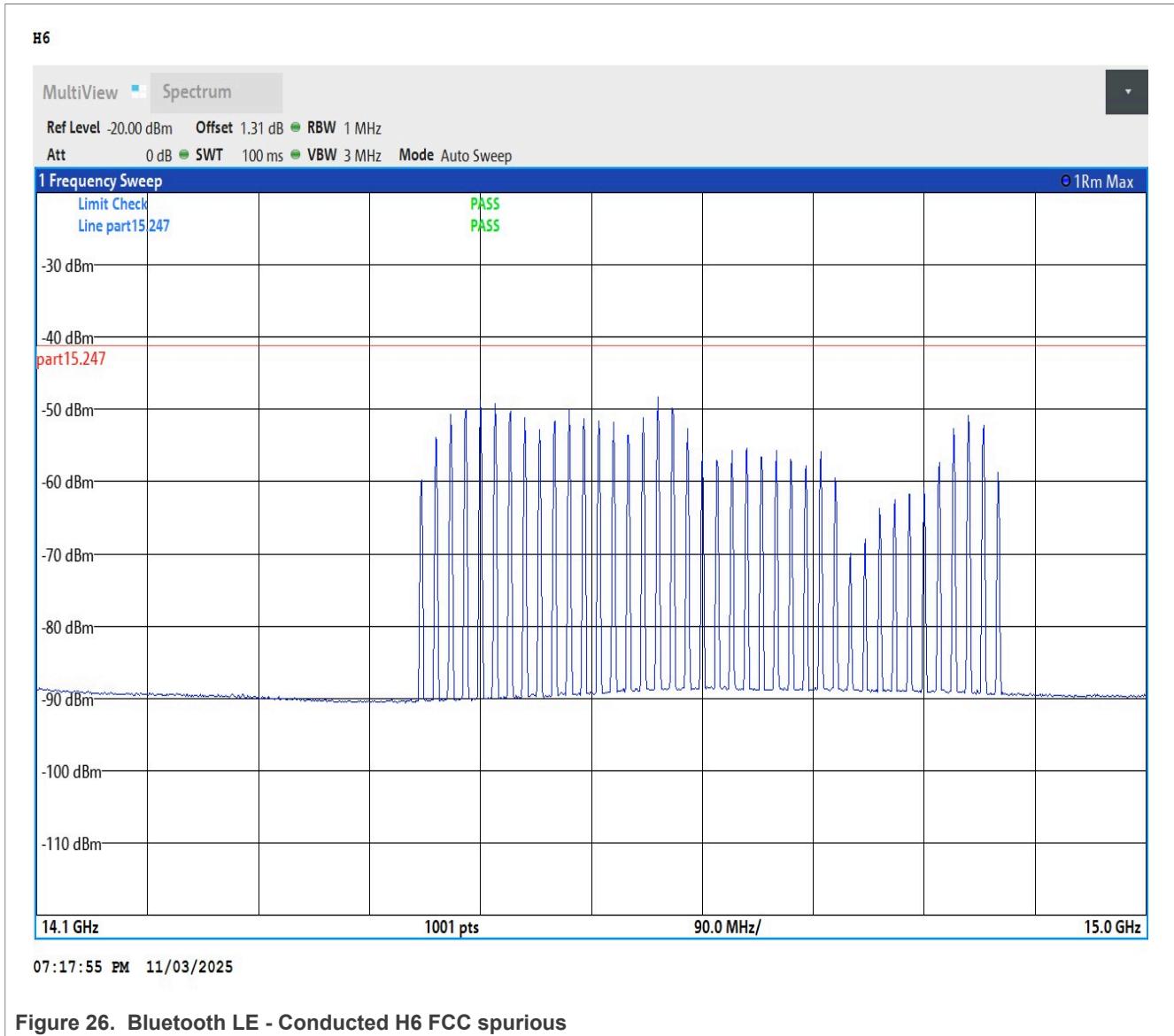


Figure 26. Bluetooth LE - Conducted H6 FCC spurious

- Maximum power is at frequency 14.58 GHz: -48.26 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion

- There is more than 7.1 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.15 H7 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

Results

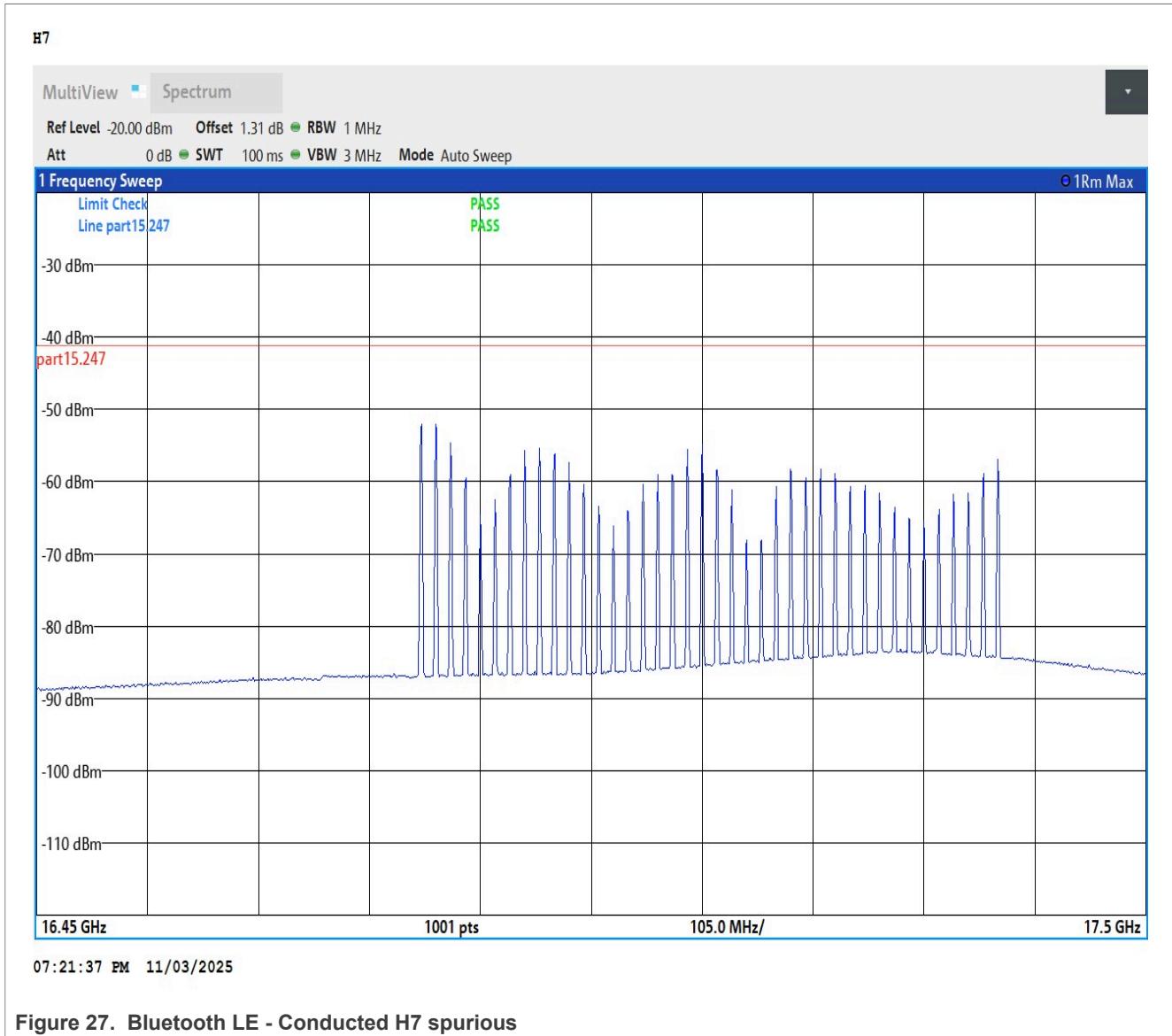


Figure 27. Bluetooth LE - Conducted H7 spurious

- Maximum power is at frequency 17.33 GHz: -51.99 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 10.9 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.16 H8 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 18.8 GHz to 20 GHz. Result:

Results

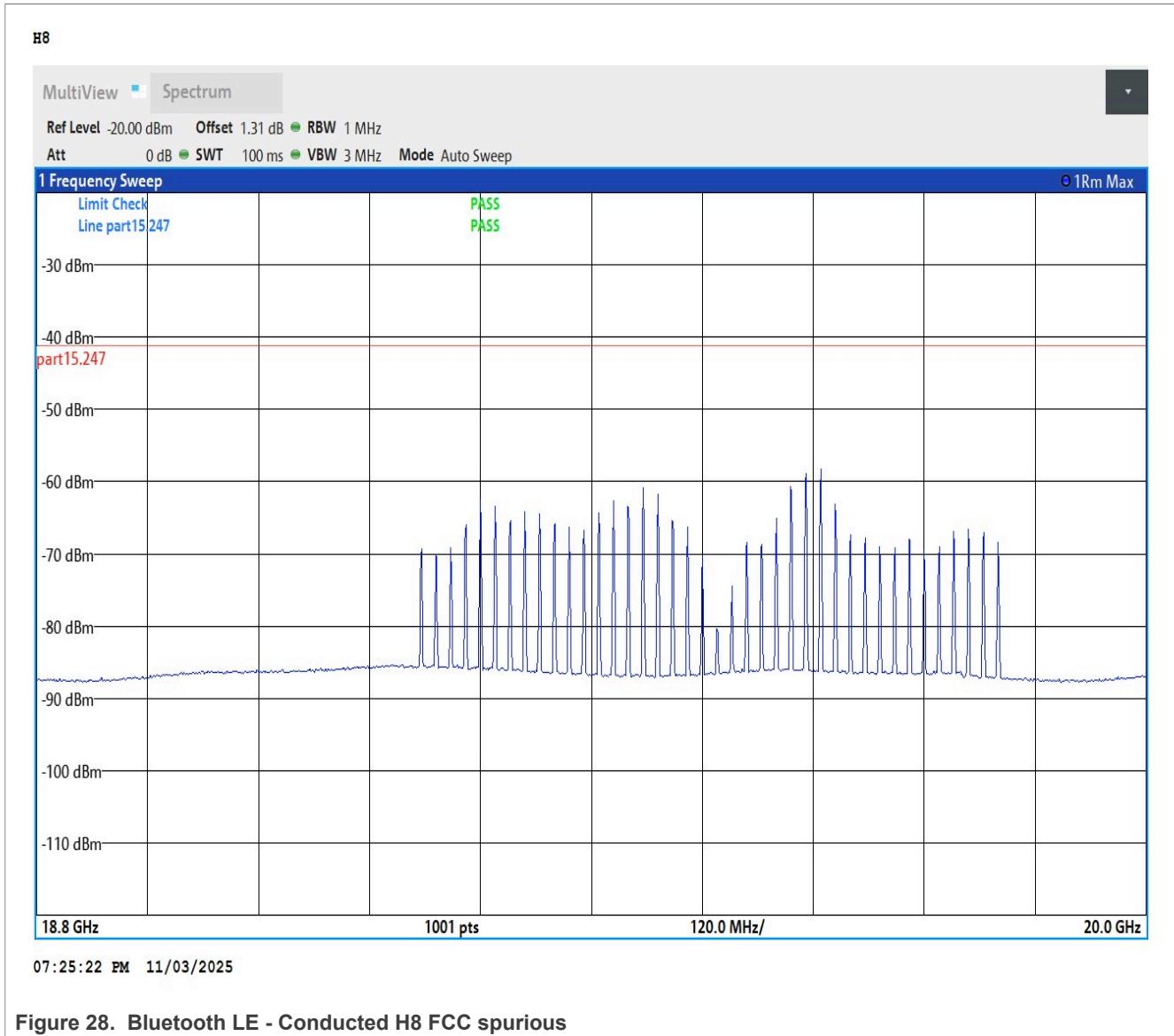
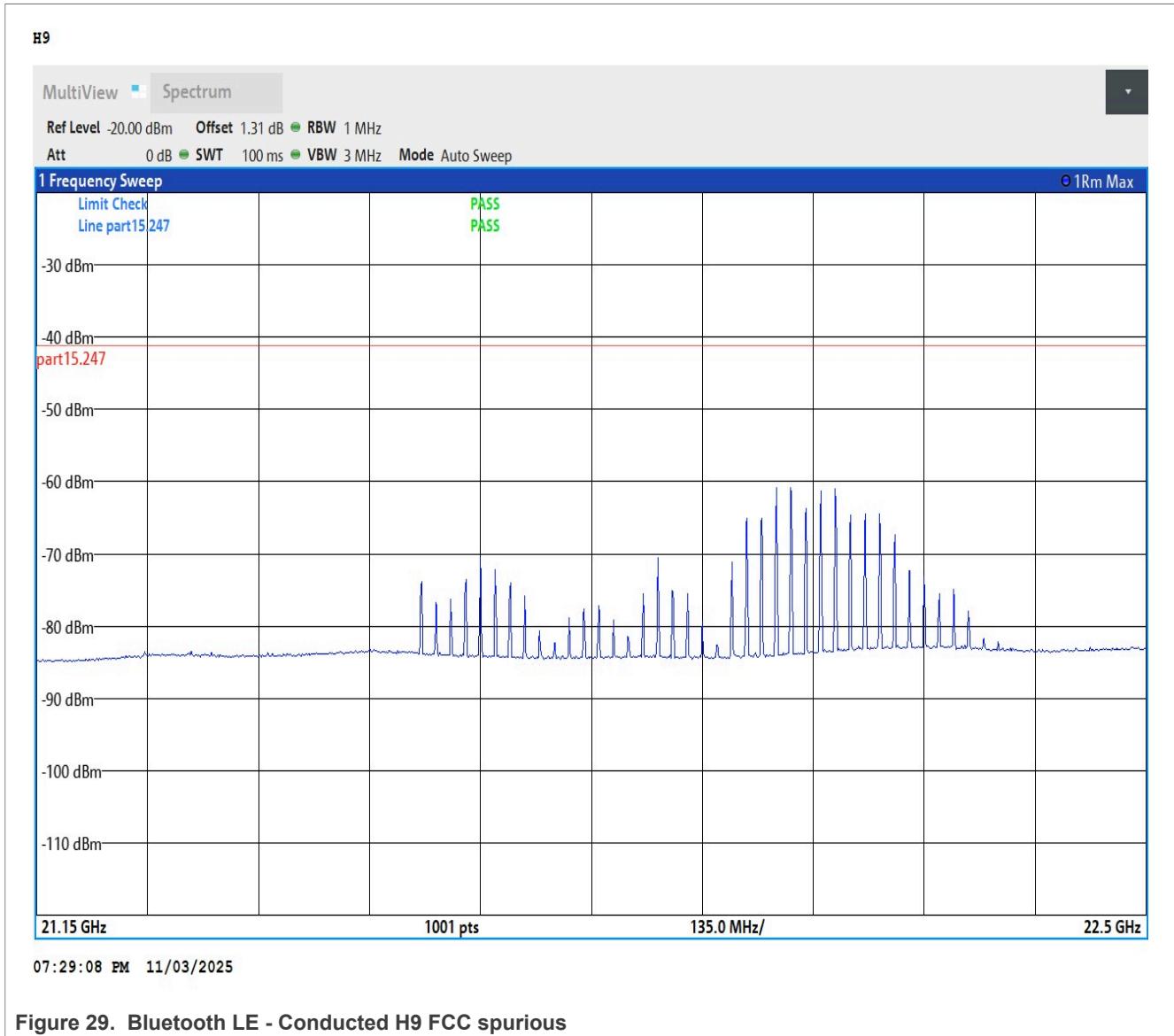


Figure 28. Bluetooth LE - Conducted H8 FCC spurious

- Maximum power is at frequency 19.62 GHz: -58.23 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.


Conclusion:

- There is more than 17.1 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.17 H9 (FCC test conditions, average measurement)

This test uses the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 21.15 GHz to 22.5 GHz. Result:

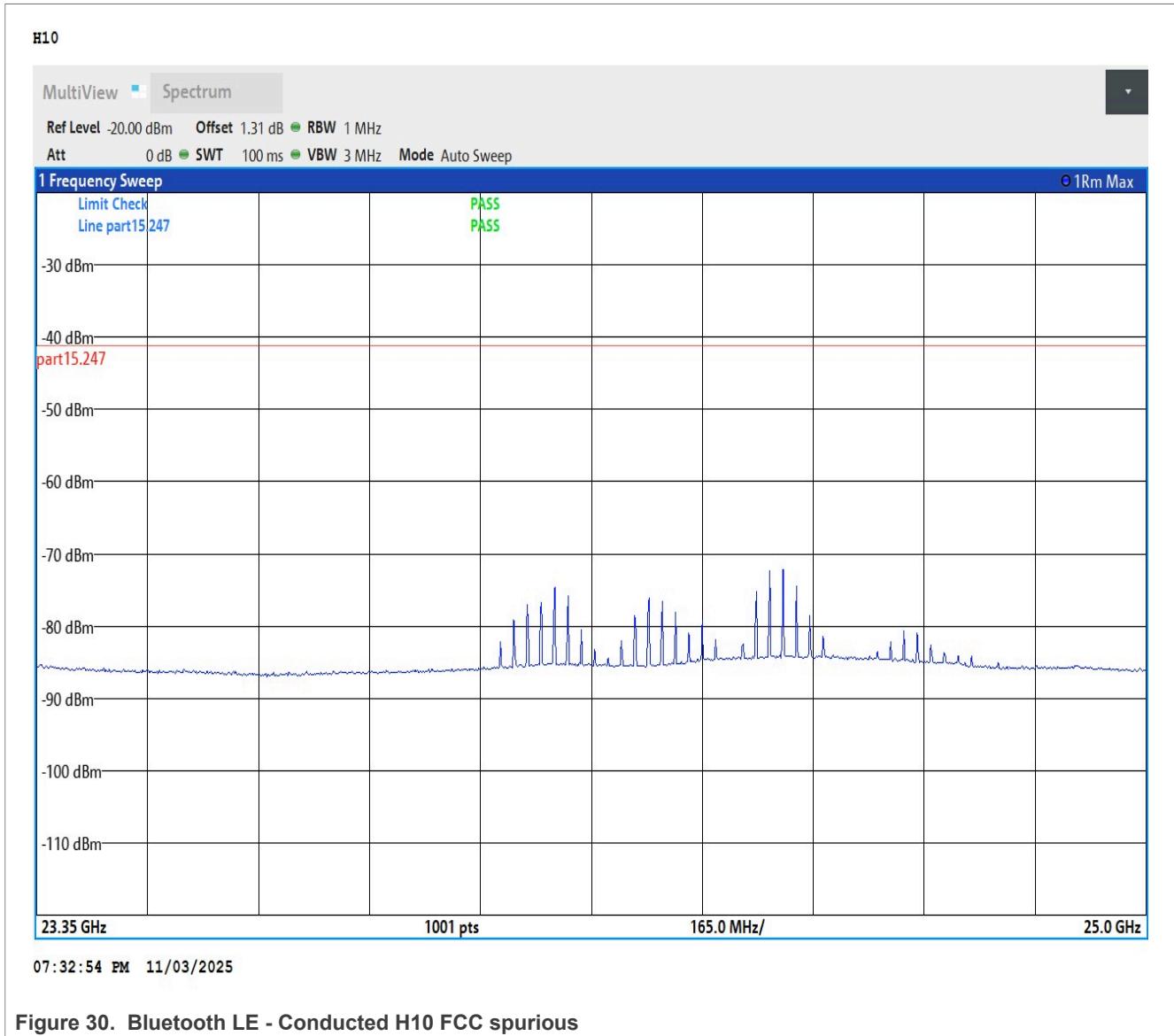
Results

07:29:08 PM 11/03/2025

Figure 29. Bluetooth LE - Conducted H9 FCC spurious

- Maximum power is at frequency 22.01 GHz: -60.82 dBm,

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.


Conclusion:

- There is more than 19.7 dB margin for Bluetooth LE to the FCC limit.

2.3.1.7.2.18 H10 (FCC test conditions, average measurement)

This test follows the same method as the [H2 FCC](#), except that the spectrum analyzer frequency span is set from 23.35 GHz to 25 GHz.

Results

07:32:54 PM 11/03/2025

Figure 30. Bluetooth LE - Conducted H10 FCC spurious

- Maximum power is at frequency 24.42 GHz: -72.28 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion

There is more than 31.2 dB margin for Bluetooth LE to the FCC limit.

2.3.1.8 Lower Band Edge – MIIT China

Test method

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, burst mode
- Set the Bluetooth LE Channel 37 (2.402 GHz)
- Set the analyzer to:
 - Start frequency= 2.375 GHz
 - Stop frequency=2.405 GHz
 - Reference amplitude=-20 dBm
 - Sweep time=100 ms
 - Sweep point: 8001 pts
- RBW = 1 MHz, VBW = 3 MHz
- Detector = RMS MaxHold

2.3.1.8.1 Lower Band Edge – MIIT China Bluetooth LE results

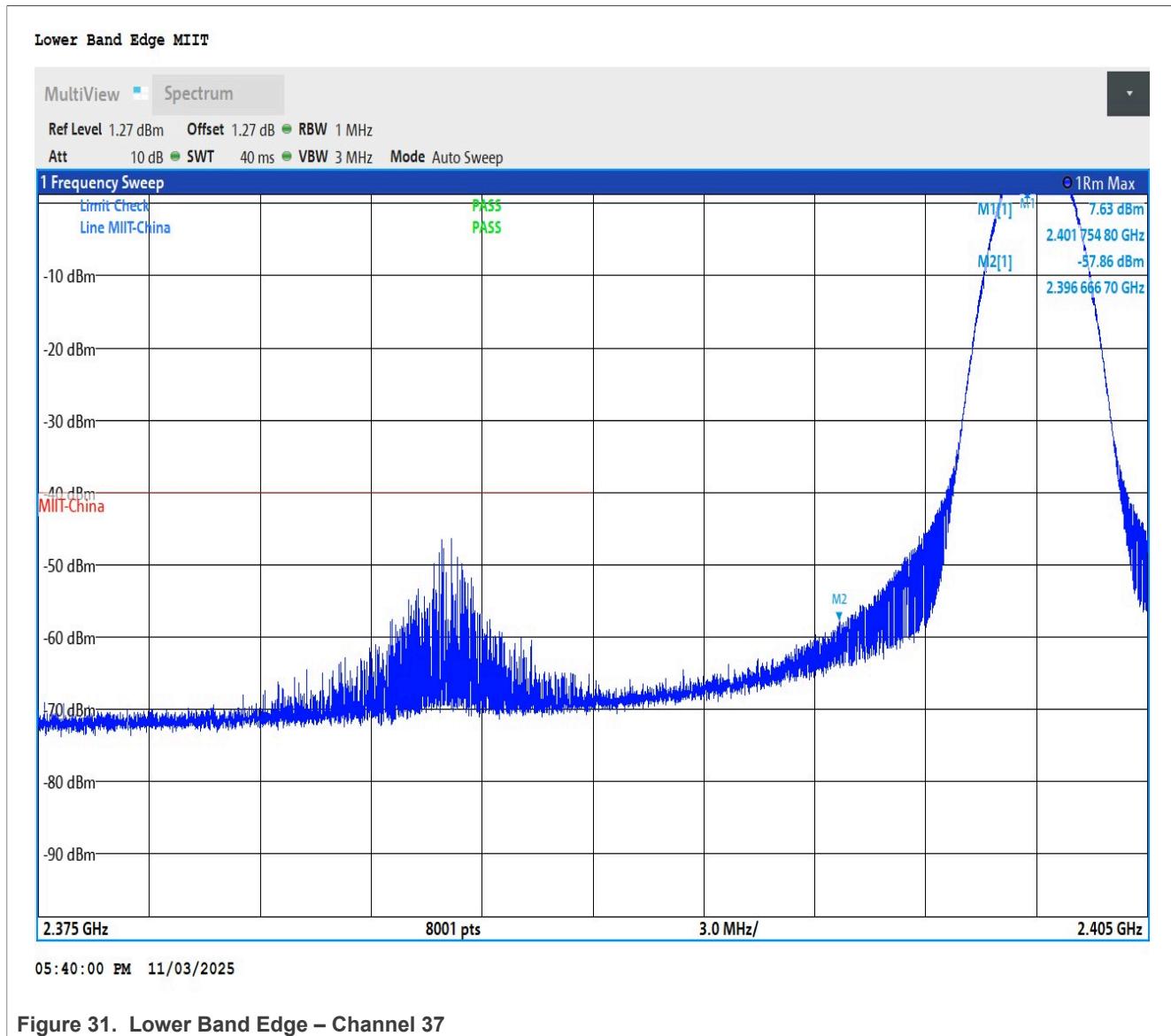


Figure 31. Lower Band Edge – Channel 37

Conclusion:

- The Lower Band Edge test passes the Bluetooth SIG (MIIT-China) certification.
- There is a good margin of 26.53 dB.

2.3.1.9 Upper Band Edge – MIIT China

Test method

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, burst mode
- Set the channel 39 (2.48 GHz)
- Set the analyzer to:
 - Start frequency= 2.477 GHz

- Stop frequency=2.507 GHz
- Reference amplitude=-20 dBm
- Sweep time=40 ms
- Sweep point: 8001 pts
- RBW = 1 MHz, Video BW = 3 MHz
- Detector Mode = RMS
- Trace Mode: Max Hold

2.3.1.9.1 Upper Band Edge (Bluetooth LE) results

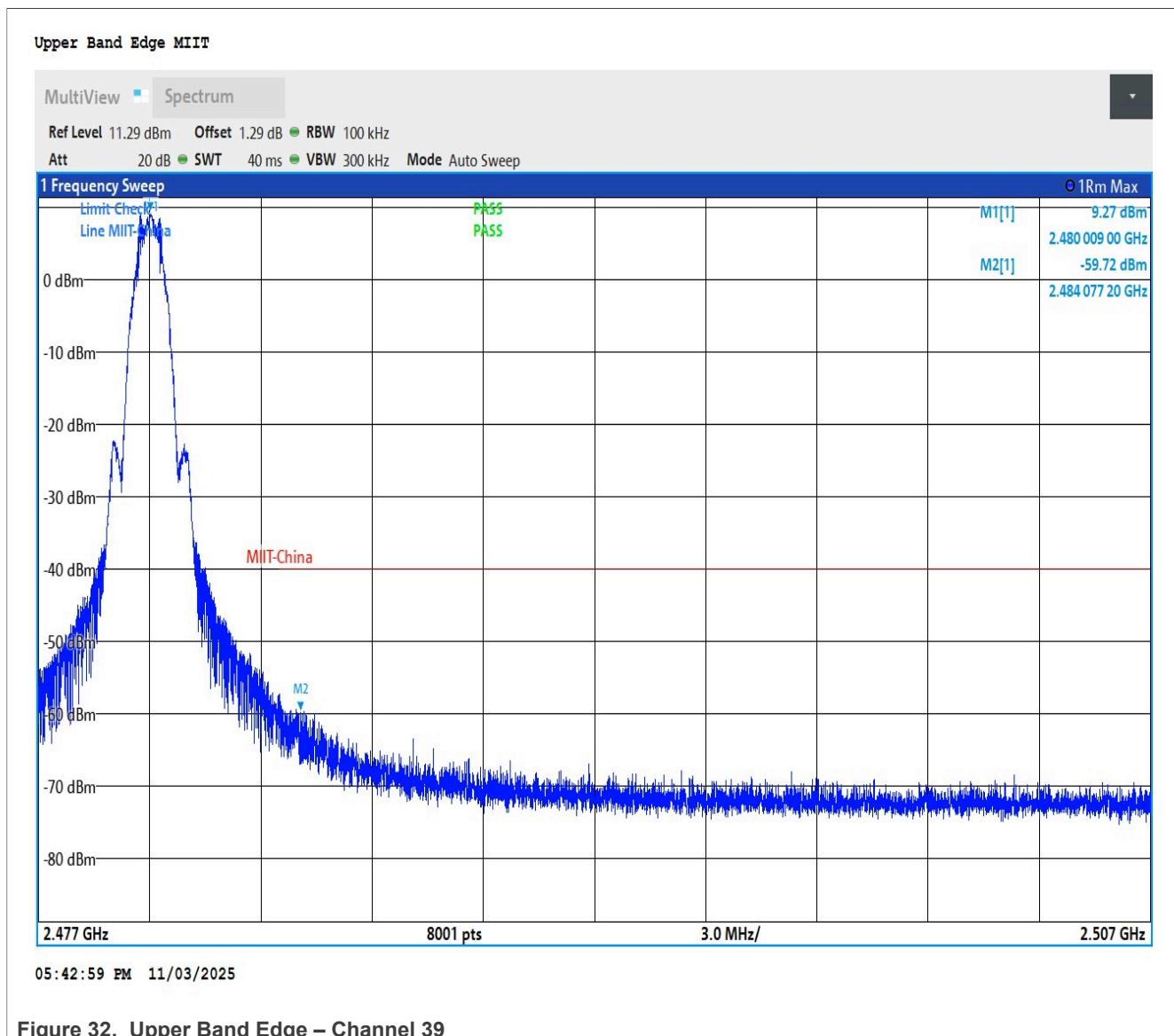


Figure 32. Upper Band Edge – Channel 39

Conclusion:

- The board passes the Upper Band Edge MIIT certification.
- There is a good margin of 17.67 dB.

2.3.1.10 Upper Band Edge (FCC ANSI C63.10, 558074 D01 DTS)

Test method

- Test setup N1 is used. See [Figure 3](#)
- Set the radio parameters of the board to:
 - TX mode, modulated (1 Mbit/s, 2 Mbit/s, 500 kbit/s, 125 kbit/s)
 - Continuous emitting mode
 - Maximum RF output power +10 dBm
- Set the analyzer to:
 - Start frequency = 2.475 GHz
 - Stop frequency = 2.485 GHz
 - Reference amplitude=-20 dBm
 - Sweep time=Auto
 - RBW = 100 kHz
 - Video BW = 300 kHz
 - Detector = Average
 - Average mode: power
 - Number of Sweeps = 100
 - Set the channel 39 (2.48 GHz)
 - Trace mode: Max hold

2.3.1.10.1 Upper Band Edge – Channel 39 (Bluetooth LE) results

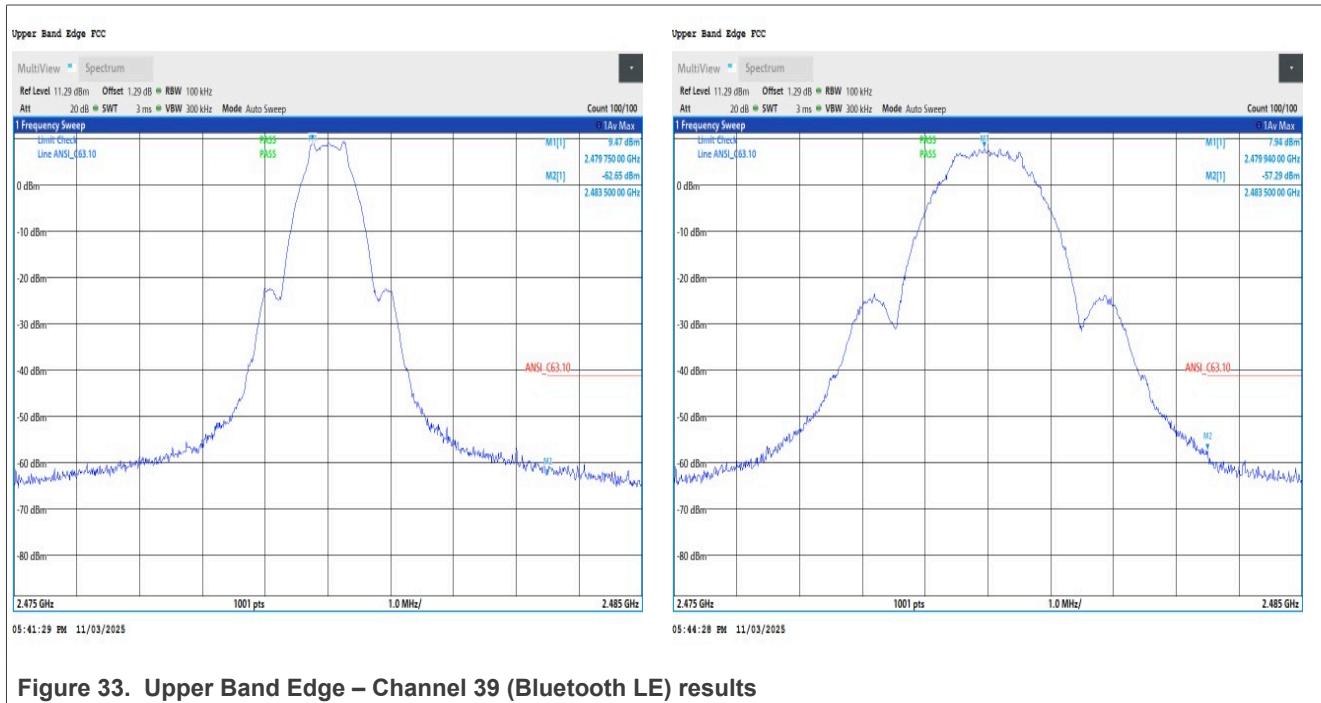


Figure 33. Upper Band Edge – Channel 39 (Bluetooth LE) results

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

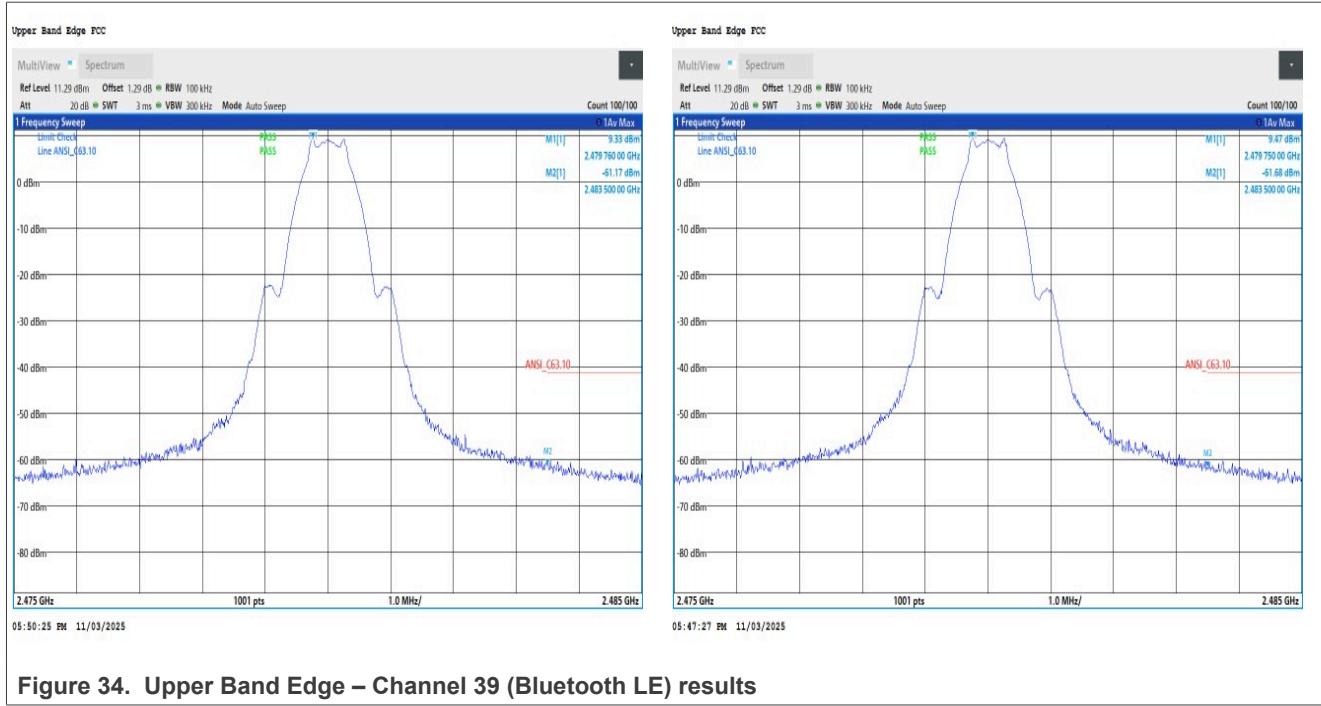


Figure 34. Upper Band Edge – Channel 39 (Bluetooth LE) results

Table 18. Upper Band Edge (FCC ANSI)

Modulation	1 Mbit/s	2 Mbit/s	500 kbit/s	125 kbit/s
Level @2.4835 GHz	-61.21 dBm	-58.95 dBm	-59.3 dBm	-61.2 dBm

FCC upper limit: -41.25 dBm

Conclusion:

- The board passes the Upper Band Edge FCC Certification.
- There is a minimum of 17.8 dB margin.

2.3.1.11 Out Of Band (ETSI 300 328 chapter 5.4.8.2.1)

Test method:

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency = 2.475 GHz, Stop frequency = 2.485 GHz
 - Reference amplitude = -20 dBm
 - Sweep time=100 ms,
 - RBW = 1 MHz, Video BW = 3 MHz
 - Detector = RMS
 - Average mode: power
 - Number of Sweeps = 100
- Set the channel to Channel 37 (2.402 GHz) and Channel 39 (2.48 GHz)
- Trace mode: Max hold

Result

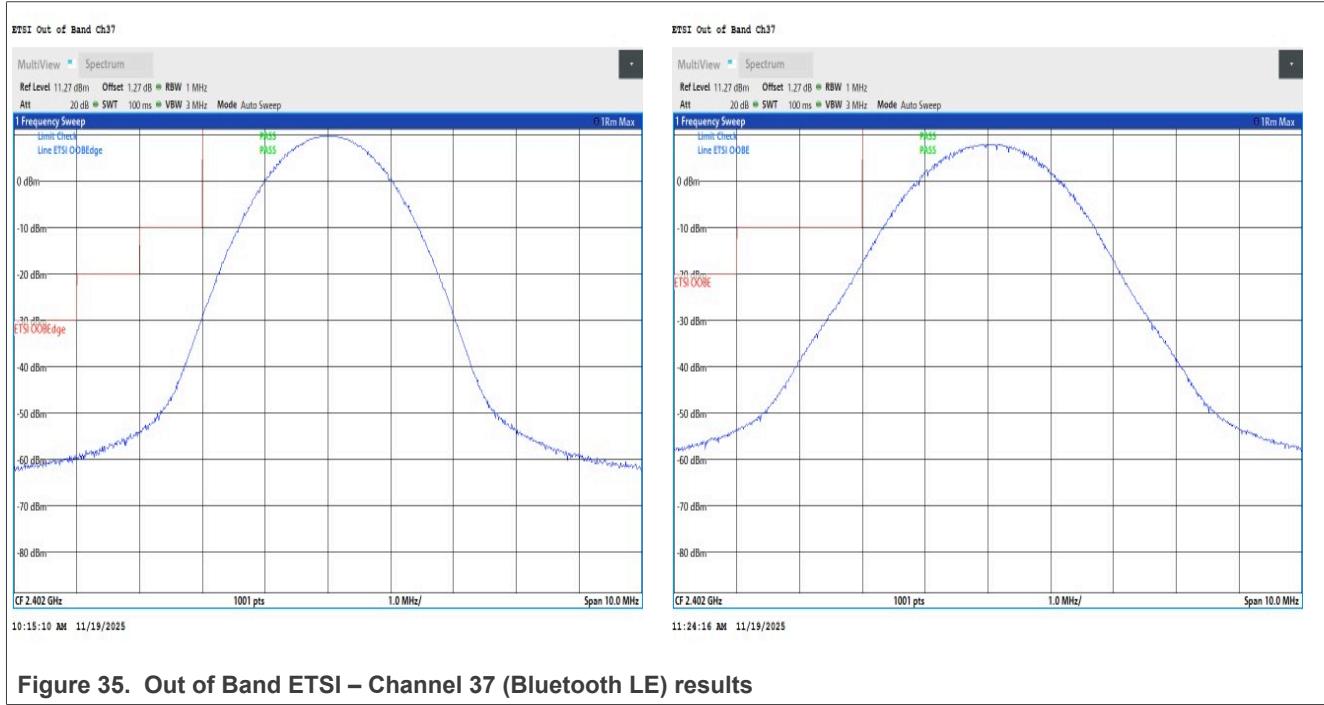


Figure 35. Out of Band ETSI – Channel 37 (Bluetooth LE) results

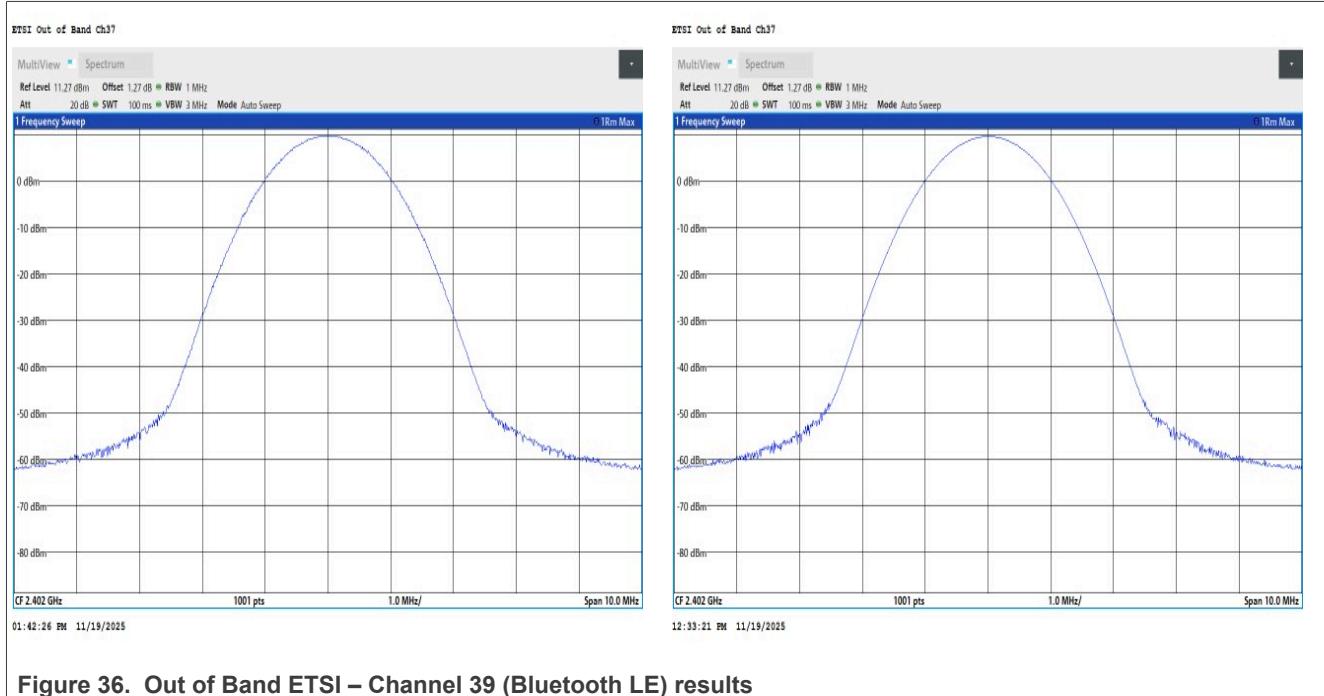


Figure 36. Out of Band ETSI – Channel 39 (Bluetooth LE) results

Conclusion:

- The FRDM-MCXW72 passes the ETSI limit.
- There is a 1000 dB margin below the limit.

2.3.1.12 Out Of Band (ARIB STD T-66)

Test method:

- Test setup N1 is used. See [Figure 3](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency = 2.475 GHz
 - Stop frequency = 2.485 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 100 ms
 - RBW = 1 MHz, Video BW = 1 MHz
 - Detector = Peak
 - Average mode: power
 - Number of sweeps = 100
- Set the channel 37 (2.402 GHz) and channel 39 (2.48 GHz)
- Trace mode: Max hold

2.3.1.12.1 Out of Band 1 Mbit/s Channel 37 ARIB

[Figure 37](#) illustrates the detailed results of Out of Band 1 Mbit/s Channel 37 (ARIB).

Figure 37. Out of Band 1 Mbit/s Channel 37 ARIB

2.3.1.12.2 Out of Band 2 Mbit/s Channel 37 ARIB

[Figure 38](#) illustrates the detailed results of Out of Band 2 Mbit/s Channel 37 (ARIB).

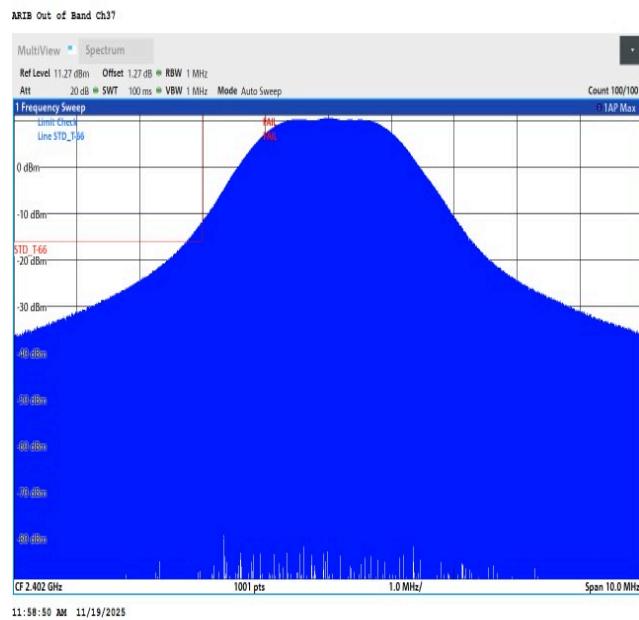


Figure 38. Out of Band 2 Mbit/s Channel 37 ARIB

2.3.1.12.3 Out of Band 500 kbit/s Channel 37 ARIB

[Figure 39](#) illustrates the detailed results of Out of Band 500 kbit/s Channel 37 (ARIB).

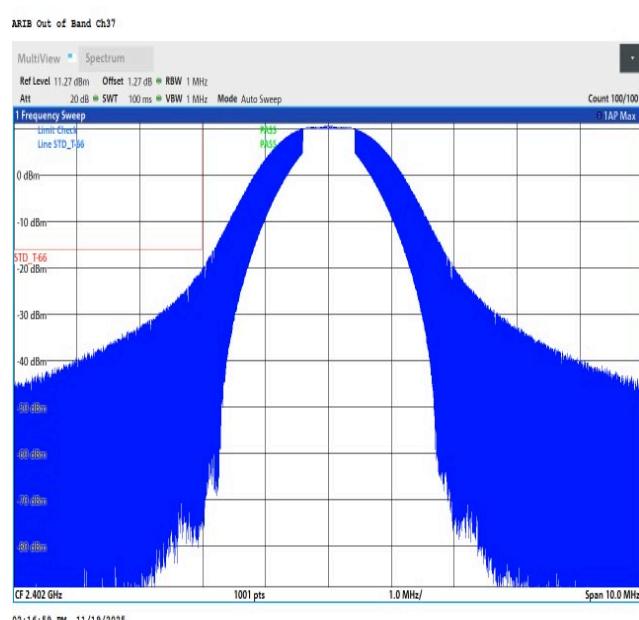


Figure 39. Out of Band 500 Kbit/s Channel 37 ARIB

2.3.1.12.4 Out of Band 125 kbit/s Channel 37 ARIB

[Figure 40](#) illustrates the detailed results of Out of Band 125 kbit/s Channel 37 (ARIB).

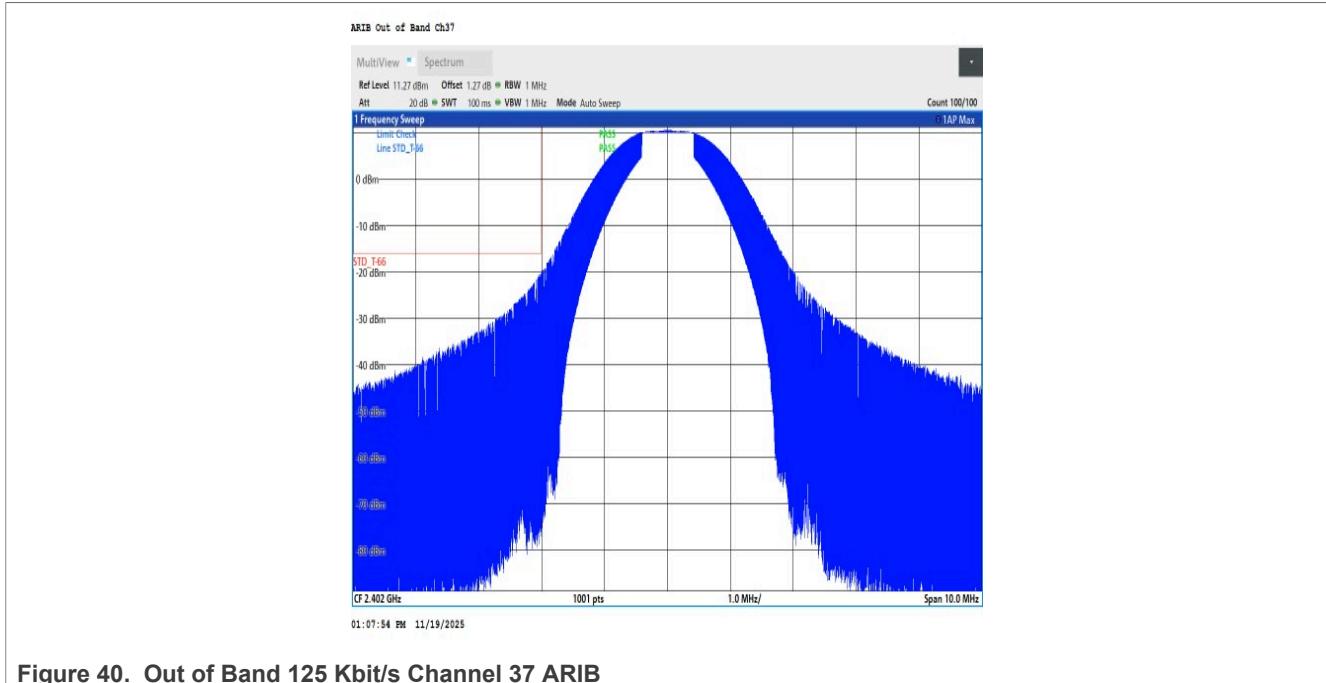


Figure 40. Out of Band 125 Kbit/s Channel 37 ARIB

2.3.1.12.5 Out of Band 1 Mbit/s Channel 39 ARIB

Figure 41 illustrates the detailed results of Out of Band 1 Mbit/s Channel 39 (ARIB).

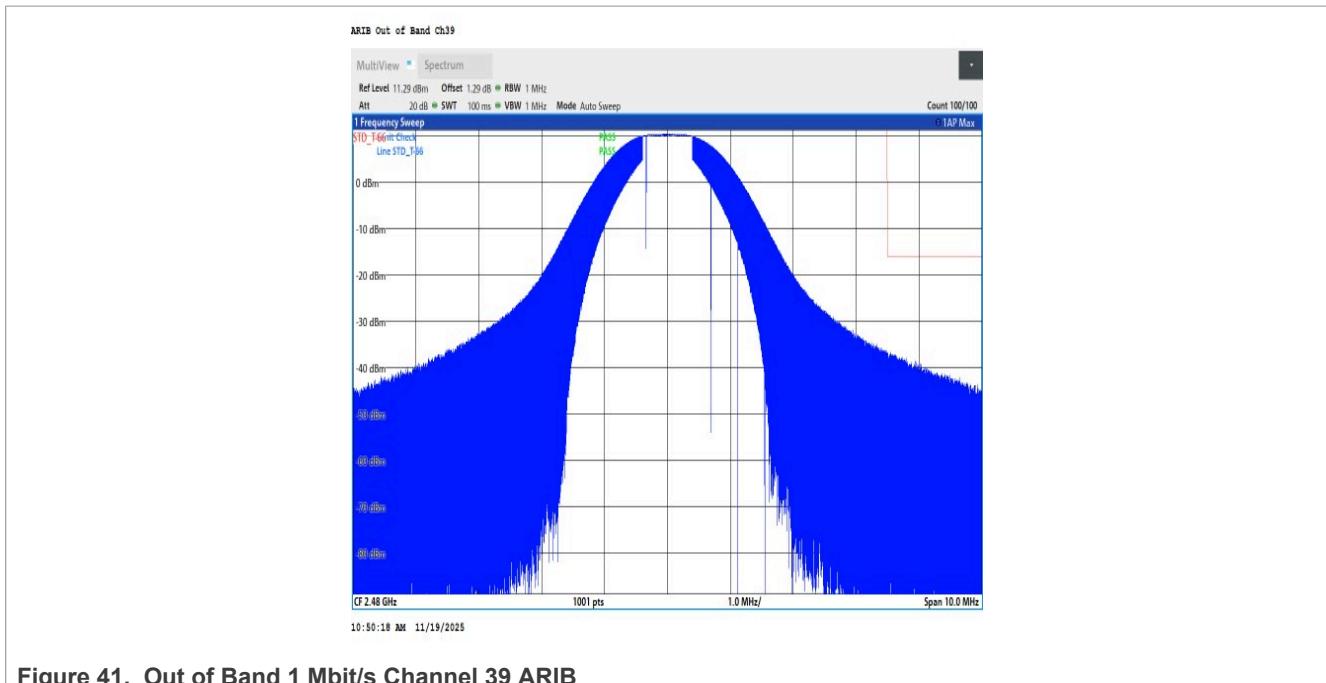


Figure 41. Out of Band 1 Mbit/s Channel 39 ARIB

2.3.1.12.6 Out of Band 2 Mbit/s Channel 39 ARIB

Figure 42 illustrates the detailed results of Out of Band 2 Mbit/s Channel 39 (ARIB).

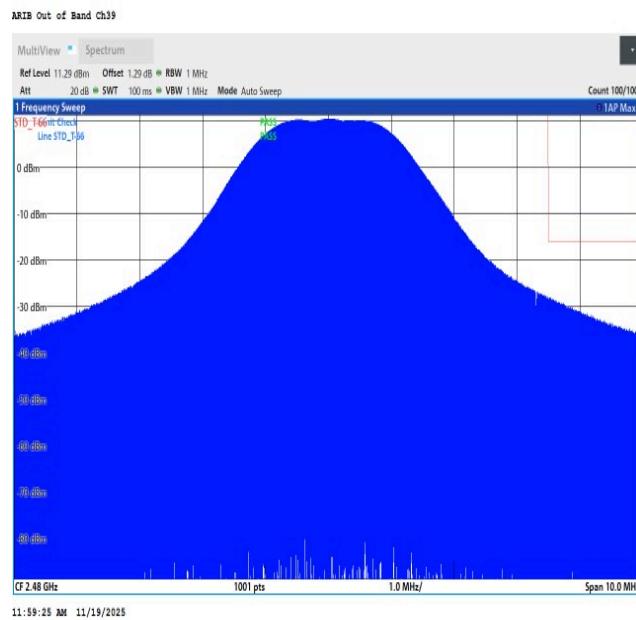


Figure 42. Out of Band 2 Mbit/s Channel 39 ARIB

2.3.1.12.7 Out of Band 500 kbit/s Channel 39 ARIB

[Figure 43](#) illustrates the detailed results of Out of Band 500 kbit/s Channel 39 (ARIB).

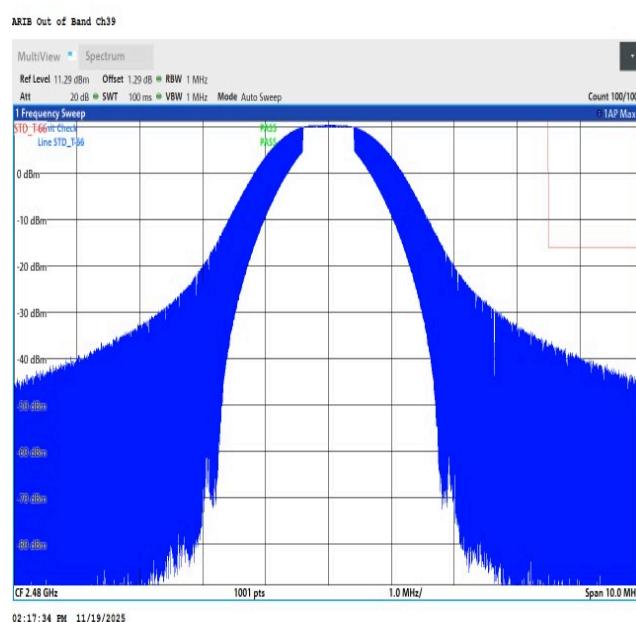


Figure 43. Out of Band 500 Kbit/s Channel 39 ARIB

2.3.1.12.8 Out of Band 125 kbit/s Channel 39 ARIB

[Figure 44](#) illustrates the detailed results of Out of Band 125 kbit/s Channel 39 (ARIB).

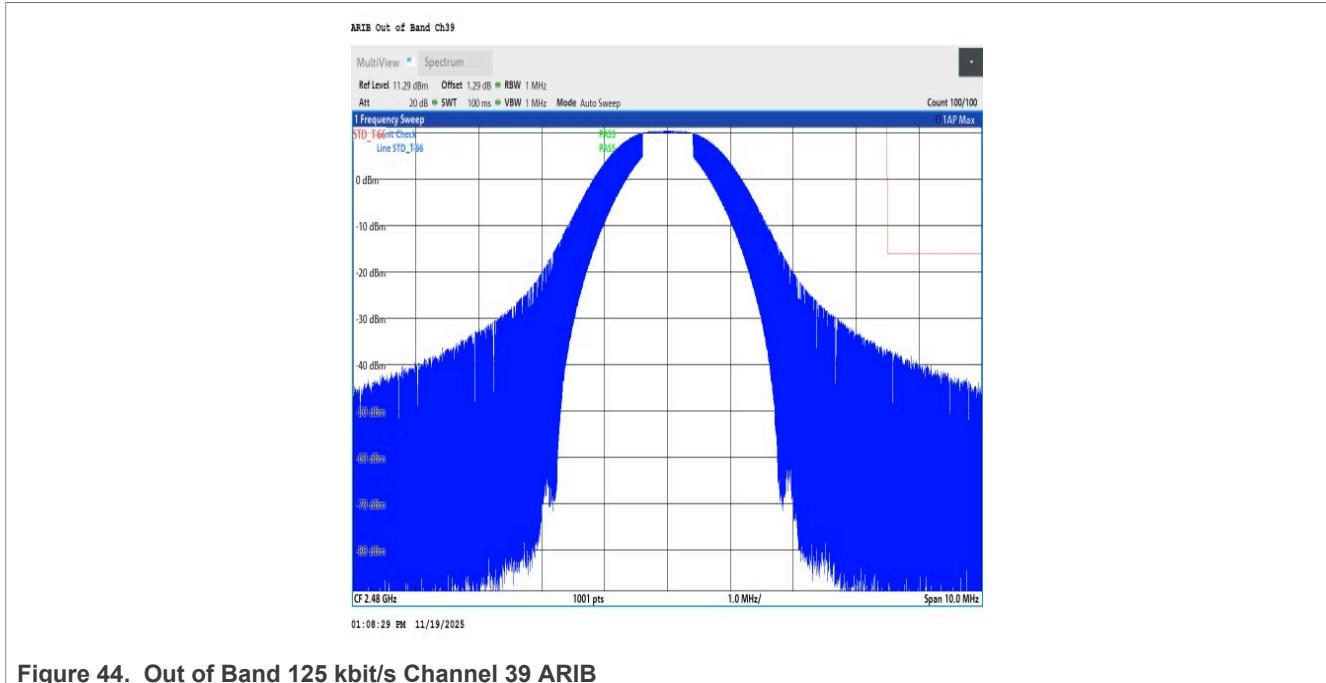


Figure 44. Out of Band 125 kbit/s Channel 39 ARIB

Conclusion:

- The FRDM-MCXW72 mostly passes the ARIB limit. The output power level may be lowered to pass the 2 Mbit/s standard, depending on the board used.
- There is a 20.75 dB margin below the limit.

2.3.1.12.9 Conclusion

- The FRDM-MCXW72 mostly passes the ARIB limit. The output power level may be lowered to pass the 2 Mbit/s standard, depending on the board used.
- There is a 20.75 dB margin below the limit.

2.3.1.13 Maximum TX output power

A CMW equipment is used to measure the PER at the maximum TX output power.

The application flashed on the board is HCI Black Box (`hci_bb`).

Test method:

- Test setup N2 is used. See [Figure 4](#).
- Criterion: PER < 30.8 % with 1500 packets
- Bluetooth LE Channels under test: 37 (2.402 GHz), 17 (2.440 GHz), and 39 (2.480 GHz)

Table 19. Bluetooth LE 1 Mbit/s (maximum TX output power)

Bluetooth LE Channel	Power Type	Measured (dBm)	Lower Limit (dBm)	Upper Limit (dBm)	Status
37	Average	10.25	-20.0	20.0	Pass
	Peak	10.67	None	13.72	Pass
17	Average	10.25	-20.0	20.0	Pass
	Peak	10.7	None	13.58	Pass

Table 19. Bluetooth LE 1 Mbit/s (maximum TX output power)...continued

Bluetooth LE Channel	Power Type	Measured (dBm)	Lower Limit (dBm)	Upper Limit (dBm)	Status
39	Average	10.06	-20.0	20.0	Pass
	Peak	10.5	None	13.35	Pass

Result

Conclusion: The FRDM-MCXW72 passes the BLE BV-01-C test.

2.3.1.14 Bluetooth LE TX output spectrum

A CMW equipment is used to measure the adjacent channel power.

The application flashed on the board is HCI Black Box (`hci_bb`).

Test method:

- [Test setup N2](#) is used.
- Bluetooth LE Channels under test:
 - Channel 2 (2408 MHz),
 - Channel 17 (2.440 GHz), and
 - Channel 35 (2476 MHz).

2.3.1.14.1 Tx output spectrum (1 Mbit/s)

This section describes the results of TX ouput spectrum at 1 Mbit/s for channels 2, 17, and 35.

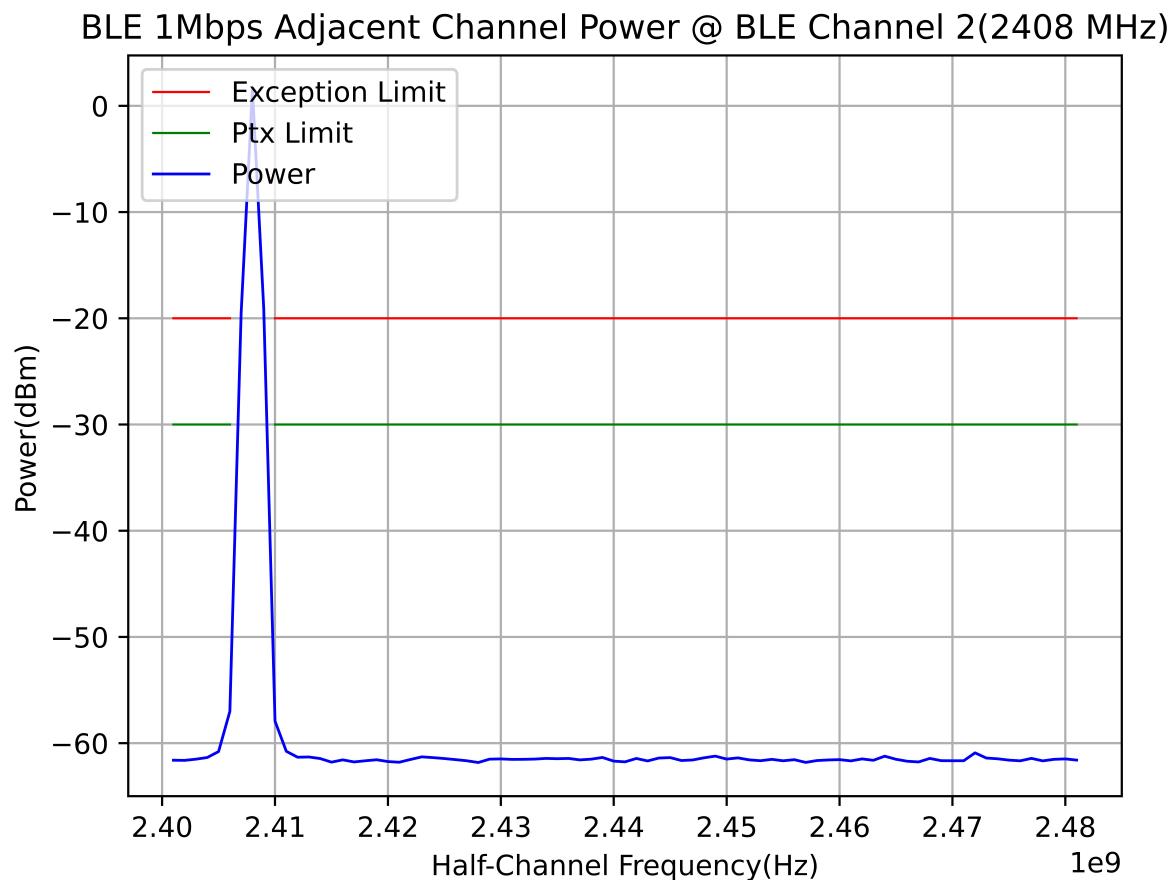


Figure 45. Bluetooth LE TX Output Spectrum Channel 2, 1 Mbit/s

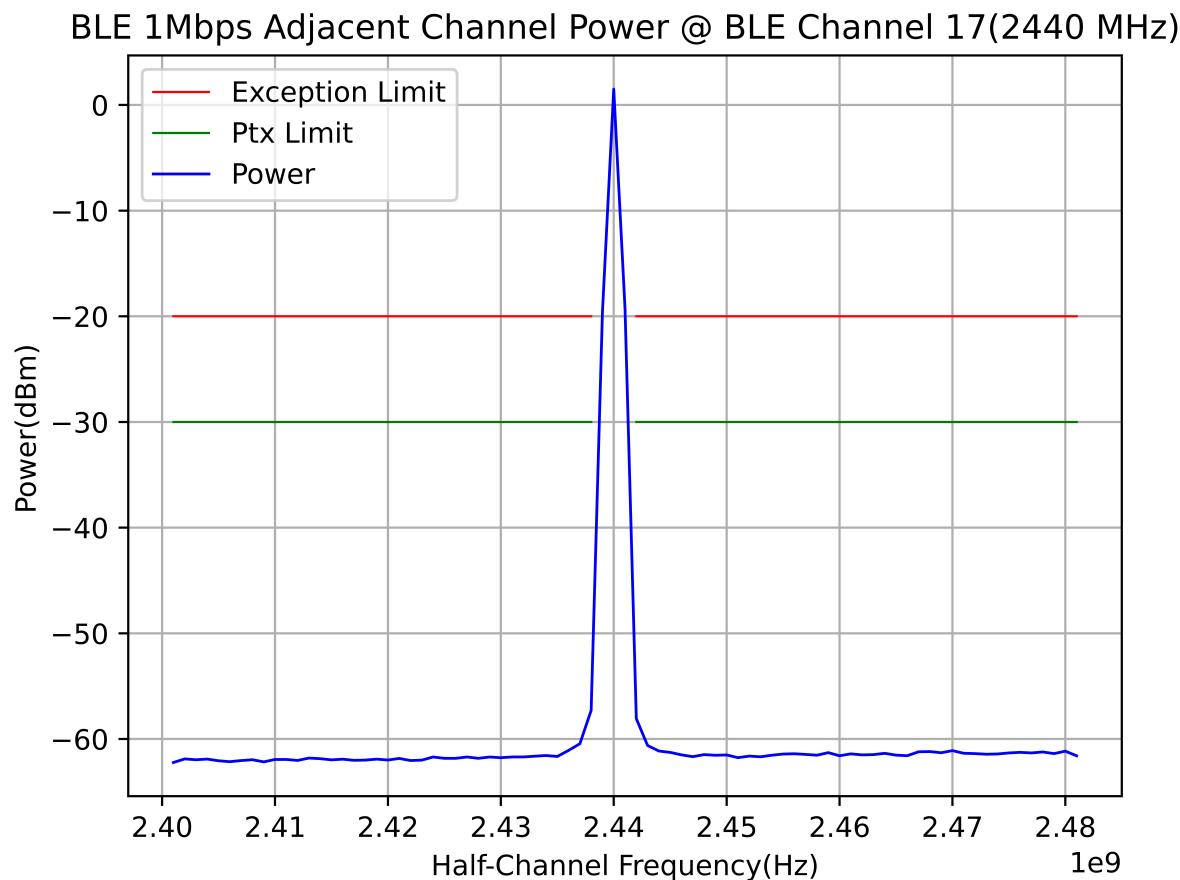


Figure 46. Bluetooth LE TX Output Spectrum Channel 17, 1 Mbit/s

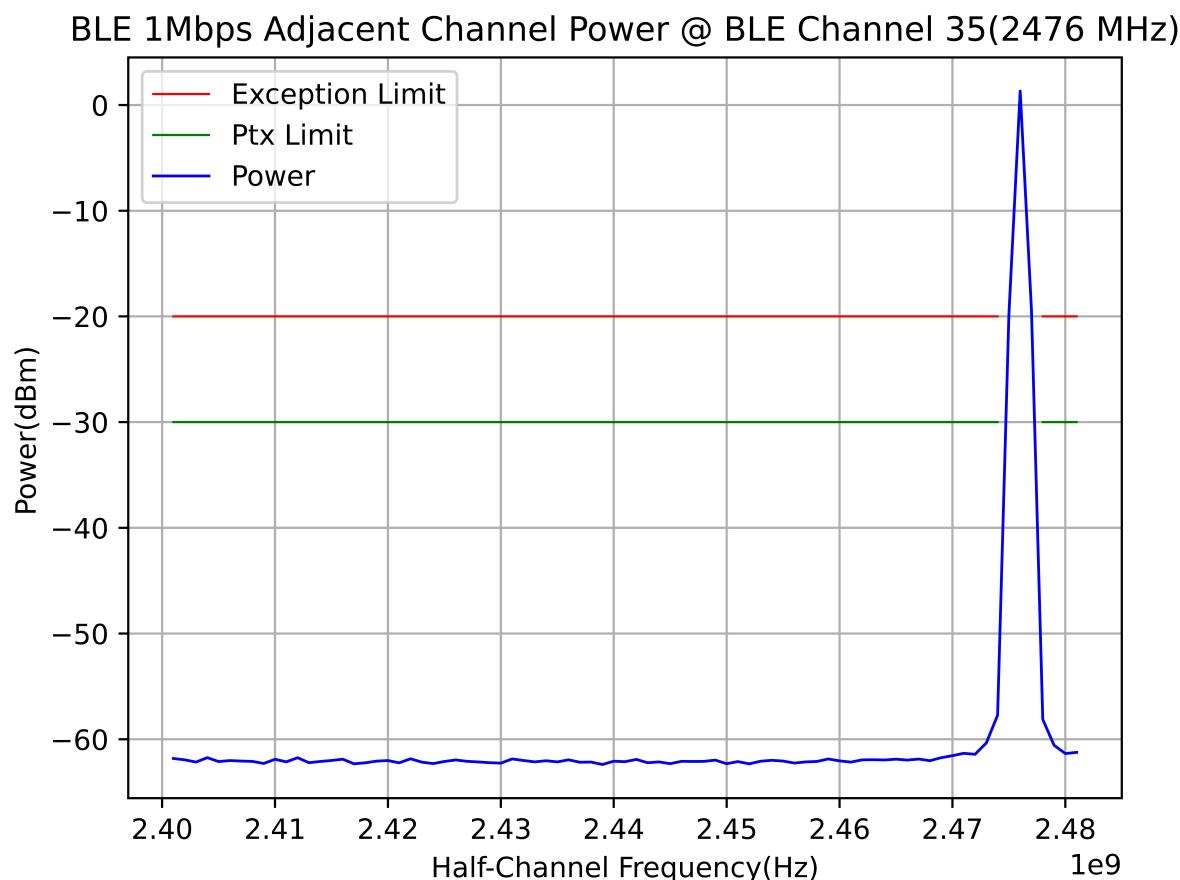


Figure 47. Bluetooth LE TX Output Spectrum Channel 35, 1 Mbit/s

2.3.1.14.2 Tx ouput spectrum (2 Mbit/s)

This section describes the results of TX ouput spectrum at 2 Mbit/s for channels 2, 17, and 35.

Result:

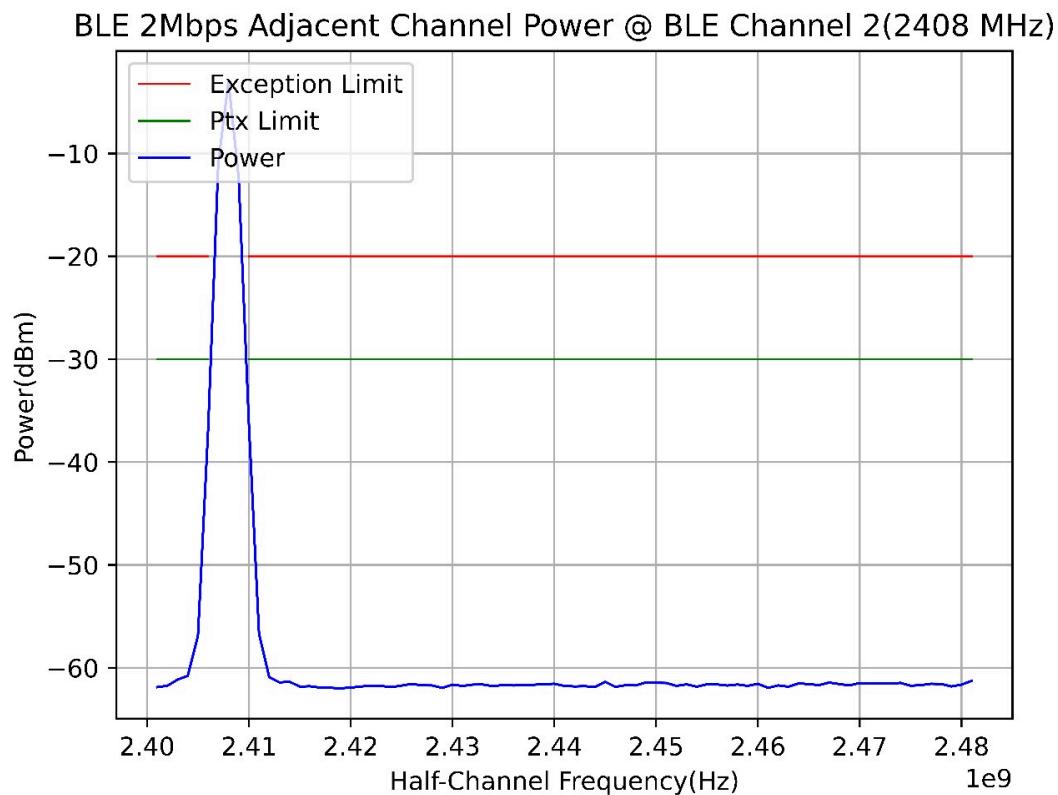


Figure 48. Channel 2, 2 Mbit/s

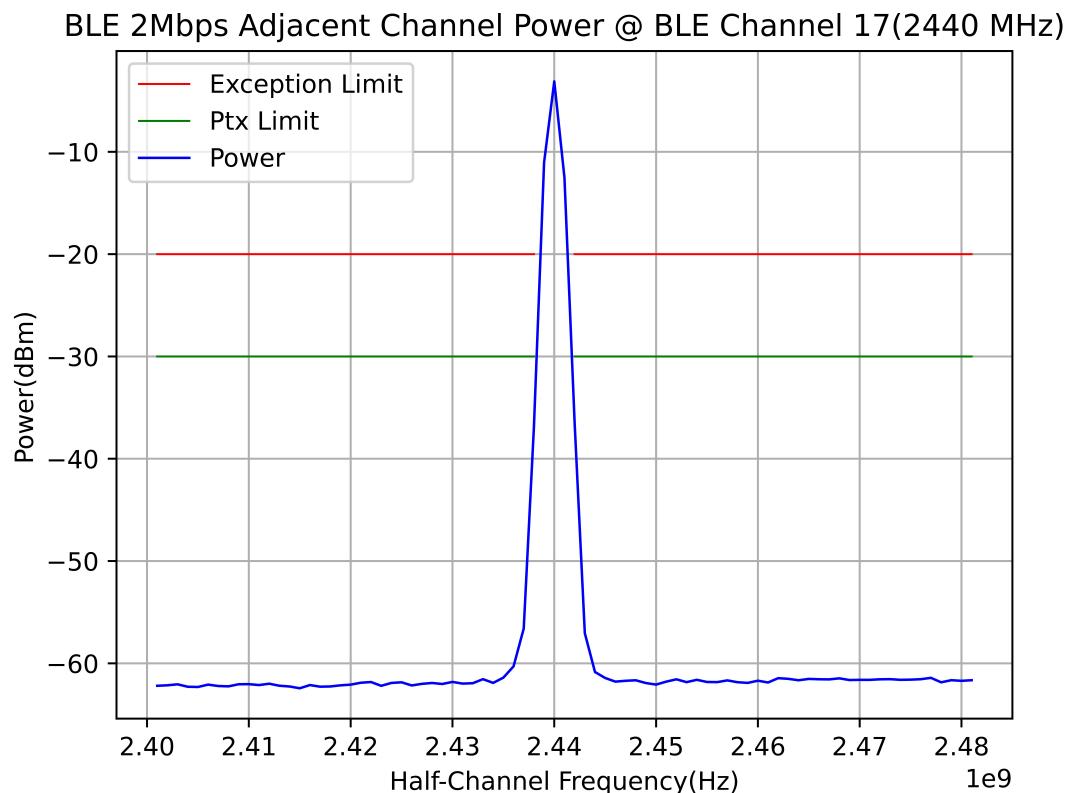


Figure 49. Channel 17, 2 Mbit/s



Figure 50. Channel 35, 2 Mbit/s

2.3.1.15 Modulation characteristics

A CMW equipment is used to measure the frequency deviation df1 and df2.

The application flashed on the board is: HCI Black Box (`hci_bb`).

Test method:

- [Test setup N2](#) is used.
- Bluetooth LE Channels under test: Channel 37 (2.402 GHz), Channel 17 (2.402 GHz), and Channel 39 (2.480 GHz)

Result:

Table 20. Modulation characteristics at 1 Mbit/s

Bluetooth LE Channel	Frequency Deviation Type	Measured	Lower Limit	Upper Limit	Status
37	df1 Average (kHz)	253.16	225.0	275.0	Pass
	df2 99.9% (kHz)	212.6	185.0	None	Pass
	df2 Average / df1 Average	0.84	0.8	None	Pass
17	df1 Average (kHz)	246.92	225.0	275.0	Pass
	df2 99.9% (kHz)	210.4	185.0	None	Pass

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Table 20. Modulation characteristics at 1 Mbit/s...continued

Bluetooth LE Channel	Frequency Deviation Type	Measured	Lower Limit	Upper Limit	Status
	df2 Average / df1 Average	0.85	0.8	<i>None</i>	Pass
39	df1 Average (kHz)	252.75	225.0	275.0	Pass
	df2 99.9% (kHz)	210.9	185.0	<i>None</i>	Pass
	df2 Average / df1 Average	0.83	0.8	<i>None</i>	Pass

Table 21. Modulation characteristics at 2 Mbit/s

Bluetooth LE Channel	Frequency Deviation Type	Measured	Lower Limit	Upper Limit	Status
37	df1 Average (kHz)	508.54	450.0	550.0	Pass
	df2 99.9% (kHz)	418.8	370.0	<i>None</i>	Pass
	df2 Average / df1 Average	0.82	0.8	<i>None</i>	Pass
17	df1 Average (kHz)	508.91	450.0	550.0	Pass
	df2 99.9% (kHz)	420.6	370.0	<i>None</i>	Pass
	df2 Average / df1 Average	0.83	0.8	<i>None</i>	Pass
39	df1 Average (kHz)	510.65	450.0	550.0	Pass
	df2 99.9% (kHz)	423.6	370.0	<i>None</i>	Pass
	df2 Average / df1 Average	0.83	0.8	<i>None</i>	Pass

Table 22. Modulation characteristics at LE coded (S8)

Bluetooth LE Channel	Frequency Deviation Type	Measured	Lower Limit	Upper Limit	Status
37	df1 Average (kHz)	253.16	225.0	275.0	Pass
	df1 99.9% (kHz)	237.02	185.0	<i>None</i>	Pass
17	df1 Average (kHz)	253.4	225.0	275.0	Pass
	df1 99.9% (kHz)	236.66	185.0	<i>None</i>	Pass
39	df1 Average (kHz)	252.96	225.0	275.0	Pass
	df1 99.9% (kHz)	240.26	185.0	<i>None</i>	Pass

Conclusion: The FRDM-MCXW72 passes the Modulation Characteristics test.

2.3.1.16 Carrier frequency offset and drift

A CMW equipment is used to measure the frequency deviation df1 and df2. The application flashed on the board is HCI Black Box (`hci_bb`).

Test method:

- [Test setup N2](#) is used.
- Bluetooth LE Channels under test: 37 (2.402 GHz), Channel 17 (2.402 GHz), and Channel 39 (2.480 GHz)

Result:

Table 23. Carrier frequency offset and drift at 1 Mbit/s

1 Mbit/s Bluetooth LE Channel	Measure Type	Measured	Lower Limit	Upper Limit	Status
37	Frequency Accuracy (kHz)	-2800.37	-150000	150000	Pass
	Frequency Drift (kHz)	1495.98	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	1088.74	-20000	20000	Pass
	Frequency Offset (kHz)	-2800.37	-150000	150000	Pass
	Initial Frequency Drift (kHz)	1057.13	-23000	23000	Pass
17	Frequency Accuracy (kHz)	-2921.74	-150000	150000	Pass
	Frequency Drift (kHz)	1500.33	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	-1077.86	-20000	20000	Pass
	Frequency Offset (kHz)	-2921.74	-150000	150000	Pass
	Initial Frequency Drift (kHz)	-684.97	-23000	23000	Pass
39	Frequency Accuracy (kHz)	-2982.84	-150000	150000	Pass
	Frequency Drift (kHz)	1584.04	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	-1302.68	-20000	20000	Pass
	Frequency Offset (kHz)	-2982.84	-150000	150000	Pass
	Initial Frequency Drift (kHz)	623.72	-23000	23000	Pass

Table 24. Carrier frequency offset and drift at 2 Mbit/s

2 Mbit/s Bluetooth LE Channel	Measure Type	Measured	Lower Limit	Upper Limit	Status
37	Frequency Accuracy (kHz)	-3174.7	-150000	150000	Pass
	Frequency Drift (kHz)	2077.59	-50000	50000	Pass

Table 24. Carrier frequency offset and drift at 2 Mbit/s...continued

2 Mbit/s Bluetooth LE Channel	Measure Type	Measured	Lower Limit	Upper Limit	Status
	Max Drift Rate (kHz/ 50 µs)	-1062.4	-20000	20000	Pass
	Frequency Offset (kHz)	-3174.7	-150000	150000	Pass
	Initial Frequency Drift (kHz)	978.33	-13300	13300	Pass
17	Frequency Accuracy (kHz)	-3109.45	-150000	150000	Pass
	Frequency Drift (kHz)	1759.33	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	1176.6	-20000	20000	Pass
	Frequency Offset (kHz)	-3109.45	-150000	150000	Pass
	Initial Frequency Drift (kHz)	1018.21	-13300	13300	Pass
39	Frequency Accuracy (kHz)	-2489.63	-150000	150000	Pass
	Frequency Drift (kHz)	1292.63	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	1519.39	-20000	20000	Pass
	Frequency Offset (kHz)	-3120.96	-150000	150000	Pass
	Initial Frequency Drift (kHz)	-1249.8	-13300	13300	Pass

Table 25. 500 kbit/s Bluetooth LE Channel, Carrier frequency offset and drift at LR (S=2)

500 kbit/s Bluetooth LE Channel	Measure Type	Measured	Lower Limit	Upper Limit	Status
37	Frequency Accuracy (kHz)	-1858.59	-150000	150000	Pass
	Frequency Drift (kHz)	-684.12	-50000	50000	Pass
	Max Drift Rate (kHz/50 µs)	-684.12	-19200	19200	Pass
	Frequency Offset (kHz)	-2157.18	-150000	150000	Pass
17	Frequency Accuracy (kHz)	-1936.05	-150000	150000	Pass
	Frequency Drift (kHz)	-641.89	-50000	50000	Pass
	Max Drift Rate (kHz/50 µs)	-492.77	-19200	19200	Pass
	Frequency Offset (kHz)	-2161.47	-150000	150000	Pass

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Table 25. 500 kbit/s Bluetooth LE Channel, Carrier frequency offset and drift at LR (S=2)...continued

500 kbit/s Bluetooth LE Channel	Measure Type	Measured	Lower Limit	Upper Limit	Status
39	Frequency Accuracy (kHz)	-1938.59	-150000	150000	Pass
	Frequency Drift (kHz)	-826.35	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	-409.86	-19200	19200	Pass
	Frequency Offset (kHz)	-2317.61	-150000	150000	Pass

Table 26. 125 kbps Bluetooth LE Channel, Carrier frequency offset and drift at LR (S=8)

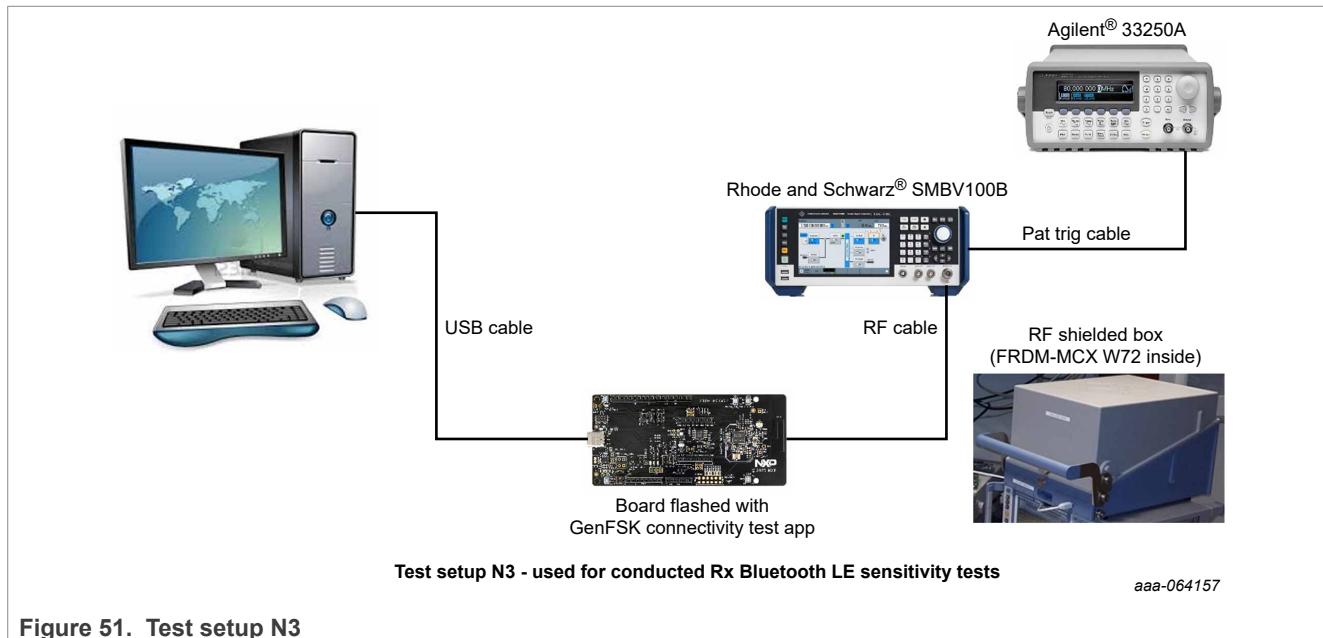
125 kbps Bluetooth LE Channel	Measure Type	Measured	Lower Limit	Upper Limit	Status
37	Frequency Accuracy (kHz)	-1929.82	-150000	150000	Pass
	Frequency Drift (kHz)	-1067.78	-50000	50000	Pass
	Max Drift Rate (kHz/50 µs)	1190.99	-19200	19200	Pass
	Frequency Offset (kHz)	-2711.16	-150000	150000	Pass
17	Frequency Accuracy (kHz)	-1853.29	-150000	150000	Pass
	Frequency Drift (kHz)	-1171.79	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	-1020.2	-19200	19200	Pass
	Frequency Offset (kHz)	-2516.3	-150000	150000	Pass
39	Frequency Accuracy (kHz)	-1901.81	-150000	150000	Pass
	Frequency Drift (kHz)	-896.04	-50000	50000	Pass
	Max Drift Rate (kHz/50µs)	993.97	-19200	19200	Pass
	Frequency Offset (kHz)	-2556.55	-150000	150000	Pass

Conclusion:

The FRDM-MCXW72 passes the Carrier Frequency Offset and Drift test.

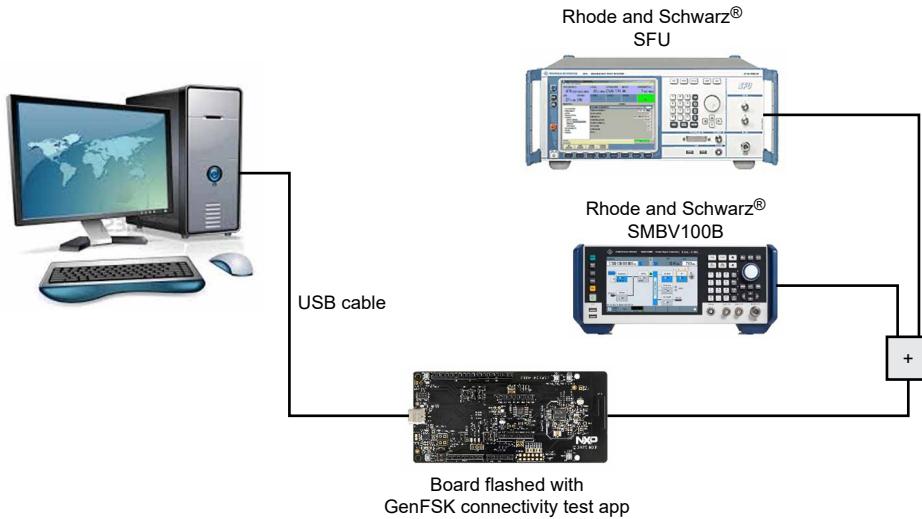
2.3.2 RX tests

This section describes the test setup, method, and results for Bluetooth LE applications reception tests.


2.3.2.1 Test setups for Rx Bluetooth LE tests

This section explains various test setup methods to conduct Rx Bluetooth LE tests such as, sensitivity, interference rejection, spurious, and intermodulation.

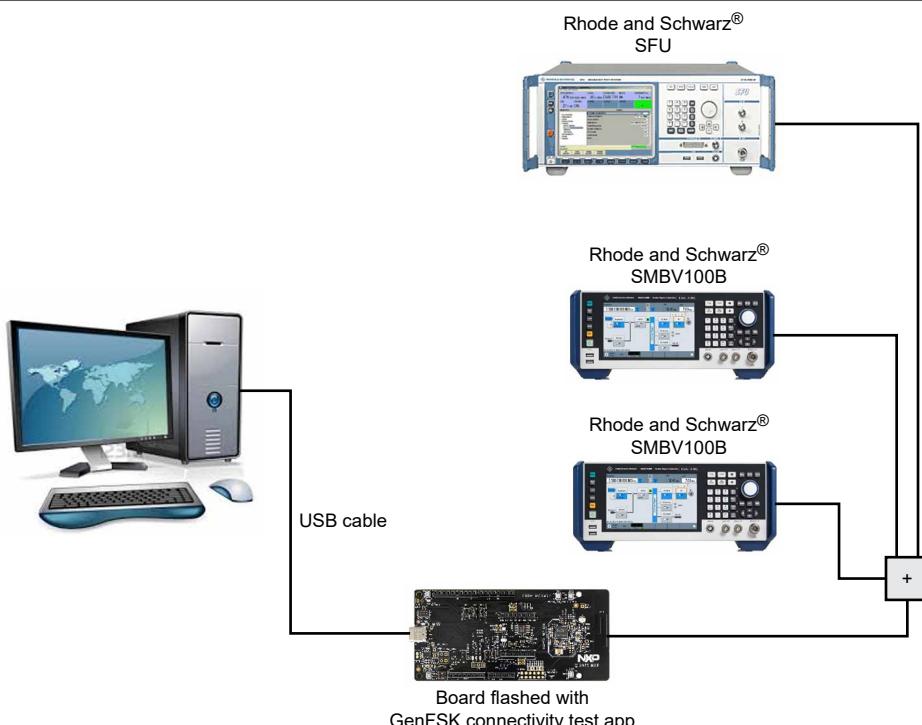
Note: In addition to Test setups N3, N4, and N5, N1 is also used for conducted Rx BLE Spurious tests. See See [Figure 3](#).


2.3.2.1.1 Test setup N3

[Figure 51](#) shows the test setup to conduct Rx Bluetooth LE sensitivity tests.

2.3.2.1.2 Test setup N4

[Figure 52](#) shows the test setup to conduct Rx Bluetooth LE sensitivity tests.


Test setup N4 - used for conducted Rx Bluetooth LE interference rejection tests

aaa-064158

Figure 52. Test setup N4

2.3.2.1.3 Test setup N5

Figure 53 shows the test setup to conduct Rx Bluetooth LE intermodulation tests.

Test setup N5 - used for conducted Rx Bluetooth LE intermodulation tests

aaa-064159

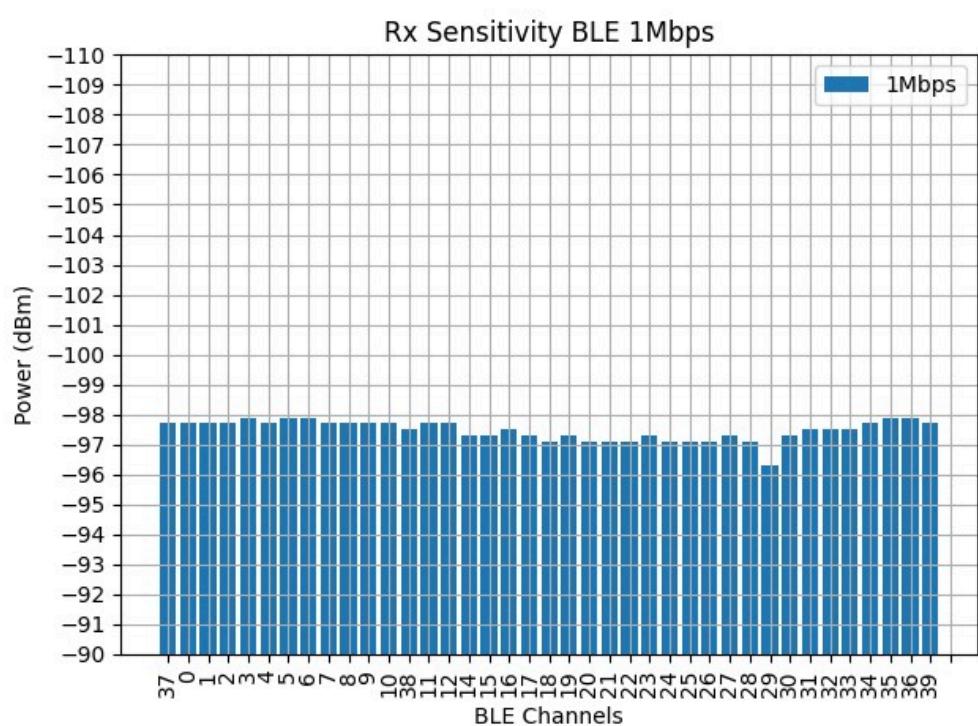
Figure 53. Test setup N5

2.3.2.2 Sensitivity

This section describes the test results for the Bluetooth LE receiver sensitivity tests for 1 Mbit/s, 2 Mbit/s, LR (S=2) and LR (S=8).

2.3.2.2.1 Test method

To remain immune to the external parasitic signals, FRDM-MCXW72 is put into an RF shielded box.


- Test setup N3 is used. See [Figure 51](#).

Note: A desense is observed on XTAL (32 MHz) Harmonics.

The ARB generator is used to generate 1500 Bluetooth LE packets. The Serial terminal window is used to control the module.

- Four modes are checked: 1 Mbit/s, 2 Mbit/s, LR (S=2) and LR (S=8)
- Set it to the Bluetooth LE Channel 37 (2.402 GHz).
- The connection is automatically established and the PER (Packet Error Rate) is measured.
- Decrease the level of the SFU at the RF input of the module until PER = 30.8 %.
- Repeat it up to Channel 39.

2.3.2.2.2 Results

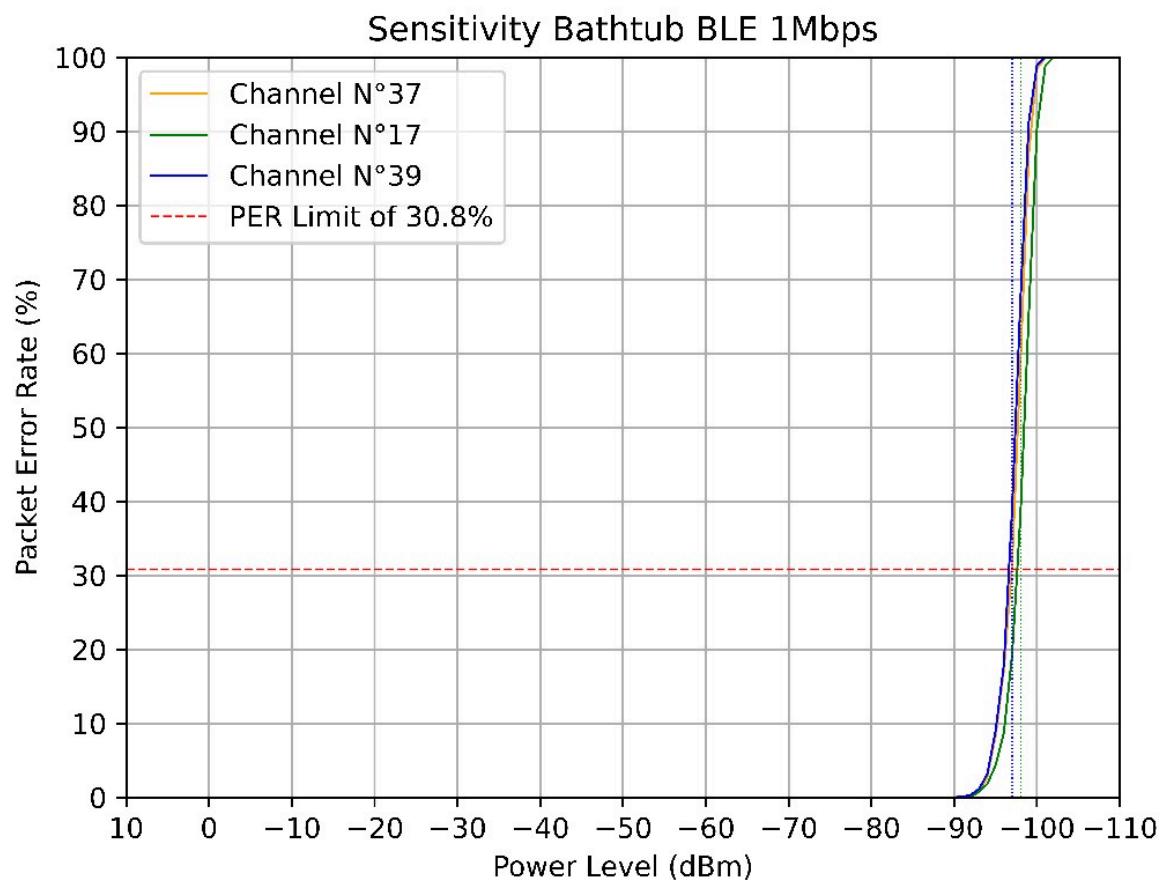


Figure 55. Sensitivity bathtub result – 1 Mbit/s

Note: A desense can be commonly observed on the frequencies of the board XTAL harmonics. FRDM-MCXW72 shows an average value of -97.47 dBm (1 Mbit/s) at SMA connector.

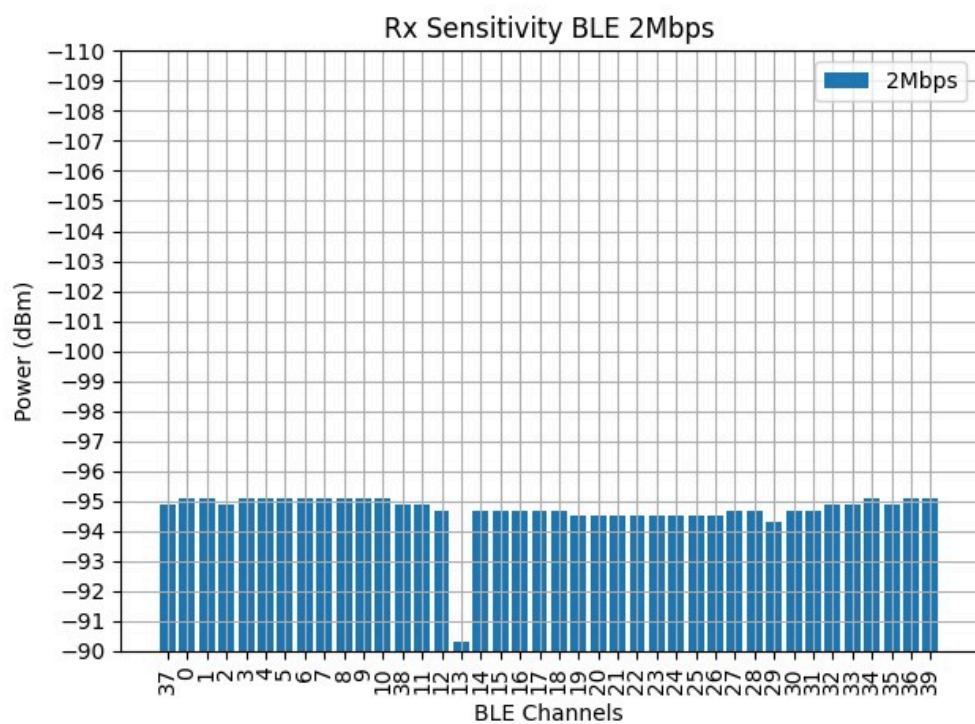


Figure 56. Sensitivity result – 2 Mbit/s

Sensitivity result – 2 Mbit/s

- The best sensitivity is on channel 0: -95.1 dBm
- The lowest sensitivity is on channel 13: -90.3 dBm
- Delta over channels: 4.8 dB

Note: A desense is commonly observed on the frequencies of the board XTAL harmonics. FRDM-MCX W72 shows an average value of -94.705 dBm (2 Mbit/s) at the SMA connector.

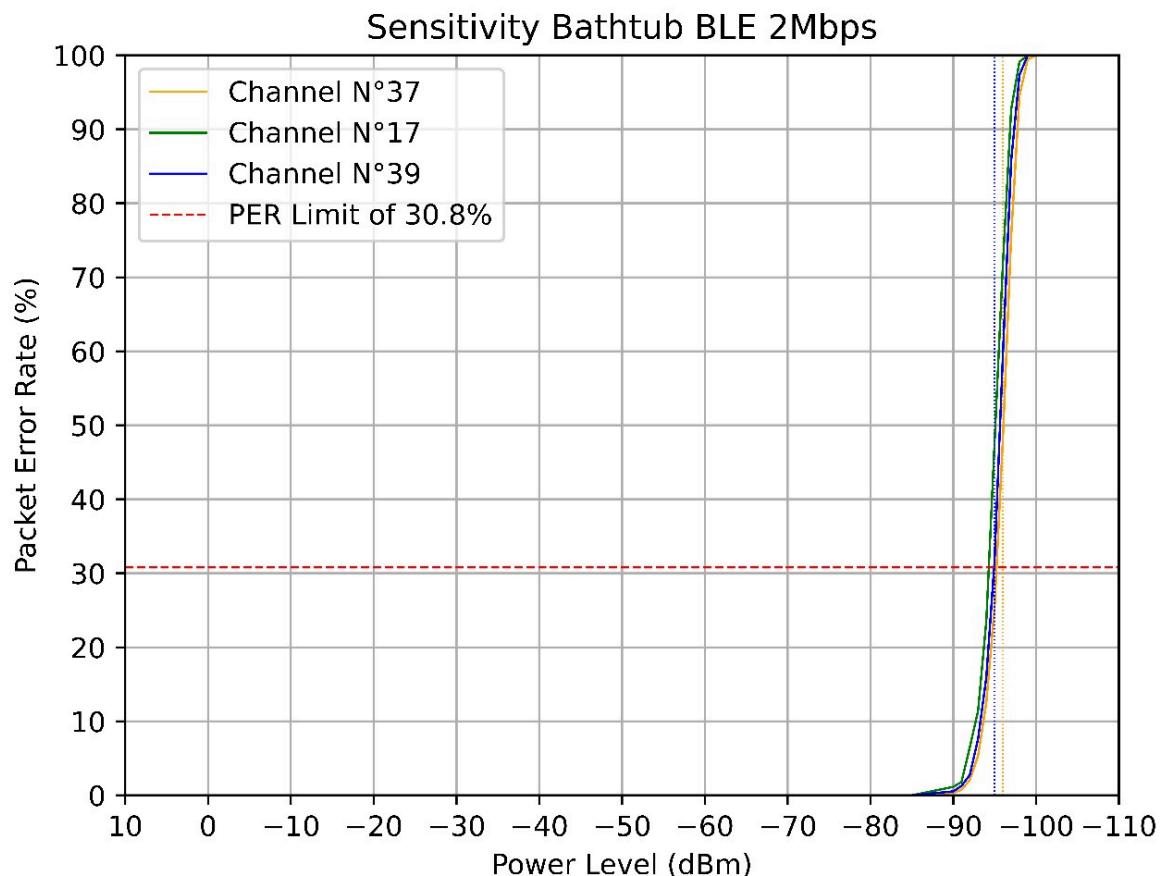


Figure 57. Sensitivity Bathtub result – 2 Mbit/s

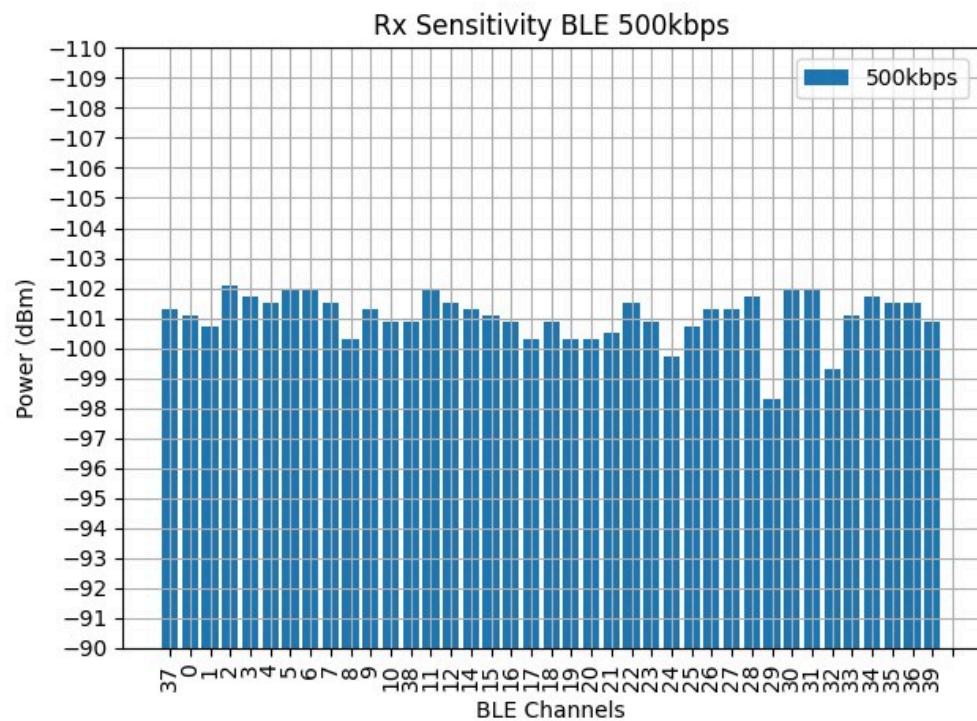


Figure 58. Sensitivity result – LR (S=2) – 500 kbit/s

Sensitivity result – LR (S=2)

- The best sensitivity is on channel 2: -102.1 dBm
- The lowest sensitivity is on channel 29: -98.3 dBm
- Delta over channels: 3.8 dB

Note: A desense is commonly observed on the frequencies of the board XTAL harmonics. FRDM-MCX W72 shows an average value of -101.05897435897435 dBm (500 kbit/s) at the SMA connector.

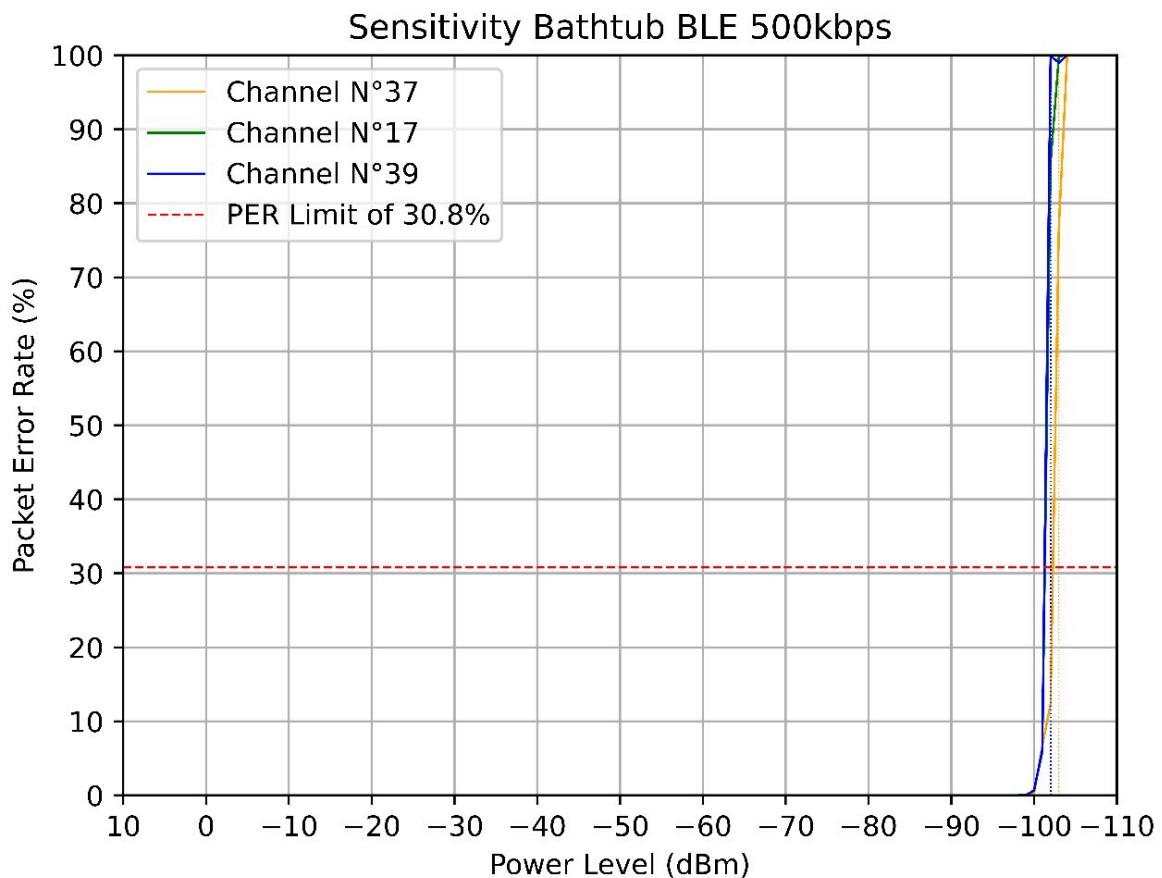


Figure 59. Sensitivity bathtub result – LR (S=2) (Bluetooth LE 500 kbit/s)

Sensitivity result – LR (S=8), 125 kbit/s

- The best sensitivity is on channel 0: -106.4 dBm.
- The lowest sensitivity is on channel 29: -102.2 dBm.
- Delta over channels: 4.2 dB

Note: A desense is commonly observed on the frequencies of the board XTAL harmonics FRDM-MCX W72 shows an average value of -105.6 dBm (125 Kbit/s) at SMA connector.

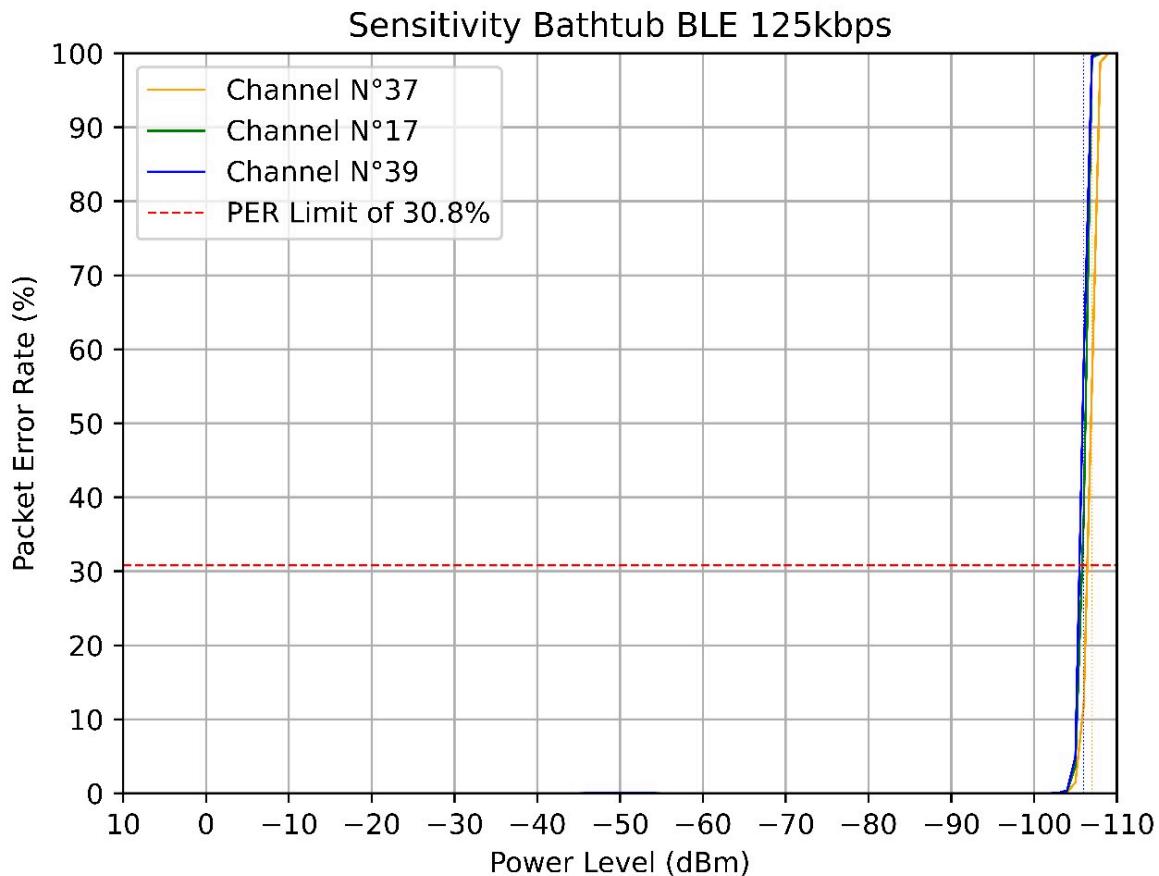


Figure 60. Sensitivity bathtub Bluetooth LE (125 kbit/s) result – LR (S=8)

2.3.2.2.3 Conclusion

FRDM-MCXW72 withstands an average sensitivity level of:

- -97.46923076923076 dBm @1 Mbit/s
- -94.705 dBm@2 Mbit/s
- -101.05897435897435 dBm@LRS2
- -105.8 dBm@LRS8

2.3.2.3 Receiver maximum input level

This section describes the test results for the Bluetooth LE receiver maximum input level test.

The application flashed on the board: HCI Black Box (`hci_bb`).

Test method:

- The same test setup as with the sensitivity test is used but with a CMW270 instrument replacing the combination of RF generator and ARB generator.
- The signal level is increased up to the PER = 30.8 % with 1500 packets

Results:

Table 27. Maximum input power – 1 Mbit/s

Bluetooth LE Channel	RF Level (dBm):	Packet Error Rate (%):	Lower Limit (%)	Upper Limit(%)	Status
37	0	10.0	None	0.0	30.8
17	0	10.0	None	0.0	30.8
39	0	10.0	None	0.0	30.8

Table 28. Maximum input power – 2 Mbit/s

Bluetooth LE Channel	RF Level (dBm):	Packet Error Rate (%):	Lower Limit (%)	Upper Limit (%)	Status
37	0	10.0	None	0.0	30.8
17	0	10.0	None	0.0	30.8
39	0	10.0	None	0.0	30.8

Conclusion:

- The maximum input level is superior to 0.0 dBm. The results are limited by the maximum output power of the equipment.

2.3.2.4 RX spurious

The application flashed on the board is the GenFSK Connectivity test app.

Test method

- Use the Test Method N1. See [Figure 3](#).
- Set the radio parameters of the board to:
- Receiver mode, frequency: channel 18
- Set the analyzer to:
 - Reference amplitude = - 20 dBm
 - Trace = max hold
 - Detector = max peak
 - Start/stop frequency: 30 MHz / 1 GHz
 - RBW = 100 kHz, VBW = 300 kHz
- Then, set the start/stop frequency: 1 GHz / 12.5 GHz
 - RBW = 1 MHz, VBW = 3 MHz

2.3.2.4.1 RX spurious Bluetooth LE results

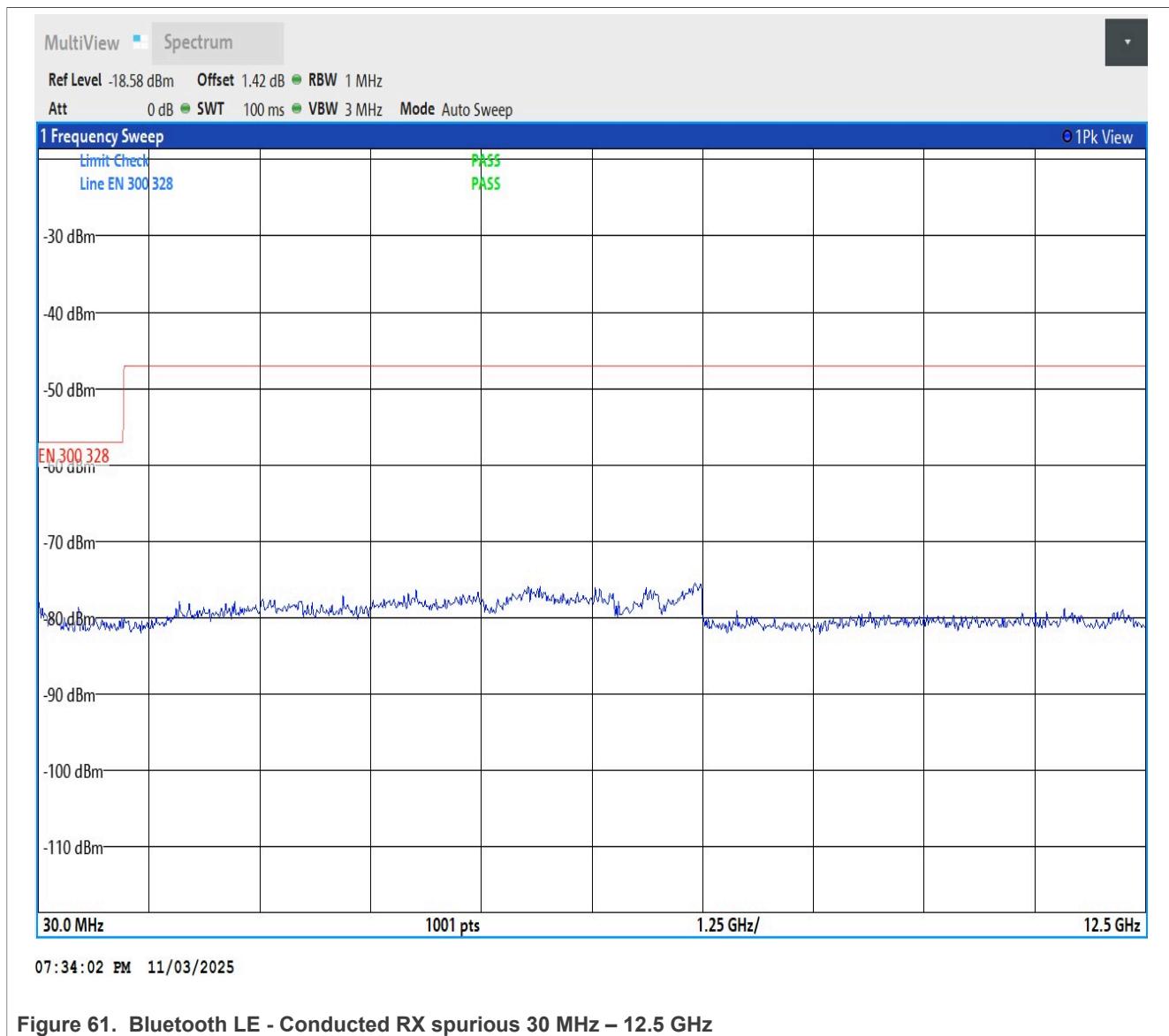


Figure 61. Bluetooth LE - Conducted RX spurious 30 MHz – 12.5 GHz

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion

- The FRDM-MCXW72 passes the ETSI limit.
- There is 21.02 dB margin to the limit.

2.3.2.5 Interferer results in Bluetooth

2.3.2.5.1 Receiver interference rejection performances

Adjacent, alternate, and co-channel (AAC) rejection

This section describes the adjacent, alternate, and co-channel rejection at Bluetooth LE 1 Mbit/s, 2 Mbit/s, 500 kbit/s (LR S=2), and 125 kbit/s (LR S=8).

The interferers are at the adjacent and alternate channels (+/-1 MHz, +/-2 MHz, +/-3 MHz) or co-channel.

The test is performed with only one interfering unmodulated signal at a time.

Test method:

- [Test setup N4](#) is used. See [Figure 52](#).
- Criterion: PER < 30.8 % with 1500 packets.
- The wanted signal is set to -67 dBm; the interferer is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: Channel 1 (2.406 GHz), Channel 17 (2.440 GHz), and Channel 35 (2.476 GHz)

2.3.2.5.1.1 AAC Bluetooth LE @1 Mbit/s

This section describes the Adjacent, alternate, and co-channel rejection (AAC) results for 1 Mbit/s.

Results

Table 29. Channel 1, 2405 MHz results

Parameter	Channel 1, Wanted frequency: 2405 MHz							
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co- channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)	
Interferer frequency (MHz)	2403	2404	2405	2406	2407	2408	2409	
Maximum Interferer level (dBm)	-10.0	-20.0	-23.0	-64.5	-72.0	-64.5	-19.0	
Maximum Interferer level (C/I dB)	-57.0	-47.0	-44.0	-2.5	5.0	-2.5	-48.0	
Bluetooth Low Energy 5.x limit (C/I limit)	15	-17	-27	-27	-27	-27	-17	
Margin (dB):	30.0	20.0	27.0	17.5	16.0	17.5	31.0	

Table 30. Channel 17, 2440 MHz

Parameter	Channel 17, Wanted frequency: 2440 MHz							
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co- channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)	

Table 30. Channel 17, 2440 MHz...continued

Parameter	Channel 17, Wanted frequency: 2440 MHz						
Interferer frequency (MHz)	2437	2438	2439	2440	2441	2442	2443
Maximum Interferer level (dBm)	-11.0	-9.0	-9.0	-19.0	-23.0	-64.5	-72.0
Maximum Interferer level (C/I dB)	-56.0	-58.0	-58.0	-48.0	-44.0	-2.5	5.0
Bluetooth Low Energy 5.x limit (C/I limit)	15	-17	-27	-27	-27	-27	-17
Margin (dB)	29.0	31.0	31.0	21.0	27.0	17.5	16.0

Table 31. Channel 35, 2476 MHz

Wanted	Channel 35, Wanted frequency: 2476 MHz						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz)	2473	2474	2475	2476	2477	2478	2479
Maximum Interferer level (dBm)	-64.5	-18.0	-10.0	-8.0	-9.0	-18.0	-23.0
Maximum Interferer level (C/I dB)	-2.5	-49.0	-57.0	-59.0	-58.0	-49.0	-44.0
Bluetooth Low Energy 5.x limit (C/I limit)	15	-17	-27	-27	-27	-27	-17
Margin (dB)	17.5	32.0	30.0	32.0	31.0	22.0	27.0

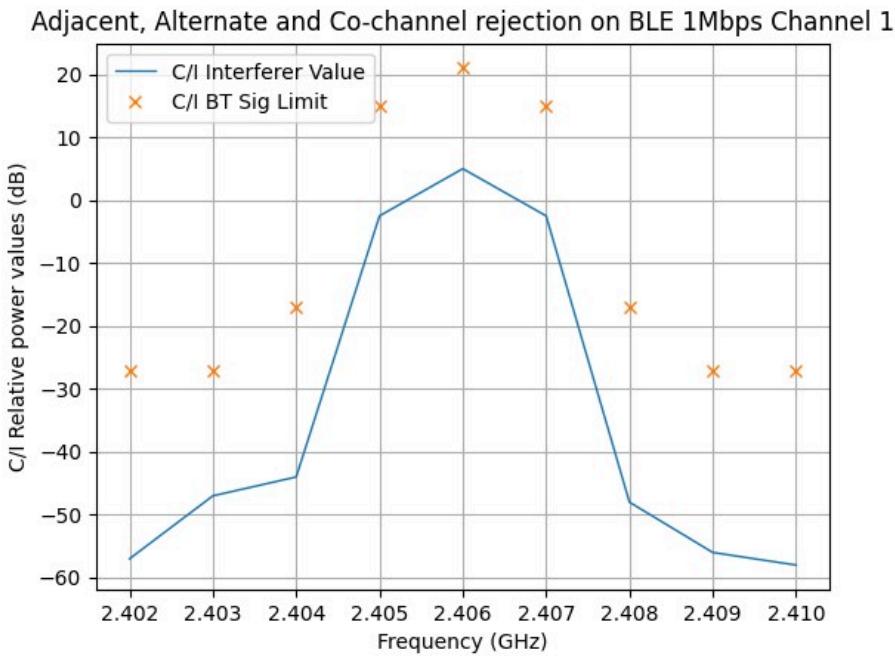


Figure 62. Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Mbit/s, Channel 1

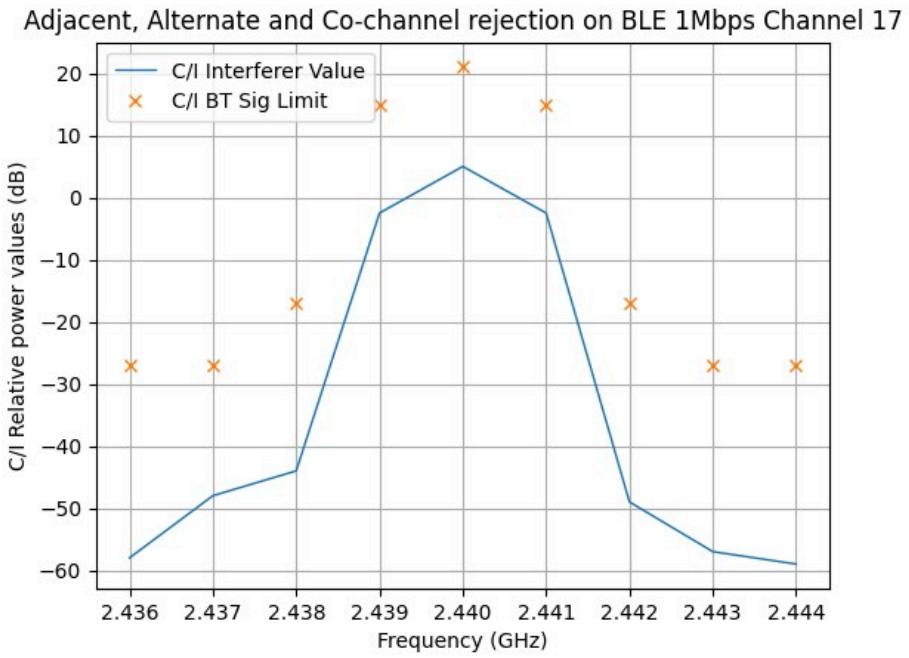


Figure 63. Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Mbit/s, Channel 17

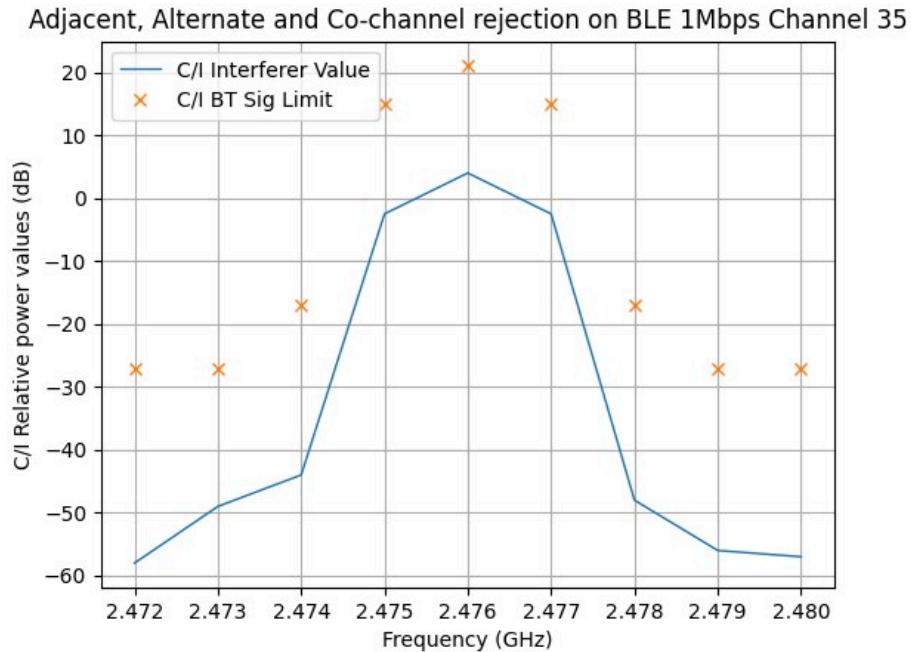


Figure 64. Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Mbit/s, Channel 35

Conclusion: The FRDM-MCXW72 board passes the Bluetooth LE certification for this test with a worst margin of 16.0.

2.3.2.5.1.2 AAC Bluetooth LE @ 2 Mbit/s

This section describes the results for AAC Bluetooth LE @2 Mbit/s (LR S=2).

Table 32. AAC Bluetooth LE @2 Mbit/s (LR S=2) Channel 1

Wanted	Channel 1							
Wanted frequency (MHz)	2406							
Interferer	N-6 MHz (Adjacent)	N-4 MHz (Adjacent)	N-2 MHz (Adjacent)	N (Co-channel)	N+2 MHz (Adjacent)	N+4 MHz (Adjacent)	N+6 MHz (Adjacent)	
Interferer frequency (MHz)	2400	2402	2404	2406	2408	2410	2412	
Maximum Interferer level (dBm)	-9.0	-11.0	-29.0	-58.0	-73.0	-59.0	-18.0	
Maximum Interferer level (C/I dB)	-58.0	-56.0	-38.0	-9.0	6.0	-8.0	-49.0	
Bluetooth LE 5.x limit (C/I limit)	15	-17	-27	-27	-27	-27	-17	
Margin (dB)	31.0	29.0	21.0	24.0	15.0	23.0	32.0	

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Table 33. AAC Bluetooth LE @2 Mbit/s (LR S=2) Channel 17

Wanted	Channel 17						
Wanted frequency (MHz)	2440						
Interferer	N-6 MHz (Adjacent)	N-4 MHz (Adjacent)	N-2 MHz (Adjacent)	N (Co-channel)	N+2 MHz (Adjacent)	N+4 MHz (Adjacent)	N+6 MHz (Adjacent)
Interferer frequency (MHz)	2434	2436	2438	2440	2442	2444	2446
Maximum Interferer level (dBm):	-11.0	-9.0	-9.0	-10.0	-28.0	-58.0	-73.0
Maximum Interferer level (C/I dB):	-56.0	-58.0	-58.0	-57.0	-39.0	-9.0	6.0
Bluetooth LE 5.x limit (C/I limit):	15	-17	-27	-27	-27	-27	-17
Margin (dB)	29.0	31.0	31.0	30.0	22.0	24.0	15.0

Table 34. AAC Bluetooth LE @2 Mbit/s (LR S=2), Channel 35

Wanted	Channel 35						
Wanted frequency (MHz)	2476						
Interferer:	N-6 MHz (Adjacent)	N-4 MHz (Adjacent)	N-2 MHz (Adjacent)	N (Co-channel)	N+2 MHz (Adjacent)	N+4 MHz (Adjacent)	N+6 MHz (Adjacent)
Interferer frequency (MHz):	2470	2472	2474	2476	2478	2480	2482
Maximum Interferer level (dBm):	-59.0	-16.0	-9.0	-7.0	-7.0	-10.0	-28.0
Maximum Interferer level (C/I dB):	-8.0	-51.0	-58.0	-60.0	-60.0	-57.0	-39.0
Bluetooth LE 5.x limit (C/I limit):	15	-17	-27	-27	-27	-27	-17
Margin (dB):	23.0	34.0	31.0	33.0	33.0	30.0	22.0

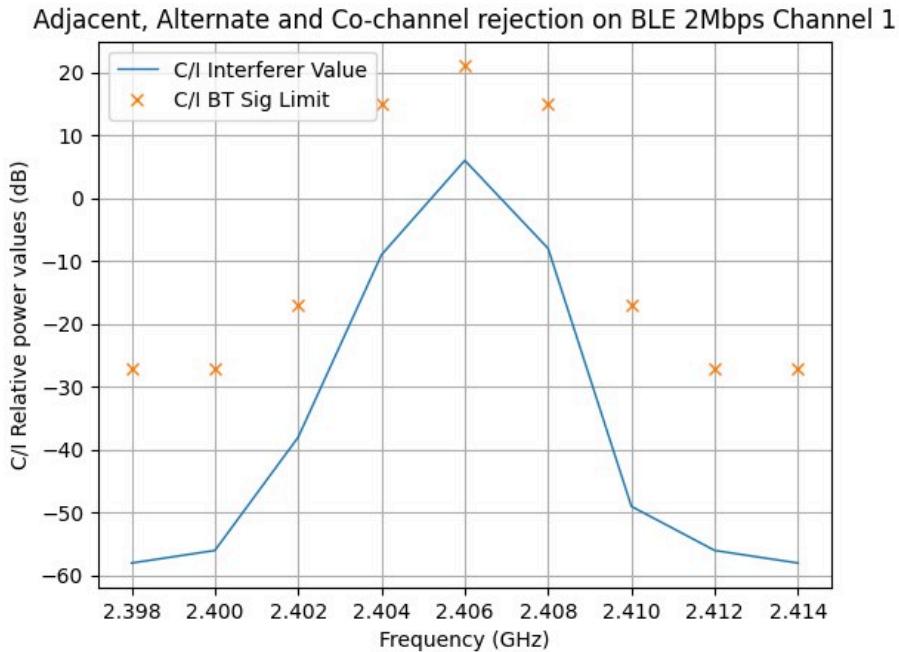


Figure 65. AAC on Bluetooth LE 2 Mbit/s Channel 1

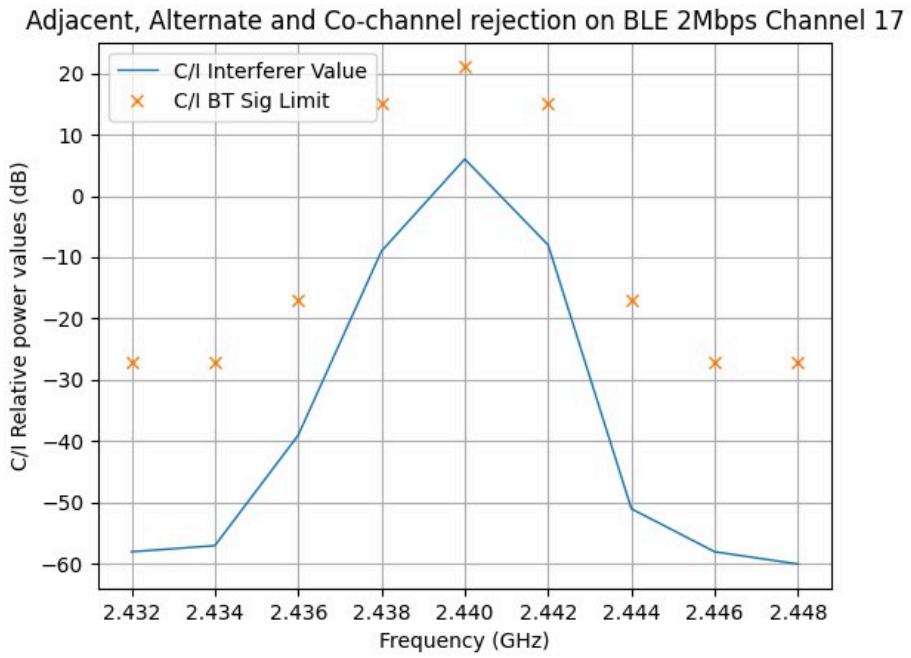


Figure 66. AAC on Bluetooth LE 2 Mbit/s Channel 17

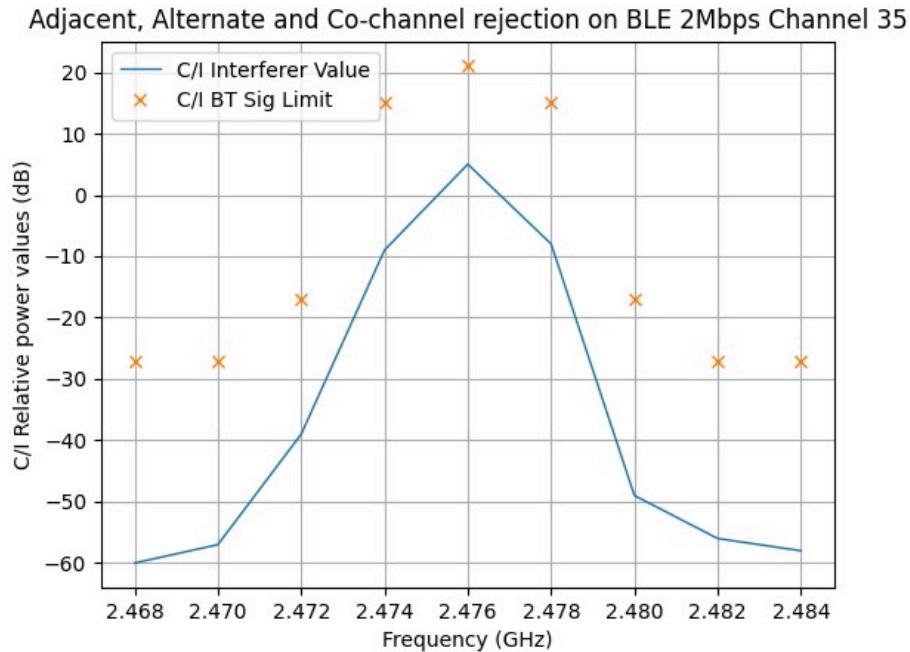


Figure 67. AAC on Bluetooth LE 2 Mbit/s Channel 35

Conclusion: The FRDM-MCXW72 board passes the Bluetooth LE certification for this test with a worst margin of 16.0.

2.3.2.5.1.3 AAC Bluetooth LE @ 500 kbit/s (LR S=2)

This section describes the results for AAC Bluetooth LE @500 kbit/s (LR S=2).

Table 35. AAC, Bluetooth LE @500 kbit/s (LR S=2), Channel 1

Wanted	Channel 1							
Wanted frequency (MHz)	2406							
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)	
Interferer frequency (MHz)	2403	2404	2405	2406	2407	2408	2409	
Maximum Interferer level (dBm)	-10.0	-16.0	-24.0	-61.0	-74.0	-61.0	-17.0	
Maximum Interferer level (C/I dB)	-62.0	-56.0	-48.0	-11.0	2.0	-11.0	-55.0	
Bluetooth LE 5.x limit (C/I limit)	11	-17	-27	-27	-27	-27	-17	
Margin (dB)	35.0	29.0	31.0	22.0	15.0	22.0	38.0	

Table 36. AAC, Bluetooth LE @500 kbit/s (LR S=2), Channel 17

Wanted	Channel 17						
Wanted frequency (MHz)	2440						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz)	2437	2438	2439	2440	2441	2442	2443
Maximum Interferer level (dBm)	-11.0	-11.0	-9.0	-15.0	-23.0	-61.0	-74.0
Maximum Interferer level (C/I dB)	-61.0	-61.0	-63.0	-57.0	-49.0	-11.0	2.0
Bluetooth LE 5.x limit (C/I limit)	11	-17	-27	-27	-27	-27	-17
Margin (dB)	34.0	34.0	36.0	30.0	32.0	22.0	15.0

Table 37. AAC, Bluetooth LE @500 kbit/s (LR S=2), Channel 35

Wanted	Channel 35						
Wanted frequency (MHz)	2476						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz)	2473	2474	2475	2476	2477	2478	2479
Maximum Interferer level (dBm)	-61.0	-17.0	-10.0	-8.0	-10.0	-15.0	-24.0
Maximum Interferer level (C/I dB)	-11.0	-55.0	-62.0	-64.0	-62.0	-57.0	-48.0
Bluetooth LE 5.x limit (C/I limit)	11	-17	-27	-27	-27	-27	-17
Margin (dB)	22.0	38.0	35.0	37.0	35.0	30.0	31.0

Adjacent, alternate and co-channel rejection Bluetooth LE @500 Kbit/s (LR S=2)

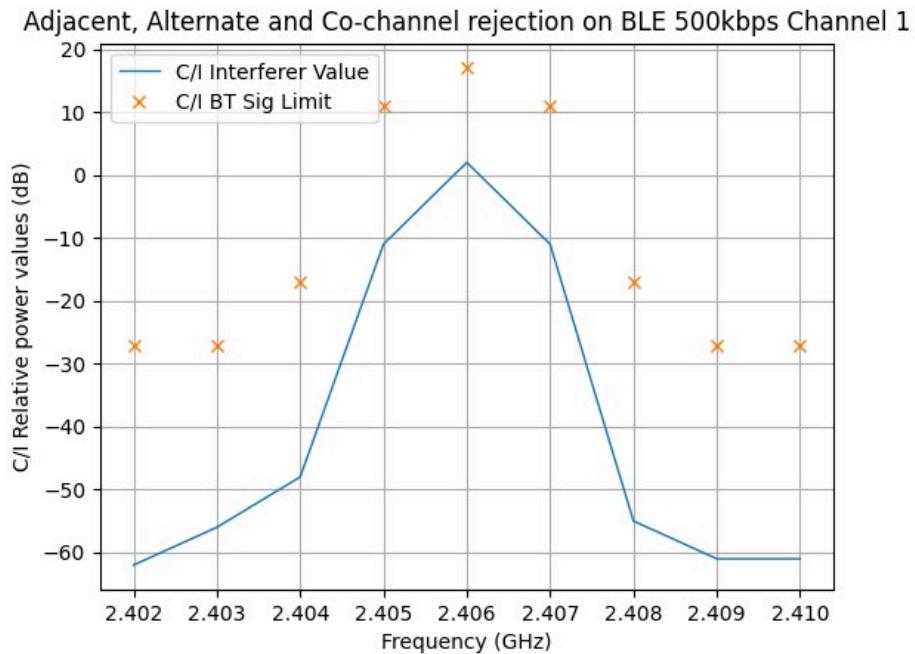


Figure 68. AAC on Bluetooth LE 500 kbit/s Channel 1

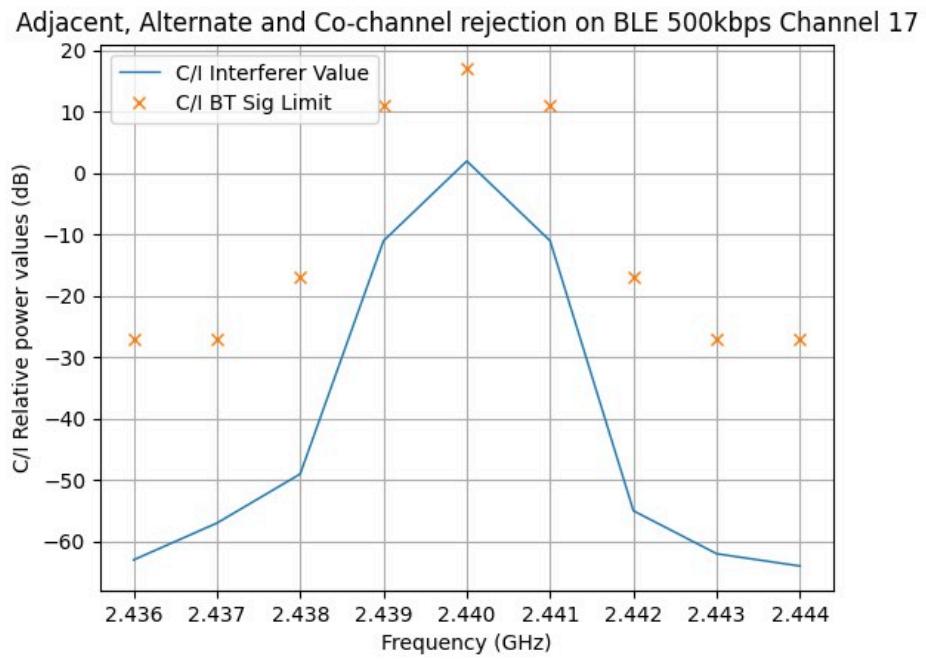


Figure 69. AAC on Bluetooth LE 500 kbit/s Channel 17

Adjacent, Alternate and Co-channel rejection on BLE 500kbps Channel 35

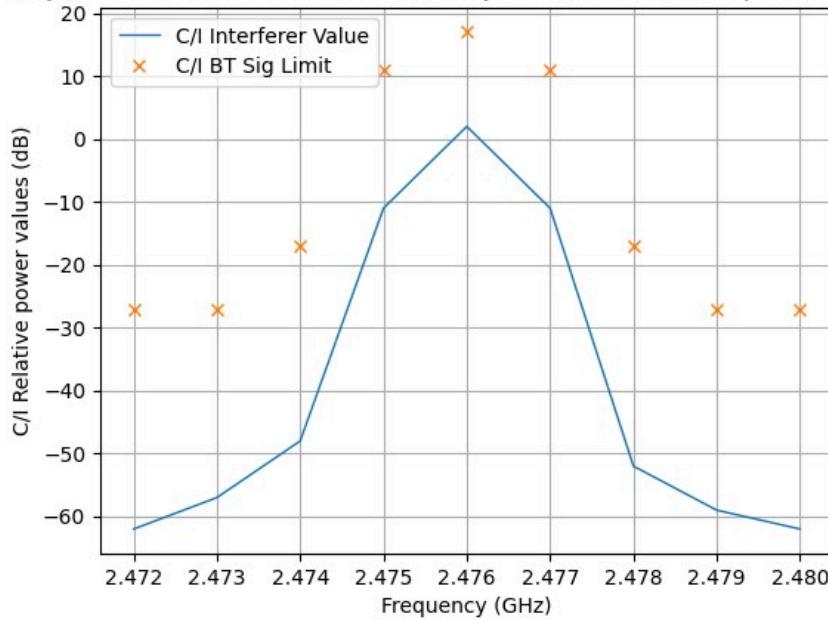


Figure 70. AAC on Bluetooth LE 500 kbit/s Channel 35

Conclusion: The FRDM-MCXW72 board passes the Bluetooth LE certification for this test with a worst margin of 16.0.

2.3.2.5.1.4 AAC Bluetooth LE @ 125 kbit/s (LR S=8)

This section describes the results for AAC Bluetooth LE @125 kbit/s (LR S=8).

Table 38. AAC Bluetooth LE @ 125 kbit/s (LR S=8), Channel 1

Wanted	Channel 1							
Wanted frequency (MHz)	2406							
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)	
Interferer frequency (MHz):	2403	2404	2405	2406	2407	2408	2409	
Maximum Interferer level (dBm):	-12.0	-23.0	-28.0	-68.0	-79.0	-69.0	-24.0	
Maximum Interferer level (C/I dB):	-67.0	-56.0	-51.0	-11.0	0.0	-10.0	-55.0	
Bluetooth LE 5.x	-36	-36	15	-36	12	6	-26	

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Table 38. AAC Bluetooth LE @ 125 kbit/s (LR S=8), Channel 1...continued

Wanted	Channel 1						
limit (C/I limit):							
Margin (dB):	31.0	20.0	25.0	17.0	12.0	16.0	29.0

Table 39. AAC Bluetooth LE @ 125 kbit/s (LR S=8), Channel 17

Wanted	Channel 17						
Wanted frequency (MHz):	2440						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz):	2437	2438	2439	2440	2441	2442	2443
Maximum Interferer level (dBm):	-14.0	-12.0	-12.0	-23.0	-28.0	-68.0	-81.0
Maximum Interferer level (C/I dB):	-65.0	-67.0	-67.0	-56.0	-51.0	-11.0	2.0
Bluetooth LE 5.x limit (C/I limit):	-36	-36	15	-36	12	6	-26
Margin (dB):	29.0	31.0	31.0	20.0	25.0	17.0	10.0

Table 40. AAC Bluetooth LE @ 125 kbit/s (LR S=8), Channel 35

Wanted	Channel 35						
Wanted frequency (MHz):	2476						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz):	2473	2474	2475	2476	2477	2478	2479
Maximum Interferer level (dBm):	-69.0	-23.0	-13.0	-12.0	-11.0	-22.0	-28.0
Maximum Interferer	-10.0	-56.0	-66.0	-67.0	-68.0	-57.0	-51.0

Table 40. AAC Bluetooth LE @ 125 kbit/s (LR S=8), Channel 35...continued

Wanted	Channel 35						
level (C/I dB):							
Bluetooth LE 5.x limit (C/I limit):	-36	-36	15	-36	12	6	-26
Margin (dB):	16.0	30.0	30.0	31.0	32.0	21.0	25.0

Adjacent, Alternate and Co-channel rejection on BLE 125kbps Channel 1

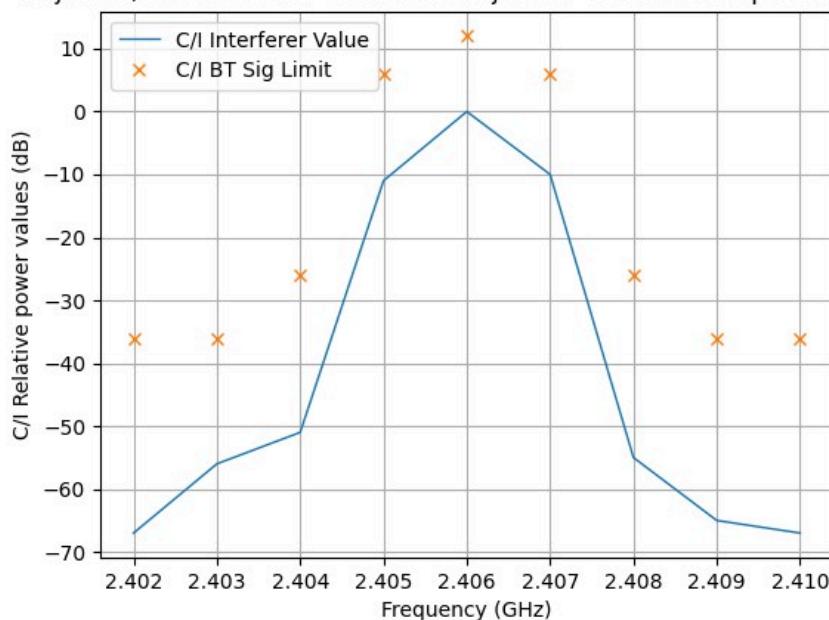


Figure 71. AAC on Bluetooth LE 125 kbit/s Channel 1

Adjacent, Alternate and Co-channel rejection on BLE 125kbps Channel 17

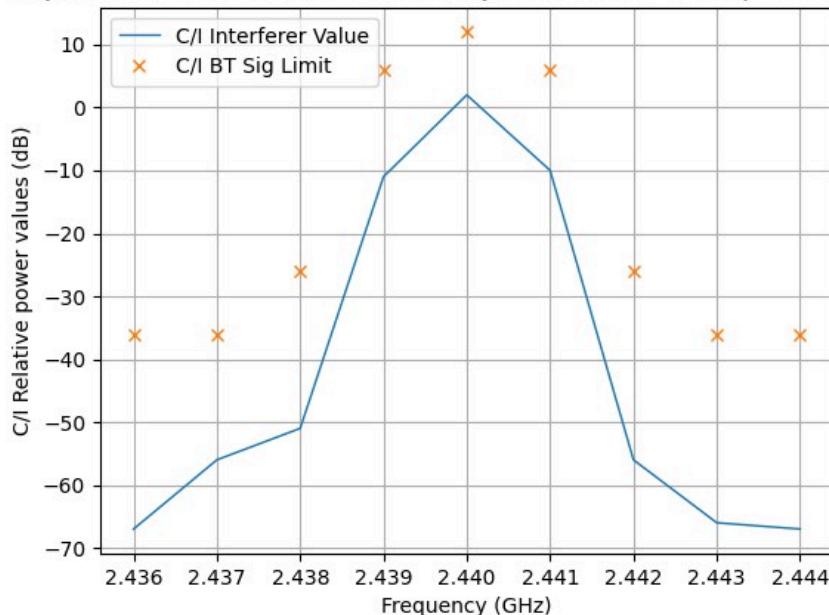


Figure 72. AAC on Bluetooth LE 125 kbit/s Channel 17

Adjacent, Alternate and Co-channel rejection on BLE 125kbps Channel 35

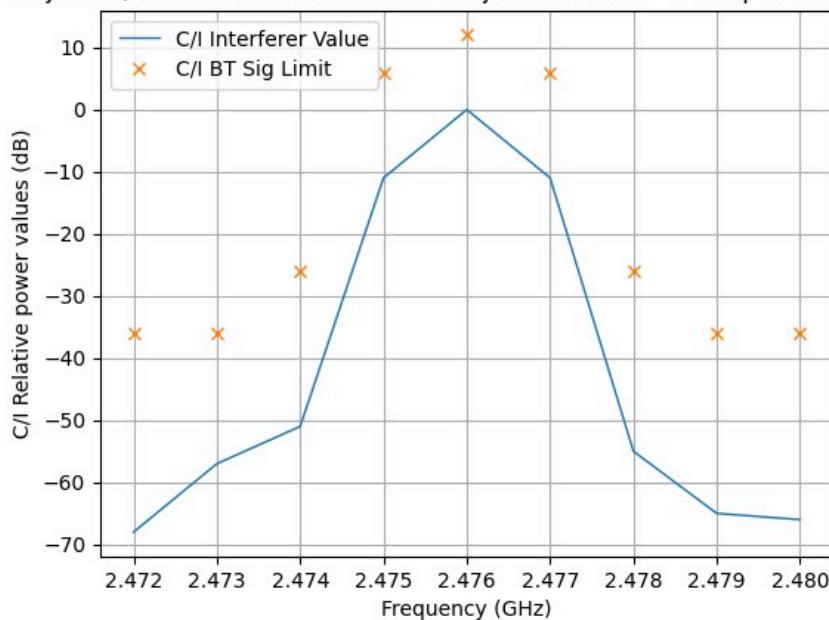


Figure 73. AAC on Bluetooth LE 125 kbit/s Channel 35

Conclusion

The FRDM-MCXW72 board passes the Bluetooth LE certification for this test with a worst margin of 16.0.

2.3.2.5.2 Receiver Blocking

The blocking interferers are located at the out of band channels depending on the receiver category.

2.3.2.5.2.1 Receiver category 1 - Bluetooth LE 1 Mbit/s

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.2.)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- For an interferer set at 2.380 GHz and 2.504 GHz, the wanted signal is set to the lowest value between $10\log(\text{OCBW}) - 133$ dBm and -68 dBm.

For an interferer set at 2.300 GHz, 2.330 GHz, 2.360 GHz, 2.524 GHz, 2.584 GHz, and 2.674 GHz, the wanted signal is set to the lowest value between $10\log(\text{OCBW}) - 139$ dBm and -74 dBm.

In both cases, the interferer power level is increased until the PER threshold is reached.

- Bluetooth LE Channels under test: 37 (2.402 GHz) and 39 (2.480 GHz).

Result

Table 41. Receiver Blocking (Out of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 37

Channel	37							
Frequency (MHz)	2402							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	4.2	6.5	4.6	2.8	5.1	6.3	6.2	5.6
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	38.2	40.5	38.6	36.8	39.1	40.3	40.2	39.6

Table 42. Receiver Blocking (Out of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 39

Channel	39							
Frequency (MHz)	2480							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Table 42. Receiver Blocking (Out of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 39...continued

Channel	39							
Maximum Interferer Level (dBm)	4.3	6.7	5.7	4.7	-9.8	5.9	5.9	5.7
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	38.3	40.7	39.7	38.7	24.2	39.9	39.9	39.7

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 1 test, there is a margin of 24.2 dB until the limit.

2.3.2.5.2.2 Receiver category 2 - Bluetooth LE 1 Mbit/s

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.3.)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- The wanted signal is set to the lowest value between -64 dBm and $10\log(OCBW) - 129$ dBm. The continuous waveform (CW) interferer is increased until the PER threshold is reached.
- Channels under test: Bluetooth LE Channel 37 (2.402 GHz) and Bluetooth LE Channel 39 (2.480 GHz).

Result:

Table 43. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 37

Channel	37			
Frequency (MHz)	2402			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	8.0	>10	8.6	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	42.0	44.0	42.6	44.0

Table 44. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 39

Channel	39			
Frequency (MHz)	2480			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz):	2300	2380	2504	2584

Table 44. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 39...continued

Channel	39			
Maximum Interferer Level (dBm)	8.6	>10	-8.9	9.8
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	42.6	44.0	25.1	43.8

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 2 test, there is a margin of 44.0 dB until the limit.

2.3.2.5.2.3 Receiver category 1 - Bluetooth LE 2 Mbit/s

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.2)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- For an interferer set at 2.380 GHz and 2.504 GHz, the wanted signal is set to the lowest value between $10\log(OCBW)-133$ dBm and -68 dBm.
- For an interferer set at 2.300 GHz, 2.330 GHz, 2.360 GHz, 2.524 GHz, 2.584 GHz and 2.674 GHz, the wanted signal is set to the lowest value between $10\log(OCBW) -139$ dBm and -74 dBm. In both cases, the interferer power level is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: 37 (2.402 GHz), and 39 (2.480 GHz)

Result:

Table 45. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 37

Channel	37							
Frequency (MHz)	2402							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	4.2	6.5	4.6	2.8	5.1	6.3	6.2	5.6
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin (dB)	38.2	40.5	38.6	36.8	39.1	40.3	40.2	39.6

Table 46. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 39

Channel	39							
Frequency (MHz)	2480							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	4.3	6.7	5.7	4.7	-9.8	5.9	5.9	5.7
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	38.3	40.7	39.7	38.7	24.2	39.9	39.9	39.7

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 1 test, there is a margin of 24.2 dB until the limit.

2.3.2.5.2.4 Receiver category 2 - Bluetooth LE 2 Mbit/s

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.3)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- The wanted signal is set to the lowest value between -64 dBm and $10\log(\text{OCBW}) - 129$ dBm. The continuous waveform (CW) interferer is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: 37 (2.402 GHz), and 39 (2.480 GHz).

Result:

Table 47. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 37

Channel	37			
Frequency (MHz)	2402			
Interferer Type:	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	5.2	7.7	6.3	7.5
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin (dB)	39.2	41.7	40.3	41.5

Table 48. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 39

Channel	Channel 39			
Frequency (MHz)	2480			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	5.5	8.1	-8.8	7.2
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	39.5	42.1	25.2	41.2

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 2 test, there is a margin of 42.1 dB until the limit.

2.3.2.5.2.5 Receiver category 1 - Bluetooth LE 500 kbit/s (LR S=2)

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.2.)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- For an interferer set at 2.380 GHz and 2.504 GHz, the wanted signal is set to the lowest value between 10log(OCBW) - 133 dBm and -68 dBm.
- For an interferer set at 2.300 GHz, 2.330 GHz, 2.360 GHz, 2.524 GHz, 2.584 GHz, and 2.674 GHz, the wanted signal is set to the lowest value between 10log(OCBW) -139 dBm and -74 dBm. In both cases, the interferer power level is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: 37 (2.402 GHz), and 39 (2.480 GHz)

Result:

Table 49. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 500 kbit/s (LR S=2), Channel 37

Channel	37								
Frequency (MHz)	2402								
Interferer Type	Low	Low	Low	Low	High	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674	
Maximum Interferer Level (dBm)	4.2	6.5	4.6	2.8	5.1	6.3	6.2	5.6	
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	38.2	40.5	38.6	36.8	39.1	40.3	40.2	39.6	

Table 50. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 500 kbit/s (LR S=2), Channel 39

Channel	39							
Frequency (MHz)	2480							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	4.3	6.7	5.7	4.7	-9.8	5.9	5.9	5.7
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	38.3	40.7	39.7	38.7	24.2	39.9	39.9	39.7

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 2 test, there is a margin of 44.0 dB until the limit.

2.3.2.5.2.6 Receiver category 2 - Bluetooth LE 500 kbit/s (LR S=2)

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.3)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- The wanted signal is set to the lowest value between -64 dBm and 10log(OCBW)-129 dBm; the continuous waveform (CW) interferer is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: 37 (2.402 GHz), and 39 (2.480 GHz).

Result: Receiver Blocking (Out of Band) rejection

Table 51. Receiver category 2 - Bluetooth LE 500 Kbit/s (LR S=2), Channel 37

Channel	37			
Frequency (MHz)	2402			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	44.0	44.0	44.0	44.0

Table 52. Receiver category 2 - Bluetooth LE 500 Kbit/s (LR S=2), Channel 39

Channel	39				
Frequency (MHz)	2480				
Interferer Type	Low	Low	High	High	
Interferer Frequency (MHz)	2300	2380	2504	2584	
Maximum Interferer Level (dBm)	>10	>10	>10	>10	
300.328 Lower limit (dBm)	-34	-34	-34	-34	
Margin(dB)	44.0	44.0	44.0	44.0	

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 2 test, there is a margin of 44.0 dB until the limit.

2.3.2.5.2.7 Receiver category 1 - Bluetooth LE 125 kbit/s (LR S=8)

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.2)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- For an interferer set at 2.380 GHz and 2.504 GHz, the wanted signal is set to the lowest value between 10log(OCBW)-133 dBm and -68 dBm.
- For an interferer set at 2.300 GHz, 2.330 GHz, 2.360 GHz, 2.524 GHz, 2.584 GHz and 2.674 GHz, the wanted signal is set to the lowest value between 10log(OCBW) -139 dBm and -74 dBm. In both cases, the interferer power level is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: 37 (2.402 GHz) and 39 (2.480 GHz).

Result: Receiver Blocking (Out Of Band) rejection

Table 53. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 125 Kbit/s (LR S=8), Channel 37

Channel	37						
Frequency (MHz)	2402						
Interferer Type	Low	Low	Low	Low	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584
Maximum Interferer Level (dBm)	4.2	6.5	4.6	2.8	5.1	6.3	6.2
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	38.2	40.5	38.6	36.8	39.1	40.3	40.2

Table 54. Receiver Blocking (Out Of Band) rejection - BLE-125 Kbit/s (LR S=8), Channel 39

Channel	39							
Frequency (MHz)	2480							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	4.3	6.7	5.7	4.7	-9.8	5.9	5.9	5.7
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin (dB)	38.3	40.7	39.7	38.7	24.2	39.9	39.9	39.7

Conclusion: The FRDM-MCX W72 passes the Receiver Blocking Category 1 test, there is a margin of 24.2 dB until the limit.

2.3.2.5.2.8 Receiver category 2 - Bluetooth LE 125 kbit/s (LR S=8)

The test is performed with only one interfering signal at a time. (Refer to ETSI 300.328 2.2.2 chapter 4.3.1.12.4.3.)

Test method:

- Test setup N4 is used. See [Figure 52](#).
- Criterion: PER < 10 %.
- The wanted signal is set to the lowest value between -64 dBm and $10\log(\text{OCBW}) - 129$ dBm; the continuous waveform (CW) interferer is increased until the PER threshold is reached.
- Bluetooth LE Channels under test: 37 (2.402 GHz) and 39 (2.480 GHz).

Result

Table 55. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 125 kbit/s (LR S=8)

Channel	37			
Frequency (MHz)	2402			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	44.0	44.0	44.0	44.0

Table 56. Receiver Blocking (Out Of Band) rejection - Bluetooth LE 125 kbit/s (LR S=8)

Channel	39			
Frequency (MHz)	2480			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin (dB)	44.0	44.0	44.0	44.0

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 2 test, there is a margin of 44.0 dB until the limit.

2.3.2.5.3 Blocking Interferers

This section describes the test method and results for blocking interferers test for Bluetooth LE measurements at 1 Mbit/s 2 Mbit/s, 500 kbit/s, and 125 kbit/s.

2.3.2.5.3.1 Bluetooth LE 1 Mbit/s

A continuous waveform (CW) is used as the interferer source to verify that the receiver performs satisfactorily in the frequency range outside the 2400 MHz to 2483.5 MHz band.

Test method:

- 4 is used. See [Figure 52](#).
- Criterion: PER < 30.8 % with 1500 packets
- The wanted signal is set to -67 dBm; the interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz)

Table 57. Blocking interferers Bluetooth LE 1 Mbit/s

Wanted signal 2426 MHz@-67 dBm	Channel 12 (2426 MHz)	Channel 12 (2426 MHz)	Channel 12 (2426 MHz)	Channel 12 (2426 MHz)	Criteria
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)	-
Unwanted level (dBm)	-30	-35	-35	-30	-
Status (unwanted level)	Pass	Pass	Pass	Pass	-
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 10
Status (Unwanted level -50 dBm)	Pass	Pass	Pass	Pass	-
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 3

Conclusion:

- The FRDM-MCXW72 passes the 1 Mbit/s Blocking Interferers test.

2.3.2.5.3.2 Bluetooth LE 2 Mbit/s

A continuous waveform (CW) is used as the interferer source to verify that the receiver performs satisfactorily with frequency outside the 2400 MHz to 2483.5 MHz range.

Test method:

- 4 is used. See [Figure 52](#).
- Criterion: PER < 30.8 % with 1500 packets.
- The wanted signal is set to -67 dBm; the interferer level is increased until the PER threshold is reached.
- Channel under test: Channel 12 (2426 MHz).

Table 58. Blocking interferers Bluetooth LE 2 Mbit/s

Wanted signal 2426 MHz@-67 dBm	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Criteria
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)	
Unwanted level (dBm)	-30	-35	-35	-30	
Status (unwanted level)	Pass	Pass	Pass	Pass	
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 10
Status (Unwanted level -50 dBm)	Pass	Pass	Pass	Pass	
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 3

Conclusion:

- The FRDM-MCXW72 passes the 2 Mbit/s Blocking Interferers test.

2.3.2.5.3.3 Bluetooth LE 500 kbit/s (LR S=2)

A continuous waveform (CW) is used as the interferer source to verify that the receiver performs satisfactorily with frequency outside the 2400 MHz to 2483.5 MHz band.

Test method:

- Test setup 4 is used. See [Figure 52](#).
- Criterion: PER < 30.8 % with 1500 packets.
- The wanted signal is set to -67 dBm; the interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz).

Table 59. Blocking interferers 500 kbit/s

Wanted signal 2426 MHz @-67 dBm	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Criteria
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)	
Unwanted level (dBm)	-30	-35	-35	-30	
Status (unwanted level)	Pass	Pass	Pass	Pass	
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 10
Status (Unwanted level -50 dBm)	Pass	Pass	Pass	Pass	
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 3

Conclusion:

- The FRDM-MCXW72 passes the 500 kbit/s Blocking Interferers test.

2.3.2.5.3.4 Bluetooth LE 125 kbit/s (LR S=8)

A continuous waveform (CW) is used as the interferer source to verify that the receiver performs satisfactorily with frequency outside the 2400 MHz to 2483.5 MHz band.

Test method:

- Test setup 4 is used. See [Figure 52](#).
- Criterion: PER < 30.8 % with 1500 packets.
- The wanted signal is set to -67 dBm; the interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz).

Table 60. Blocking Interferers – 125 kbit/s

Wanted signal 2426 MHz @-67 dBm	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Criteria
Interferer (MHz)	30 – 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz – 12.75 GHz (step 25 MHz)	
Unwanted level (dBm)	-30	-35	-35	-30	
Status (unwanted level)	Pass	Pass	Pass	Pass	
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 10
Status (Unwanted level -50 dBm)	Pass	Pass	Pass	Pass	

Table 60. Blocking Interferers – 125 kbit/s ...continued

Wanted signal 2426 MHz @-67 dBm	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Channel 12 2426 MHz	Criteria
Number of blocking fail	0	0	0	0	Fail blockers must not exceed 3

Conclusion:

- The FRDM-MCXW72 passes the 125 kbit/s Blocking Interferers test.

2.3.2.5.4 Intermodulation

This test verifies that the receiver intermodulation performance is satisfactory.

Test method:

- Test setup N5 is used. See [Section 2.3.2.1.3](#).
- Two interferers are used in combination with the wanted signal. One interferer is a sinusoid non-modulated signal and the second interferer is a Bluetooth LE modulated signal with PRSB15 data. The two interferers are set at the same power level.
- Criterion: PER < 30.8 % with 1500 packets.
- Bluetooth LE channels under test: Channel 37 (2.402 GHz), Channel 17 (2.440 GHz), and Channel 39 (2.480 GHz).
- The wanted signal is set to -64 dBm; the interferer levels are first set below the limit values and then increased until PER criterion is reached.

2.3.2.5.4.1 Bluetooth LE 1 Mbit/s

This section describes the Bluetooth LE RX Intermodulation at 1 Mbit/s.

Table 61. Bluetooth LE RX Intermodulation 1 Mbit/s Channel 37

Bluetooth LE Wanted Channel	Channel 37					
Wanted Frequency (MHz)	2402					
Interferer Type	Low	Low	Low	High	High	High
CW Interferer Frequency (MHz)	2397	2398	2399	2405	2406	2407
Bluetooth LE Interferer Frequency (MHz):	2392	2394	2396	2408	2410	2412
Combined Interferers Level (dBm)	-35	-35	-35	-35	-35	-35
Bluetooth LE 6.0 limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	1050	1050	1050	1050	1050	1050

Table 62. Bluetooth LE RX Intermodulation 1 Mbit/s Channel 17

Bluetooth LE Wanted Channel	Channel 17					
Wanted Frequency (MHz)	2440					
Interferer Type	Low	Low	Low	High	High	High
CW Interferer Frequency (MHz):	2435	2436	2437	2443	2444	2445
Bluetooth LE Interferer Frequency (MHz):	2430	2432	2434	2446	2448	2450
Combined Interferers Level (dBm)	-35	-35	-35	-35	-35	-35
Bluetooth LE 6.0 limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	1050	1050	1050	1050	1050	1050

Table 63. Bluetooth LE RX Intermodulation 1 Mbit/s Channel 39

Bluetooth LE Wanted Channel:	Channel 39					
Wanted Frequency (MHz):	2480					
Interferer Type:	Low	Low	Low	High	High	High
CW Interferer Frequency (MHz):	2475	2476	2477	2483	2484	2485
Bluetooth LE Interferer Frequency (MHz):	2470	2472	2474	2486	2488	2490
Combined Interferers Level (dBm)	-24	-24	-24	-25	-25	-25
Bluetooth LE 6.0 limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	25	25	25	24	24	24

Conclusion: The FRDM-MCXW72 board passes the 1 Mbit/s Intermodulation test with a margin of 24.0 dB.

2.3.2.5.4.2 Bluetooth LE 2 Mbit/s

This section describes the Bluetooth LE RX Intermodulation at 2 Mbit/s

Table 64. Bluetooth LE RX Intermodulation 2 Mbit/s Channel 37

Bluetooth LE Wanted Channel	Channel 37					
Wanted Frequency (MHz)	2402					
Interferer Type	Low	Low	Low	High	High	High
CW Interferer Frequency (MHz)	2392	2394	2396	2408	2410	2412
Bluetooth LE Interferer Frequency (MHz)	2382	2386	2390	2414	2428	2432
Combined Interferers Level (dBm)	-40	-40	-40	-40	-40	-40
Bluetooth LE 6.0 limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	1050	1050	1050	1050	1050	1050

Table 65. Bluetooth LE RX Intermodulation 2 Mbit/s Channel 17

Bluetooth LE Wanted Channel	Channel 17					
Wanted Frequency (MHz)	2440					
Interferer Type	Low	Low	Low	High	High	High
CW Interferer Frequency (MHz)	2430	2432	2434	2446	2448	2450
BLE Interferer Frequency (MHz)	2420	2424	2428	2452	2456	2460
Combined Interferers Level (dBm)	-40	-40	-40	-40	-40	-40
BLE 6.0 limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	1050	1050	1050	1050	1050	1050

Table 66. Bluetooth LE RX Intermodulation 2 Mbit/s Channel 39

Bluetooth LE Wanted Channel:	Channel 39					
Wanted Frequency (MHz):	2480					
Interferer Type:	Low	Low	Low	High	High	High
CW Interferer Frequency (MHz):	2470	2472	2474	2486	2488	2490
Bluetooth LE Interferer Frequency (MHz):	2460	2464	2468	2492	2496	2500
Combined Interferers Level (dBm)	-26	-24	-24	-26	-27	-29
Bluetooth LE 6.0 limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	23	25	25	23	22	20

Intermodulation – 2 Mbit/s

Conclusion: The board passes the 2 Mbit/s Intermodulation test with a margin of 20.0 dB.

3 IEEE 802.15.4 application

This section describes the test procedure and results for IEEE 802.15.4 measurements.

3.1 Test presentation

This section provides the list of tests and a test summary and describes the conducted tests.

3.1.1 List of tests

1. TX tests
 - a. Frequency accuracy
 - b. Phase noise
 - c. TX power
 - d. TX power in band
 - e. TX spurious
 - f. EVM and offset EVM
 - g. Lower band edge
 - h. Upper band edge
 - i. Out of band
2. RX tests
 - a. Sensitivity
 - b. Sensitivity bathtub
 - c. RX spurious
 - d. Adjacent, alternate, co-channel interferences
 - e. Receiver blocking

3.2 Test summary

This section synthetizes in [Table 67](#) and [Table 68](#) the main tests performed on the FRDM-MCXW72 modules. Most of the test results details and setup are described in this document. For further information, contact your local NXP contact.

Table 67. List of Transmission tests (Europe)

Parameter	Reference	Limit	Status
TX maximum power	ETSI EN 300 328	20 dBm, 100 mW (radiated)	Pass
Eirp TX spectral density	ETSI EN 300 328	10 dBm/MHz	Pass
TX spectral density	IEEE 802.15.4_2011	-20 dBc or -30 dBm (100 kHz, $f_{fc} > 3.5$ MHz)	Pass
Spurious 30 MHz – 1 GHz	ETSI EN 300 328	-36 dBm or -54 dBm (depends on frequency) (100 kHz BW)	Pass
Spurious 1 GHz - 12.5 GHz	ETSI EN 300 328	-30 dBm (1 MHz BW)	Pass
EVM	IEEE 802.15.4_2011	35%	Pass
Offset EVM	IEEE 802.15.4_2011	4.5%	Pass
TX frequency accuracy	IEEE 802.15.4_2011	+/- 40 ppm	Pass
Phase noise (unspread)	IEEE 802.15.4_2003	NA	For information

Table 68. List of reception tests (Europe)

Test parameter	Reference	Limit	Status
RX emissions 30 MHz – 1 GHz	ETSI EN 300 328	-57 dBm (100 kHz)	Pass
RX emissions 1 GHz - 12.5 GHz	ETSI EN 300 328	-47 dBm (1 MHz)	Pass
RX sensitivity	IEEE 802.15.4	-85 dBm	Pass
Adjacent channel interference rejection N +/-1	IEEE 802.15.4_2011	0 dB	Pass
Alternate channel interference rejection N +/-2	IEEE 802.15.4_2011	30 dB	Pass
Receiver blocking	ETSI EN 300 328	-57 dBm / -47 dBm	Pass
Receiver maximum input level	IEEE 802.15.4_2011	-20 dBm	Pass

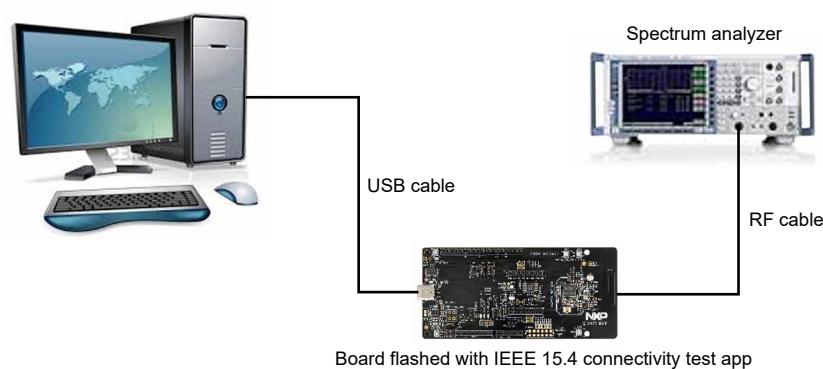
Table 69. List of Miscellaneous tests

Parameter	Description	Status
Return loss (S11)	Return loss in TX mode	For information
	Return loss in RX mode	For information

Table 70. List of Transmission tests (US)

	Frequency range	Reference	Limit	Status
Transmission	Spurious 1 GHz - 12.5 GHz	FCC part15	-41 dBm (1 MHz BW)	Pass

3.3 Conducted tests


This section describes the tests methods and results for conducted for IEEE TX and RX 802.15.4 measurements.

3.3.1 TX tests

This section explains various IEEE 802.15.4 transmission tests, their test methods, and test results.

3.3.1.1 Test setup N6

[6](#) shows the setup used for IEEE TX tests.

aaa-064155b

Figure 74. Test setup N6

Note: The setup is identical to the [Test setup 1](#) that is used for conducting generic TX Bluetooth LE tests except that it uses the IEEE 15.4 test application.

3.3.1.2 Frequency accuracy

Test method:

- Use the Test setup 6. See [Figure 74](#).
- Set the radio in:
 - TX mode, continuous waveform (CW), continuous unmodulated emitting mode, frequency: 2.405 GHz, IEEE.802.15.4 Channel 11
- Set the analyzer to:
 - Center frequency = 2.405 GHz, span = 1 MHz, Reference amplitude = 20 dBm, RBW = 10 kHz
- Measure the continuous waveform (CW) frequency with the marker of the spectrum analyzer.

Result

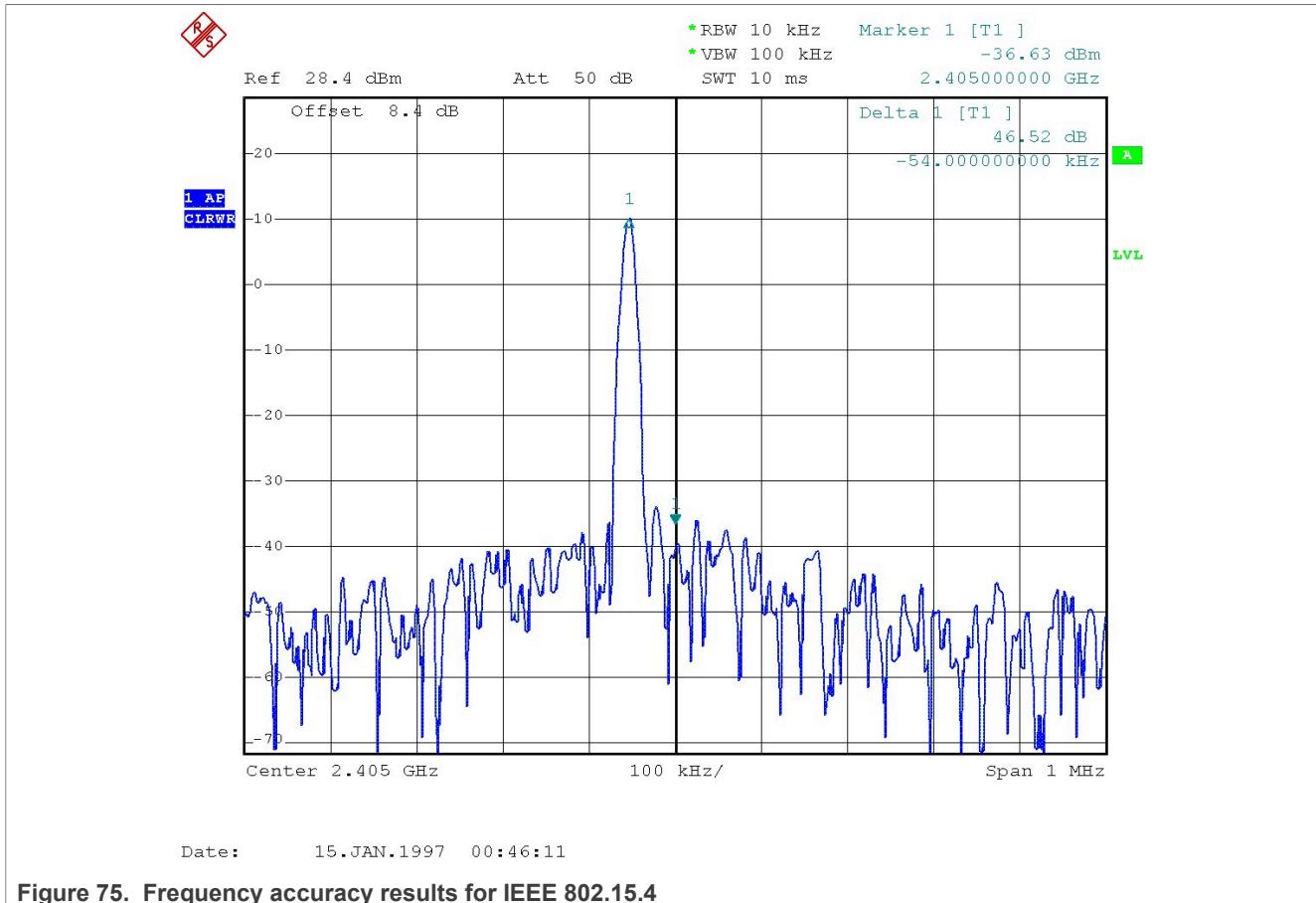
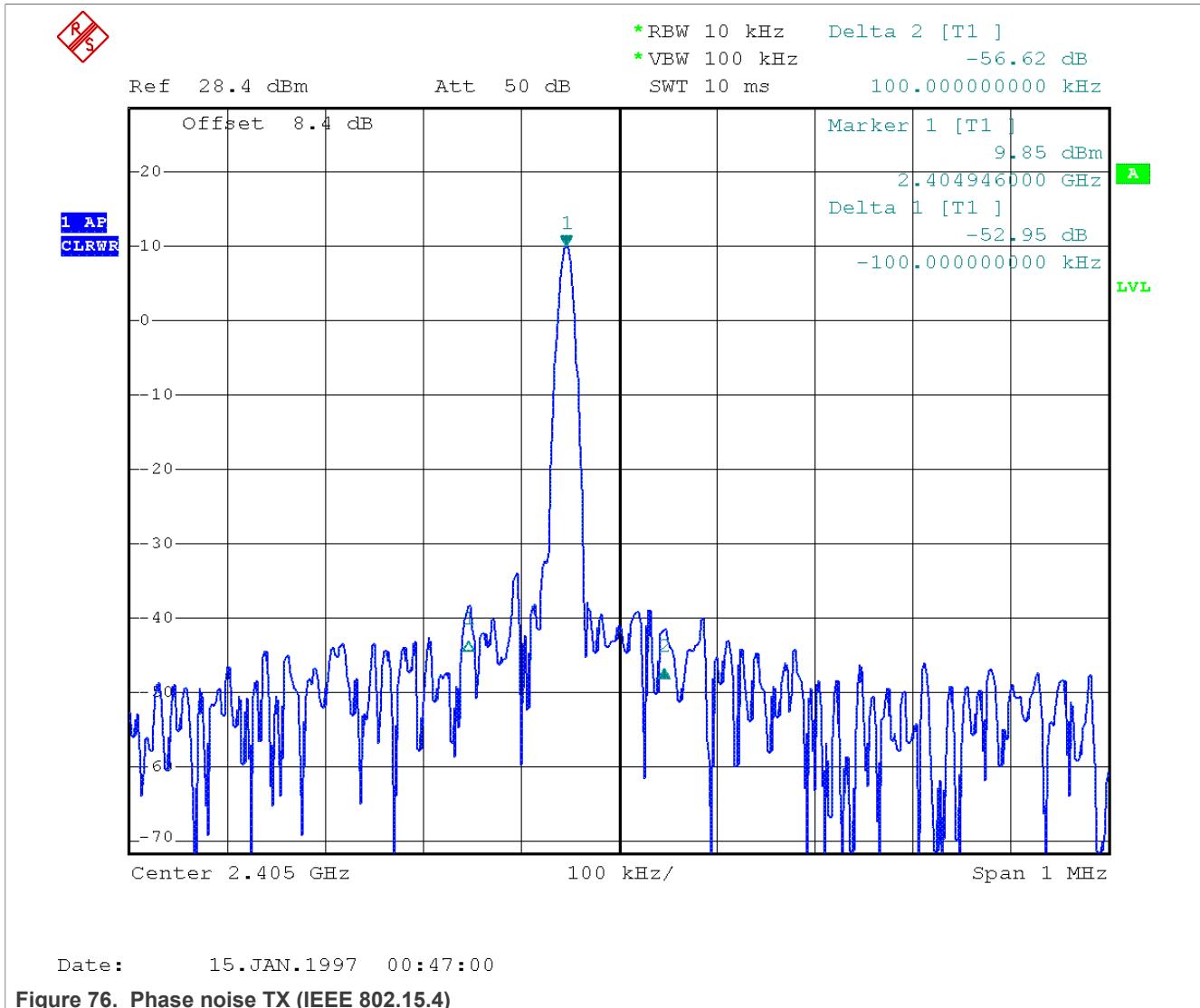


Figure 75. Frequency accuracy results for IEEE 802.15.4

- Measured frequency: 2.405 GHz
- ppm value = $(2.404946 - 2.405) / 2.405 = -22.5 \text{ ppm}$

Table 71. Frequency accuracy (IEEE 802.15.4)

Result	Target	IEEE 802.15.4 limit
-22.5 ppm	+/- 25 ppm	+/- 40 ppm


Note: The frequency accuracy depends on the XTAL model, which is NX1612SA 32MHZ EXS00A CS14160 on this board. XTAL Trim software parameter could use change this accuracy.

Conclusion: The board passes the Frequency Accuracy Test.

3.3.1.3 Phase noise @ 100 kHz offset

Test method:

- Use the Test setup N6. See [Figure 74](#).
- Set the radio in:
 - TX mode, continuous waveform (CW) continuous emitting mode, frequency: 2.405 GHz, IEEE.802.15.4 Channel 11
- Set the analyzer to:
 - Center frequency = 2.405 GHz, span = 1 MHz, Reference amplitude = 20 dBm
- Measure the phase noise at 100 kHz offset frequency.
 - RBW = 10 kHz (40 dBc)

Phase noise Results:

- Marker value = -50.63 dBm within 10 kHz RBW:
 - Marker delta = 10.0 - (-50.63)
 - Phase noise at 100 kHz offset = Marker delta -10 Log (10 kHz) = **-100.63 dBc/Hz**

Note: Phase noise is for information only.

3.3.1.4 TX Power (fundamental)

Test method

- Use the Test setup N6. See [Figure 74](#).
- Set the radio in:
 - TX mode, modulated, continuous emitting mode
- Set analyzer to:
 - Start frequency = 2.4 GHz, Stop frequency = 2.5 GHz
 - Reference amplitude = 20 dBm

- Sweep time = 100 ms
- RBW = 3 MHz
- Max Hold mode
- Detector: Peak
- Sweep all the channels from IEEE 802.15.4 Channel 11 to IEEE 802.15.4 Channel 26

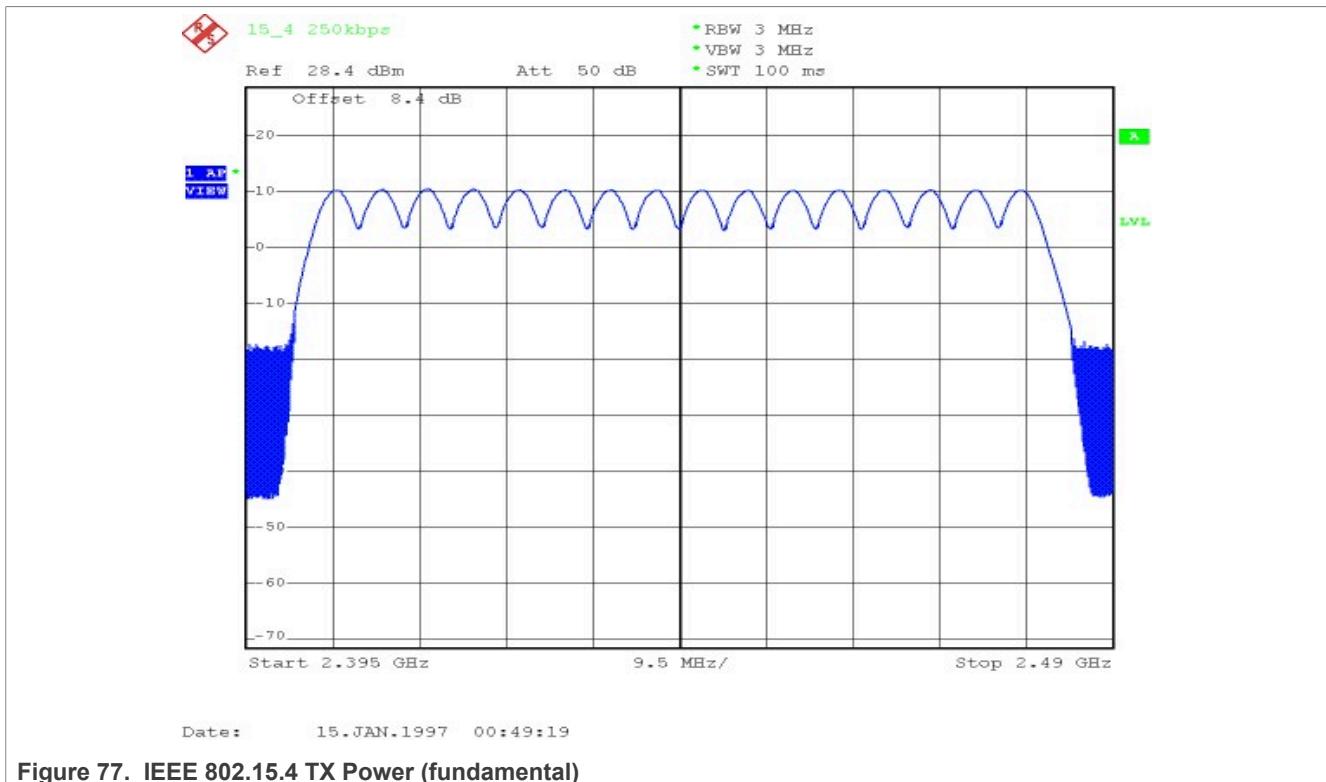


Figure 77. IEEE 802.15.4 TX Power (fundamental)

Result:

- Maximum power is on channel 22: 9.92 dBm
- Minimum power is on channel 13: 10.15 dBm
- Tilt over frequencies is: 0.23 dB

Conclusion:

- The default TX power is in line with the expected results.
- TX power is flat over frequencies.

3.3.1.5 TX power In Band

Test method:

- Use the Test setup 6. See [Figure 74](#).
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency= 2.35 GHz, Stop frequency= 2.5 GHz
 - Reference amplitude = 10 dBm, sweep time = 100 ms,
 - RBW = 100 KHz, Video BW = 300 KHz

- Max Hold mode
- Detector = RMS
- Number of Sweeps = 10
- Sweep on Channel 11, Channel 18, and channel 26

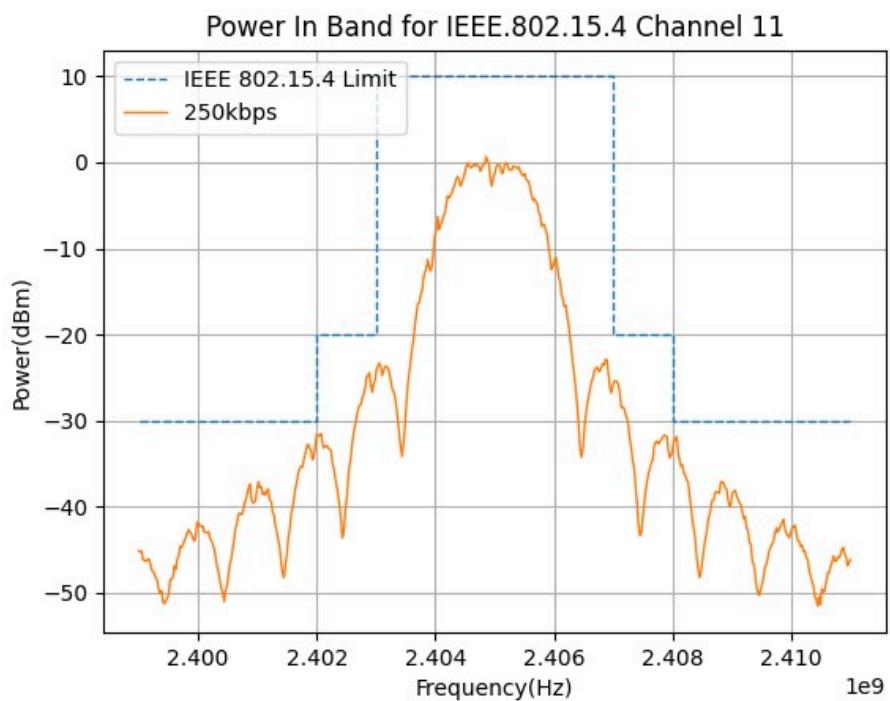


Figure 78. IEEE 802.15.4 Tx power In Band – Channel 11

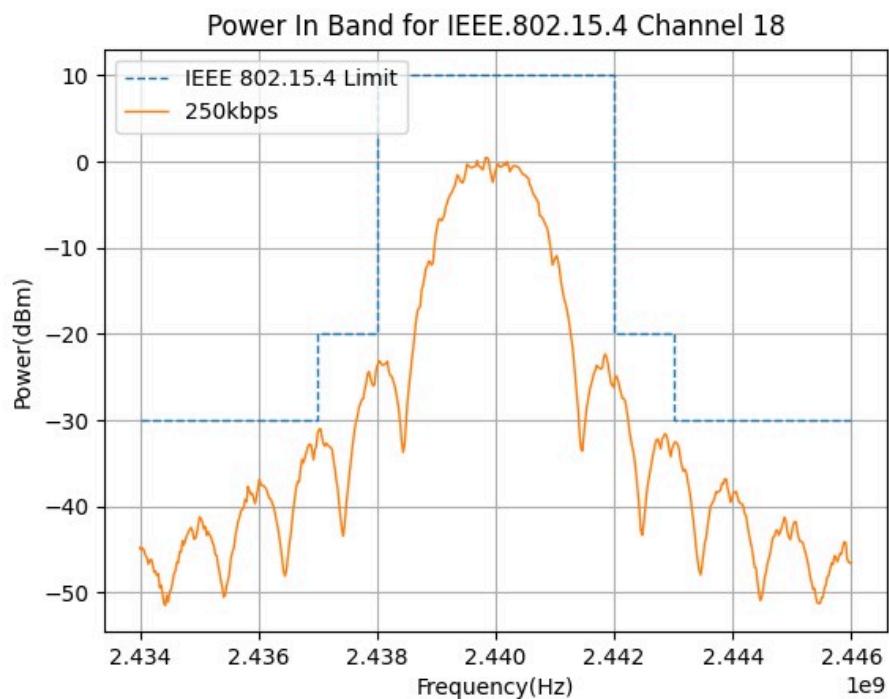


Figure 79. IEEE 802.15.4 Tx power In Band – Channel 18

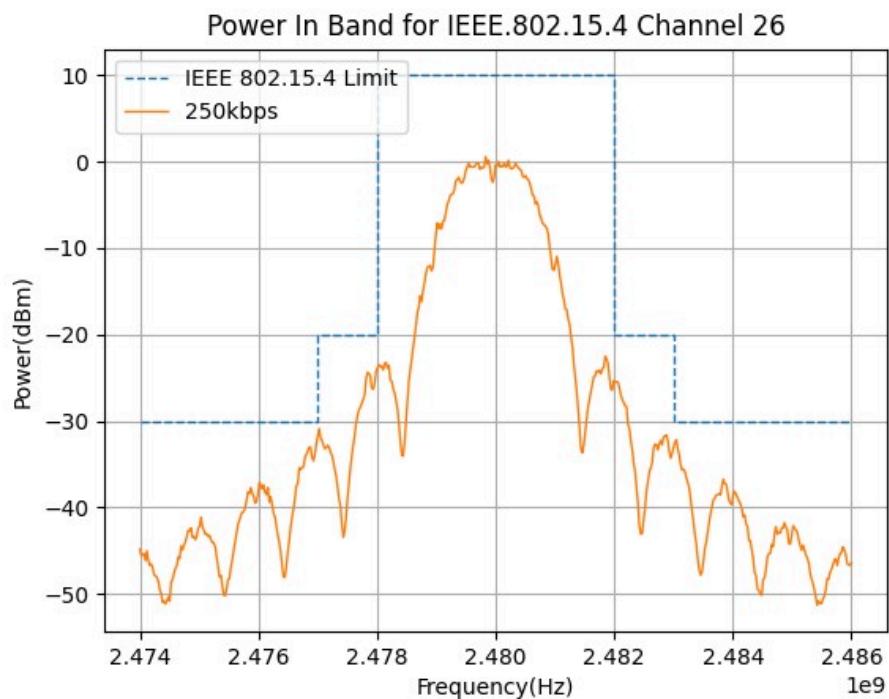
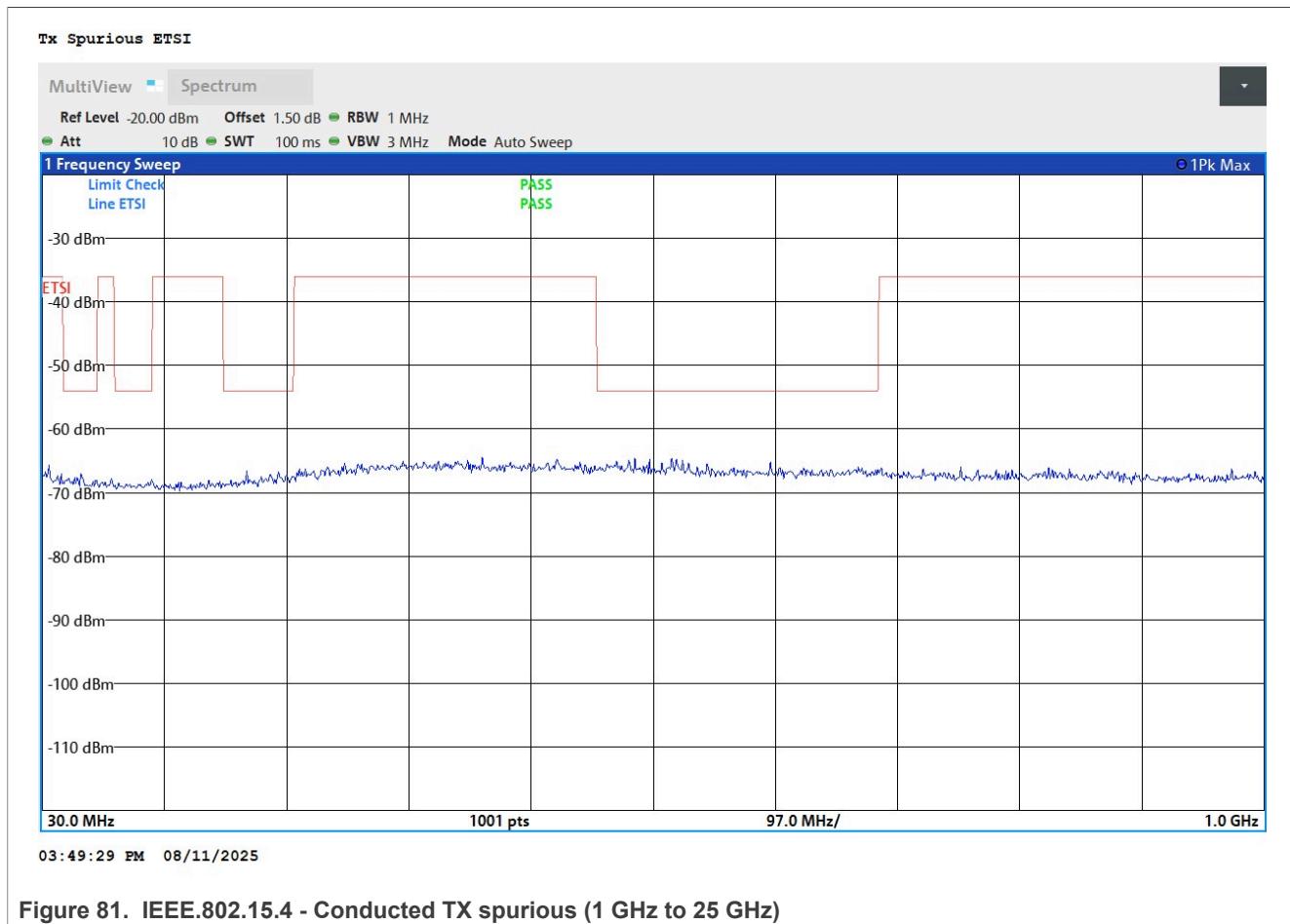


Figure 80. IEEE 802.15.4 Tx power In Band – Channel 26

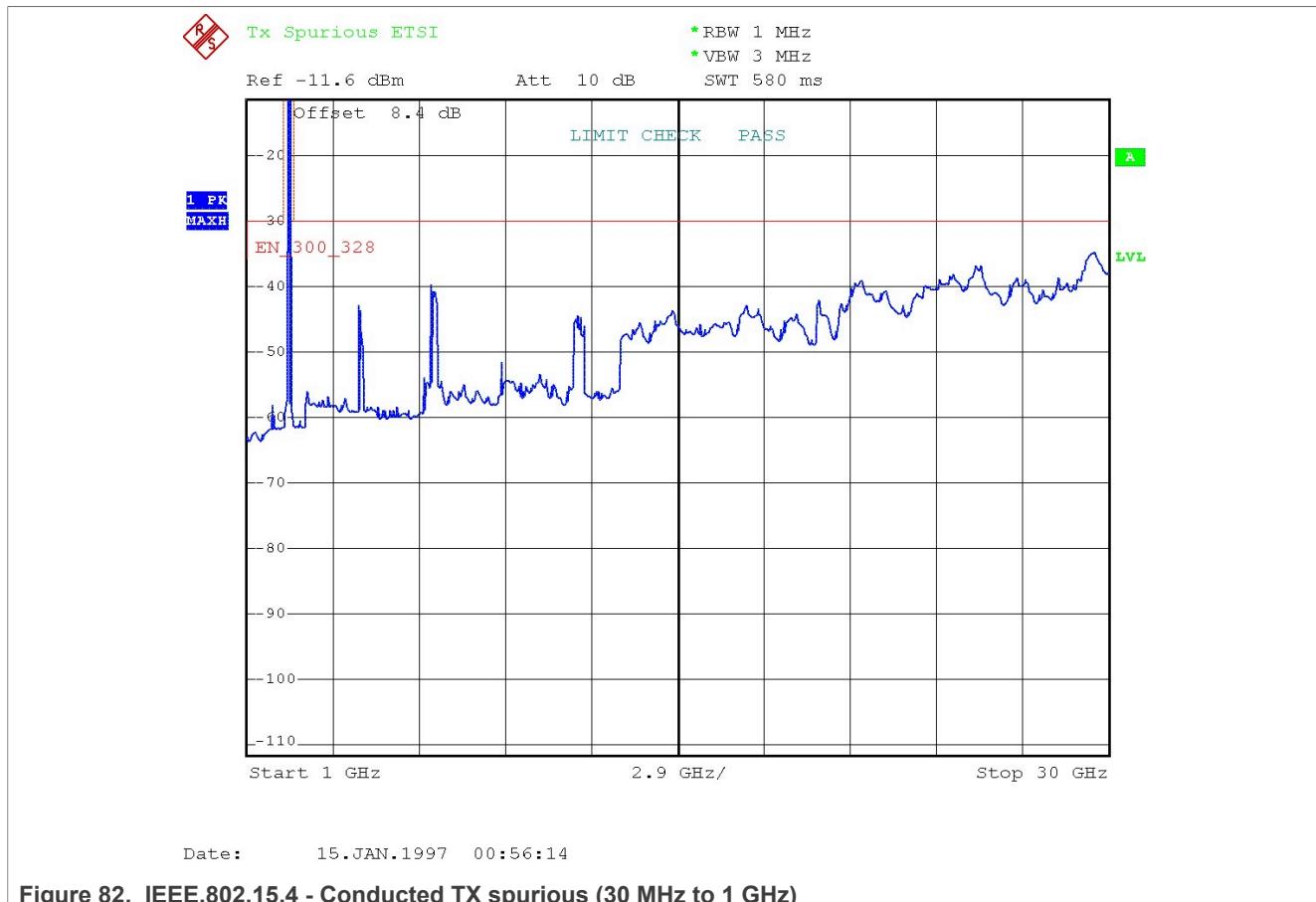
Conclusion:

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4


- The FRDM-MCXW72 board is within the expected limits and passes the 15.4 certification concerning the Power In Band test.

3.3.1.6 TX spurious

Global view from 0.03 GHz to 25 GHz

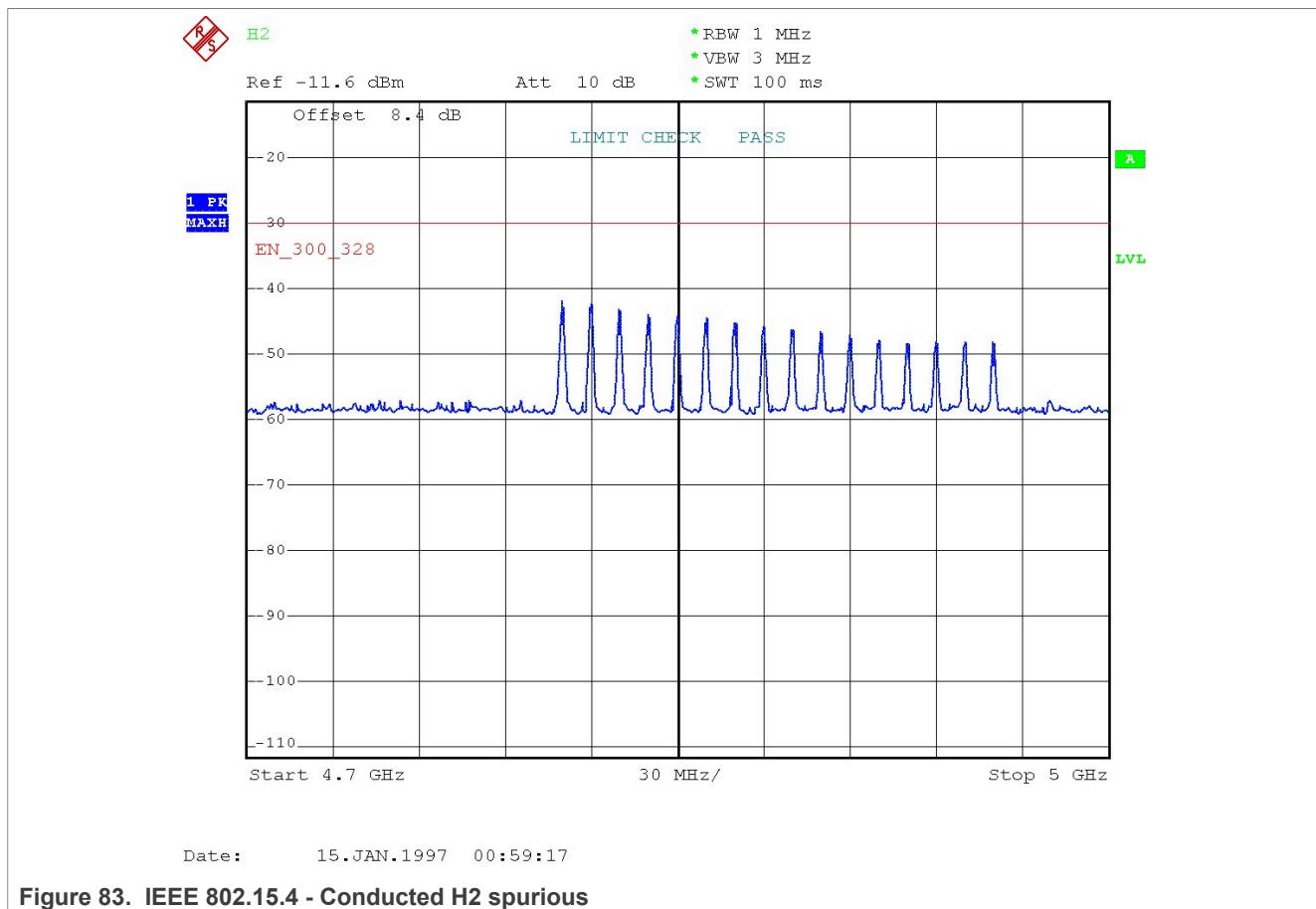

Use the Test setup N6. See [Figure 74](#).

Spurious overview of the full band from 30 MHz to 25 GHz when the device is in the transmission mode.

Figure 81. IEEE.802.15.4 - Conducted TX spurious (1 GHz to 25 GHz)

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.


Conclusion:

- The FRDM-MCXW72 passes the ETSI Tx Spurious Certification with a margin of 4.71 dB.
- Harmonics are specifically measured in the following paragraphs.

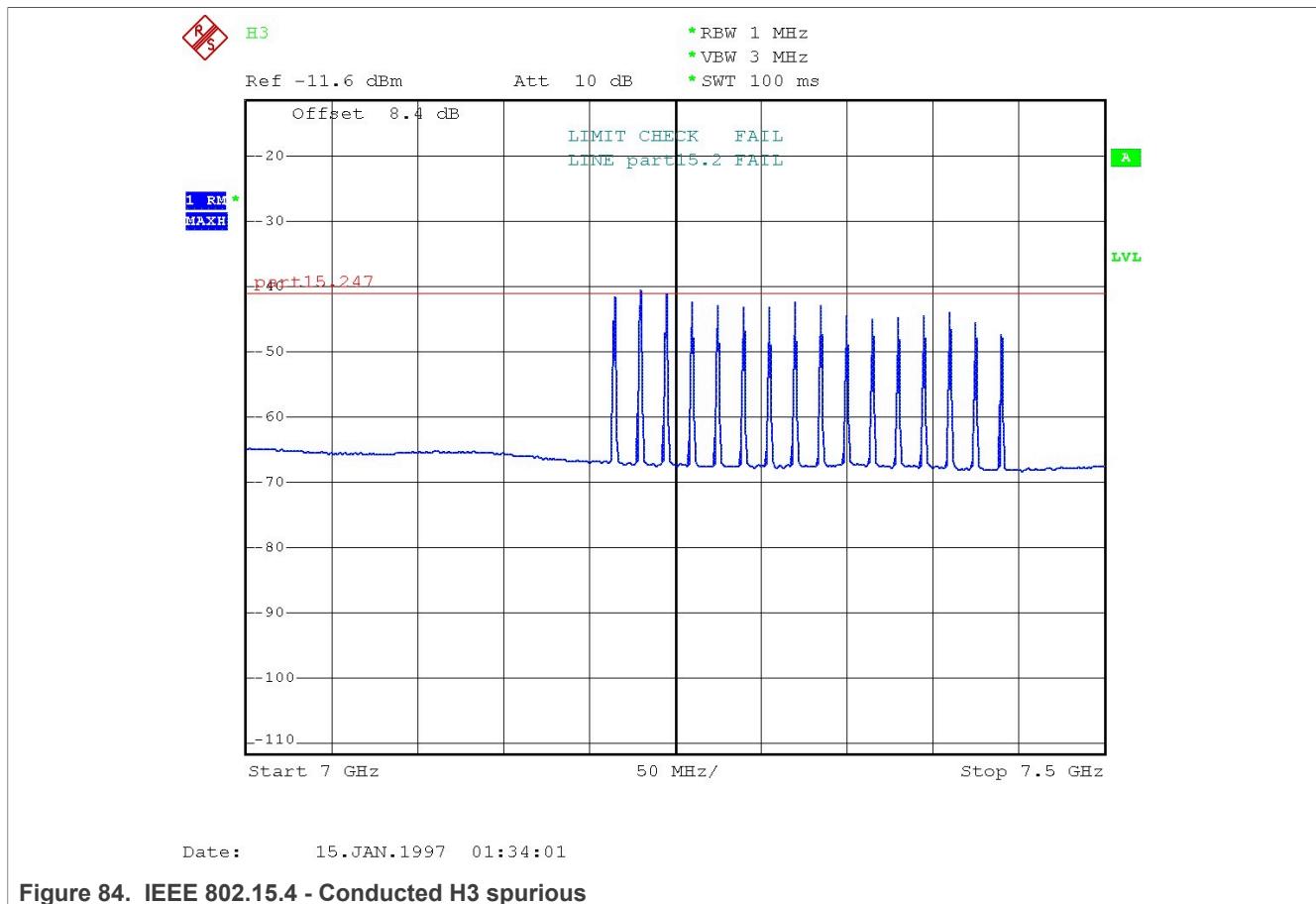
3.3.1.6.1 H2 (ETSI test conditions)

Test method:

- **Test setup N1** is used. See [Figure 3](#).
- Set the radio in:
 - TX mode, modulated, continuous emitting mode.
- Set the analyzer to:
 - Start frequency = 4.8 GHz, Stop frequency = 5 GHz,
 - Reference amplitude = -20 dBm, sweep time = 100 ms, RBW = 1 MHz
- Max Hold mode

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Result:


- Maximum power is at frequency 4.81 GHz: -42.21 dBm

Conclusion:

- There is more than 12.2 dB margin for Bluetooth LE to the ETSI limit

3.3.1.6.2 H3 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 7.0 GHz to 7.5 GHz.

Date: 15.JAN.1997 01:34:01

Figure 84. IEEE 802.15.4 - Conducted H3 spurious

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

- Maximum power is at frequency 7.23 GHz: -40.52 dBm.

Conclusion: The power is 0.6 dB, which is too high than Bluetooth LE to the FCC limit. Maximum output power can be lowered to pass the limit.

3.3.1.6.3 H4 (ETSI test conditions)

Use the same method as for H2, except that the spectrum analyzer frequency span is set from 9.4 GHz to 10.0 GHz.

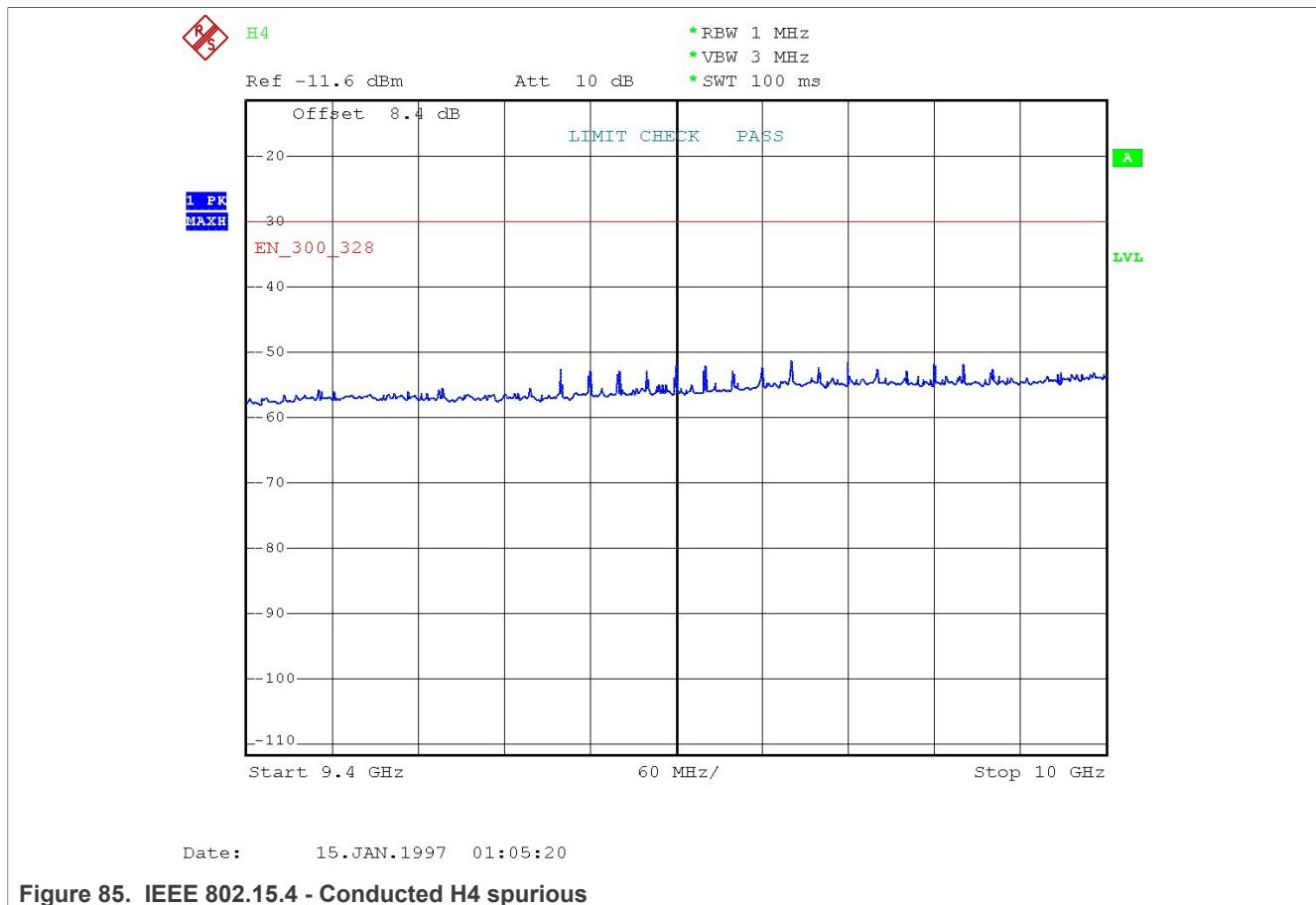


Figure 85. IEEE 802.15.4 - Conducted H4 spurios

Result

- The maximum power is at the frequency 9.88 GHz: -52.05 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 22.0 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.4 H5 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

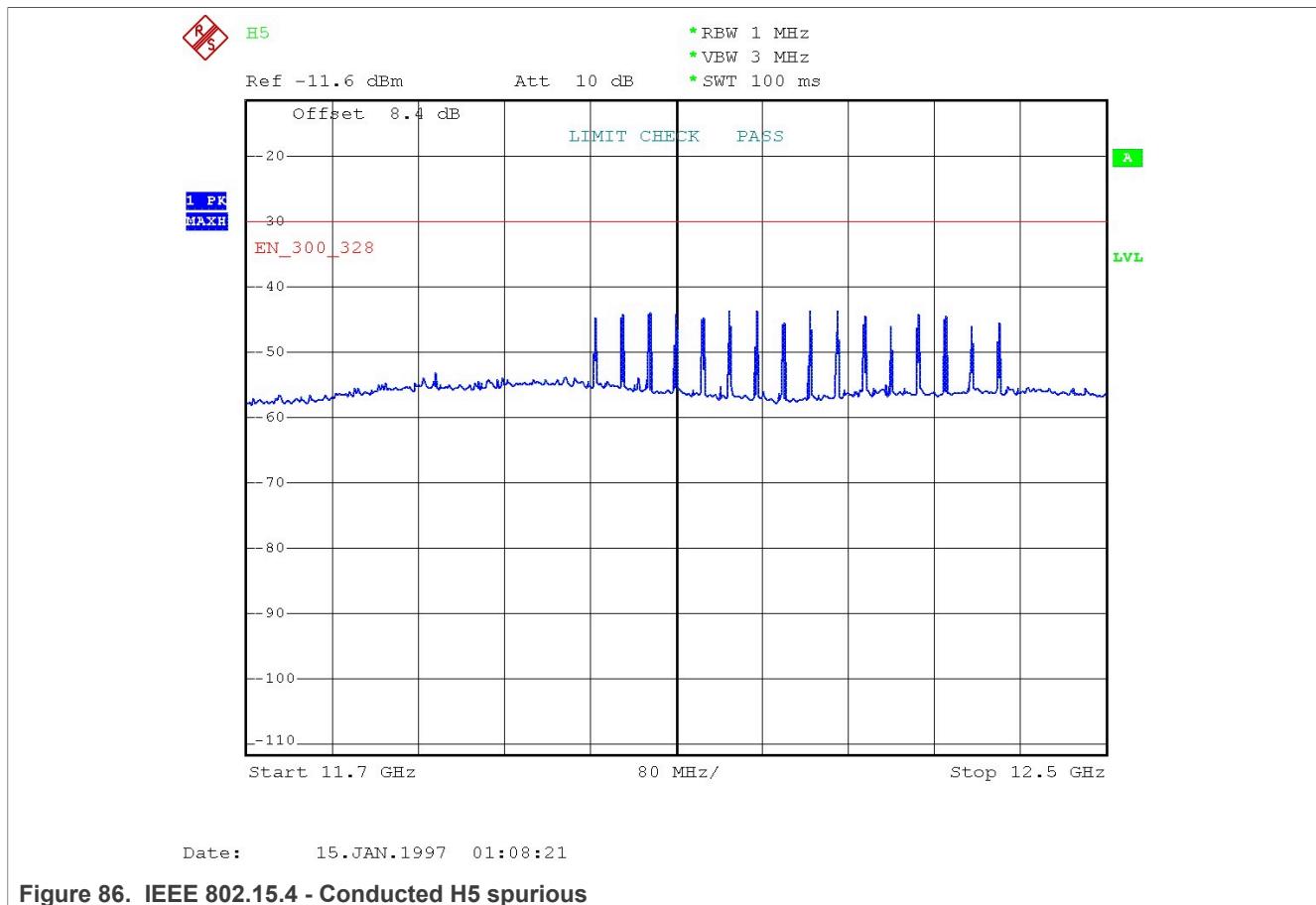


Figure 86. IEEE 802.15.4 - Conducted H5 spurious

Result

- Maximum power is at frequency 12.18 GHz: -43.77 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 13.8 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.5 H6 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 14.1 GHz to 15 GHz.

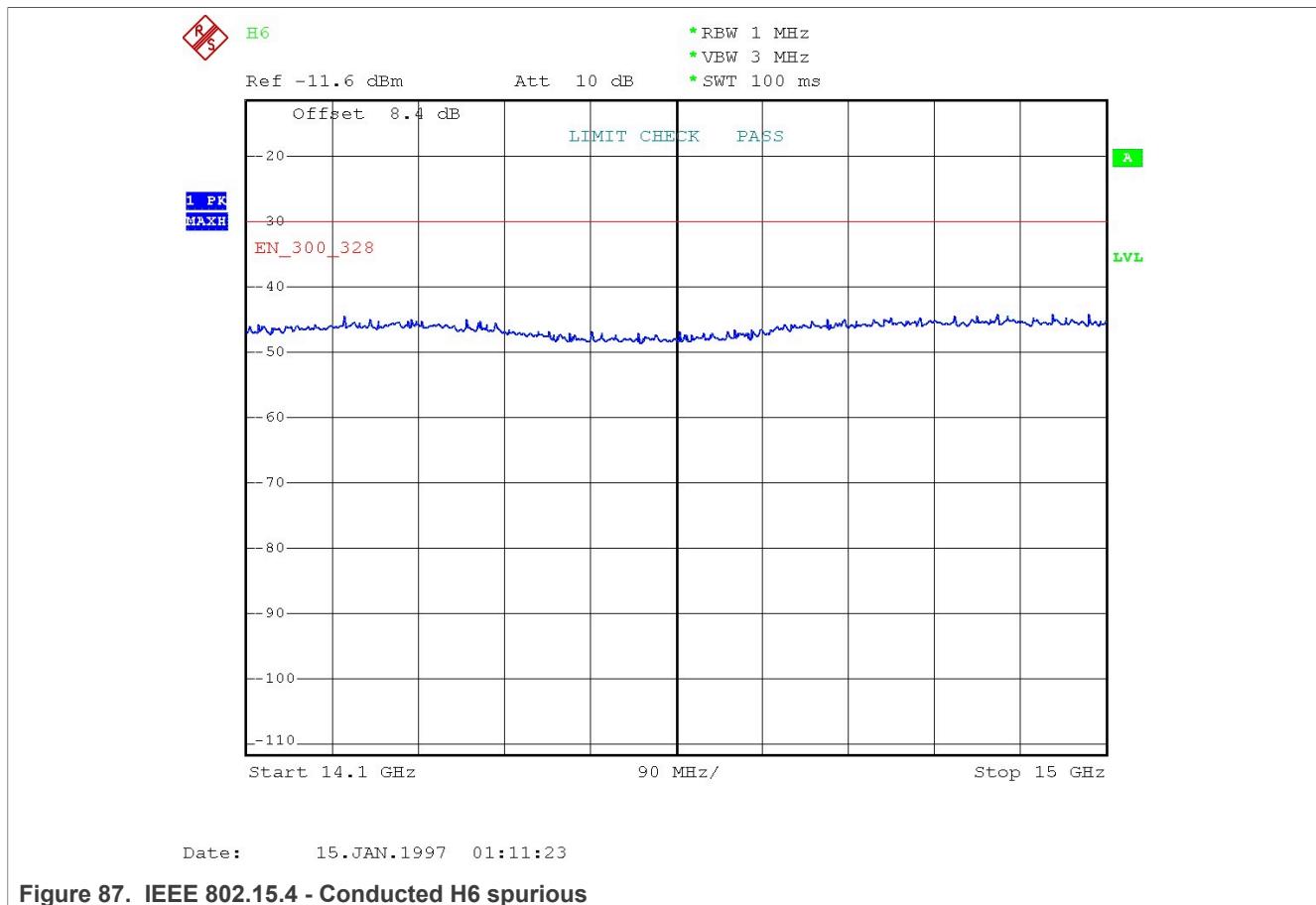
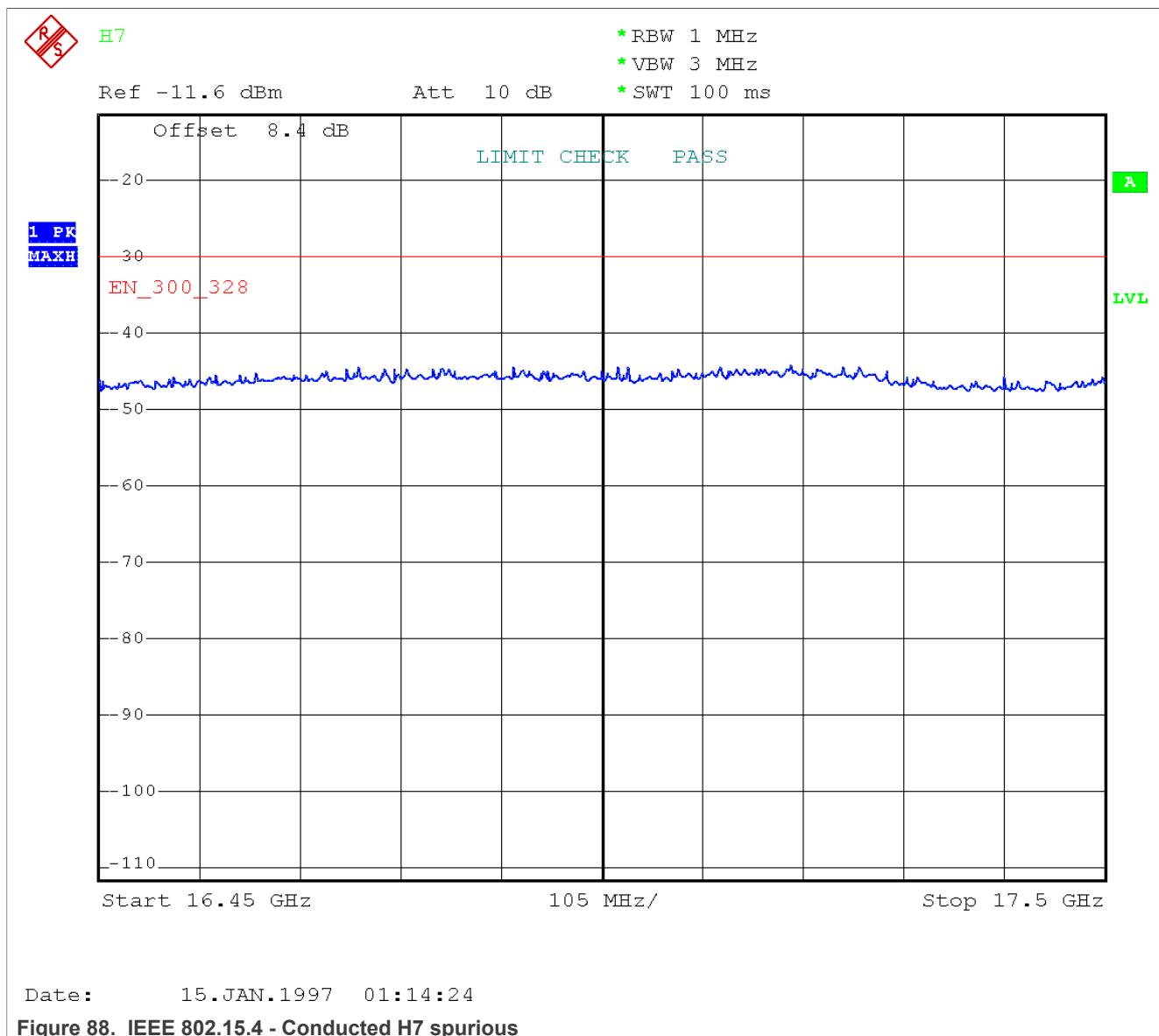


Figure 87. IEEE 802.15.4 - Conducted H6 spurious

- Maximum power is at frequency 14.89 GHz: -44.15 dBm


Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 14.1 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.6 H7 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

3.3.1.6.7 H8 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 18.8 GHz to 20 GHz.

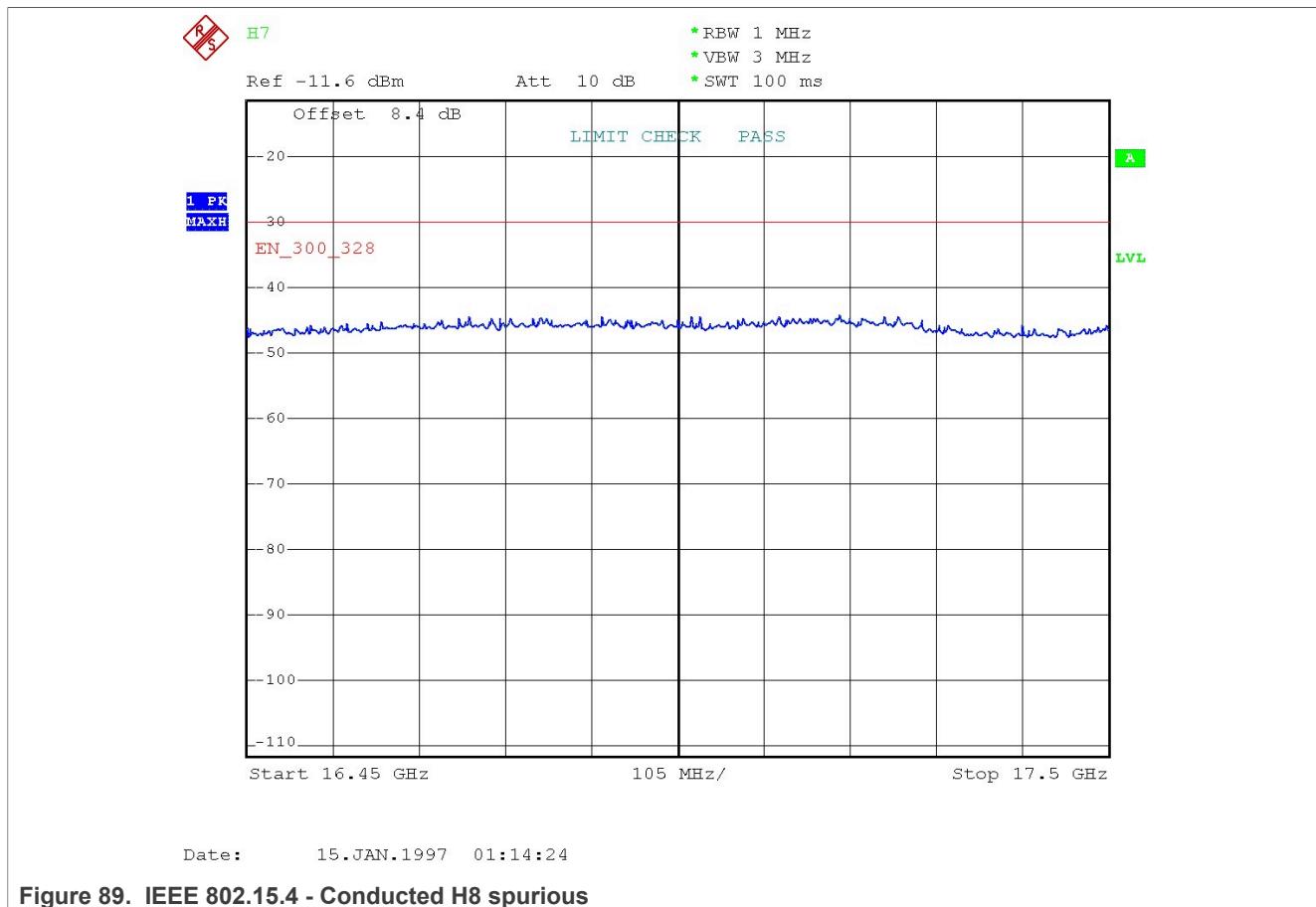


Figure 89. IEEE 802.15.4 - Conducted H8 spurious

Result

- Maximum power is at frequency 19.5 GHz -42.69 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

There is more than 12.7 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.8 H9 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 21.15 GHz to 22.5 GHz.

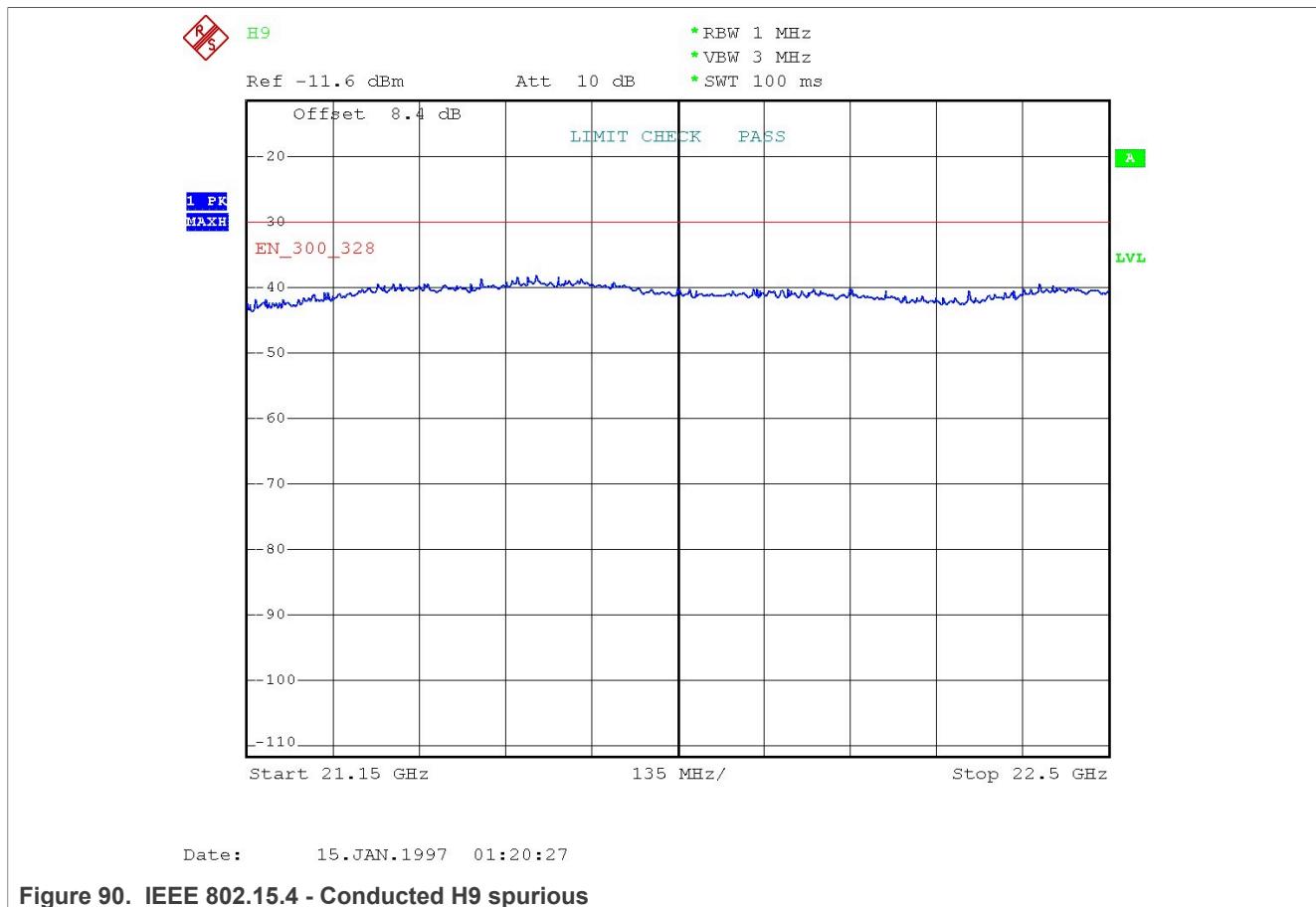


Figure 90. IEEE 802.15.4 - Conducted H9 spurious

Result

- Maximum power is at frequency 21.68 GHz: -39.09 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 9.1 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.9 H10 (ETSI test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 23.35 GHz to 25 GHz.

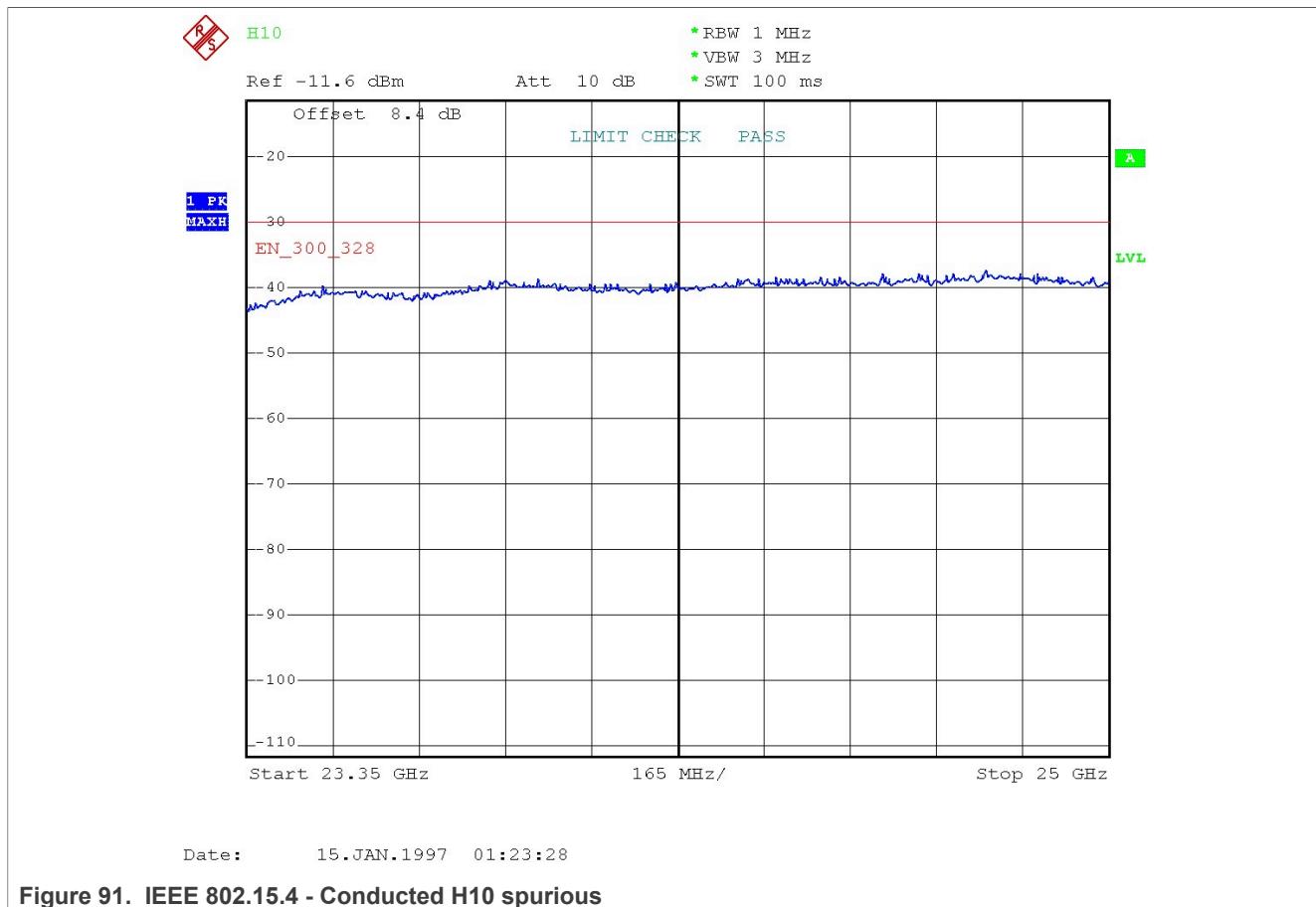


Figure 91. IEEE 802.15.4 - Conducted H10 spurious

Result

- Maximum power is at frequency 24.77 GHz: -37.42 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 7.4 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.10 H2 (FCC test conditions)

Test method

- Set the radio in:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency= 4.8 GHz, Stop frequency = 5 GHz,

Reference amplitude = -20 dBm, RF attenuation = sweep time = 100 ms, RBW = 1 MHz.

- Trace mode: Average
- Detector RMS
- Sweep all the channels from
 - IEEE 802.15.4: channel 0 to channel 39.

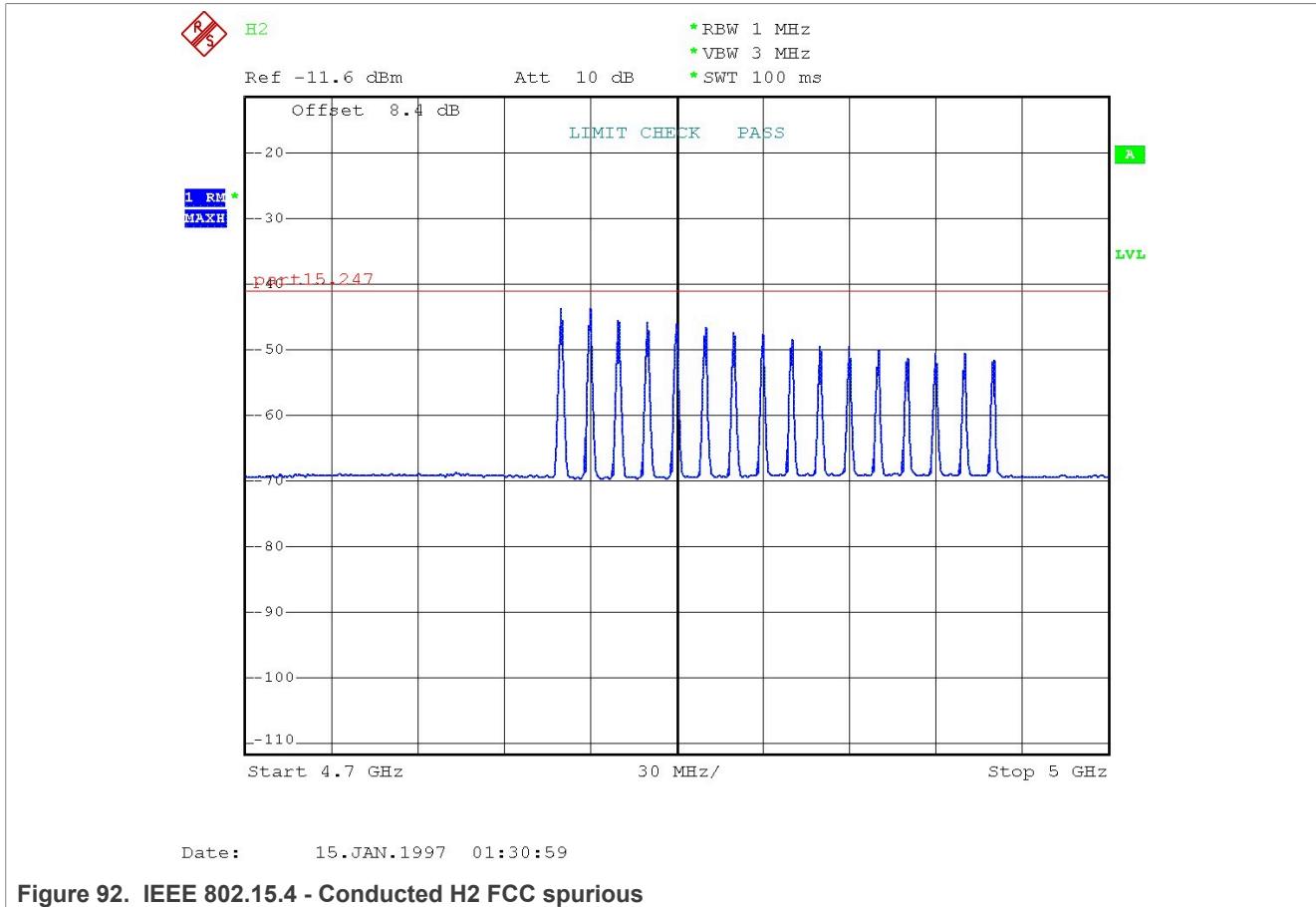


Figure 92 IEEE 802.15.4 - Conducted H2 EGC spurious

IEEE 802.15.4 results

- Maximum power is at frequency 4.81 GHz -43.72 dBm.
Conclusion:
- There is more than 2.6 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.11 H3 (FCC test conditions)

The test method is similar as for the H2, except the spectrum analyzer frequency start/stop are set to 7.2 GHz and 7.5 GHz.

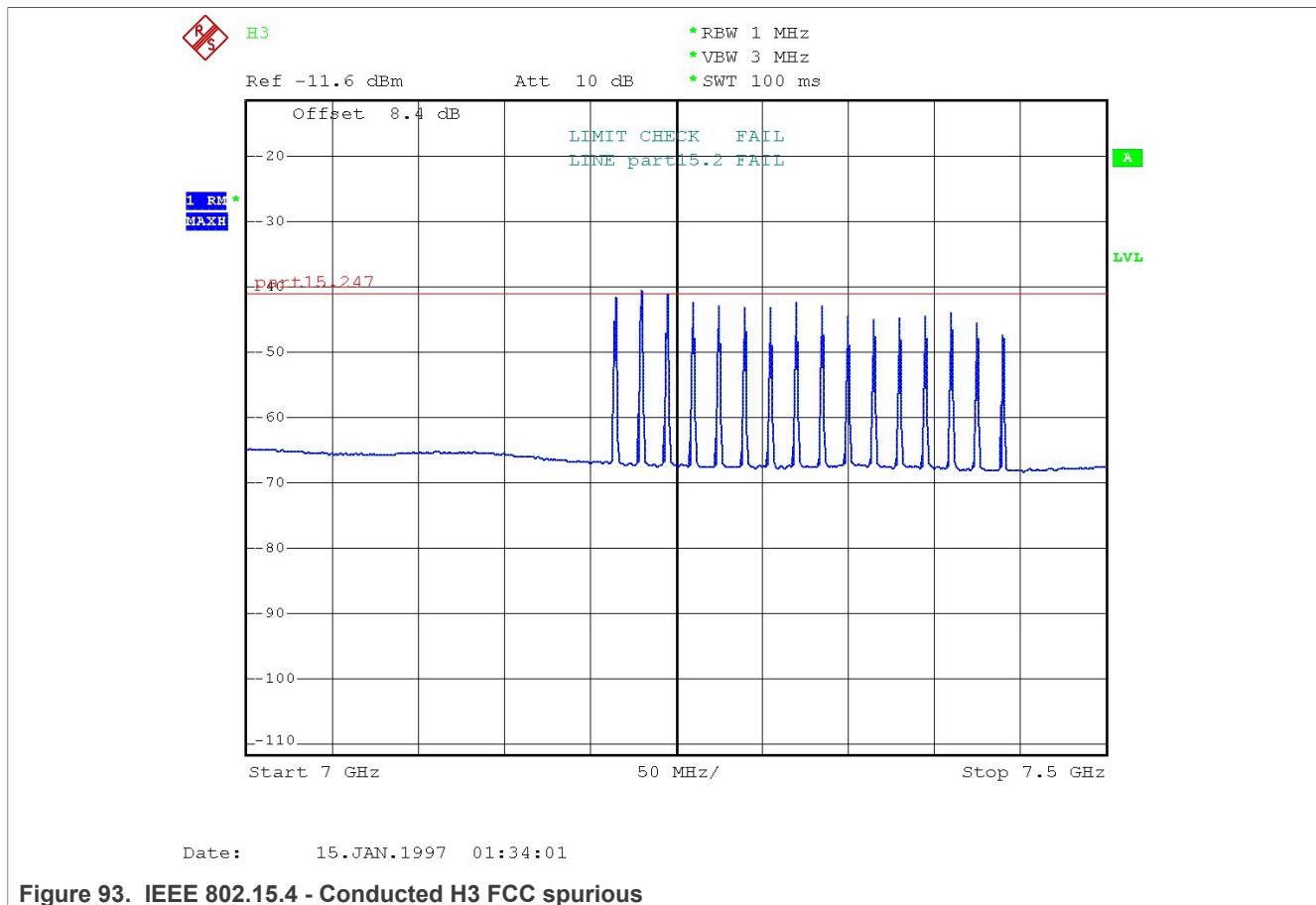


Figure 93. IEEE 802.15.4 - Conducted H3 FCC spurious

Result:

- Maximum power is at frequency 7.23 GHz: -40.52 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- The power is 0.6 dB too high than Bluetooth LE to the FCC limit. Max Output power may be lowered to pass the limit.

3.3.1.6.12 H4 (FCC test conditions)

The test method is similar as for the H2, except the spectrum analyzer frequency span is set from 9.6 GHz to 10.0 GHz.

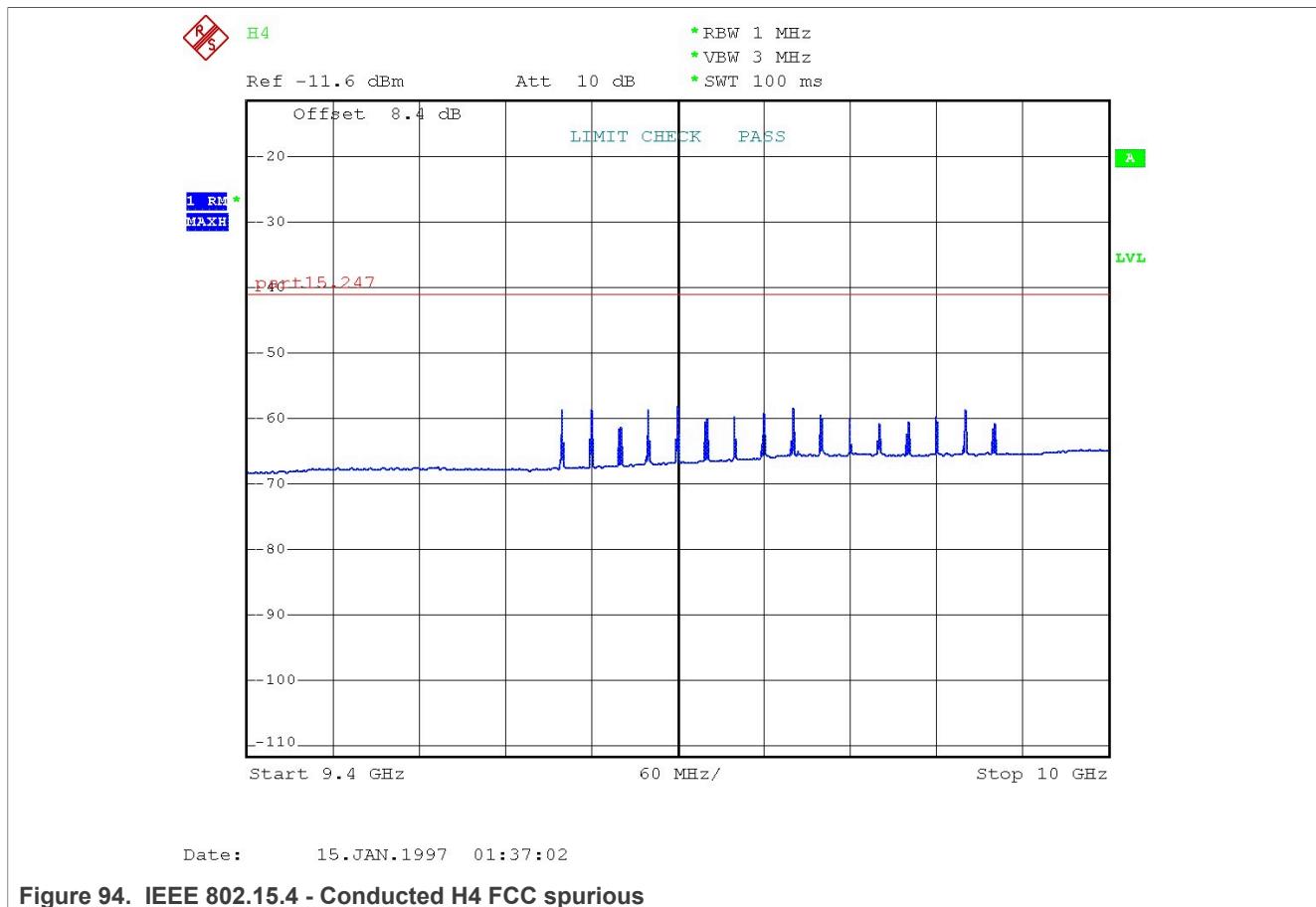
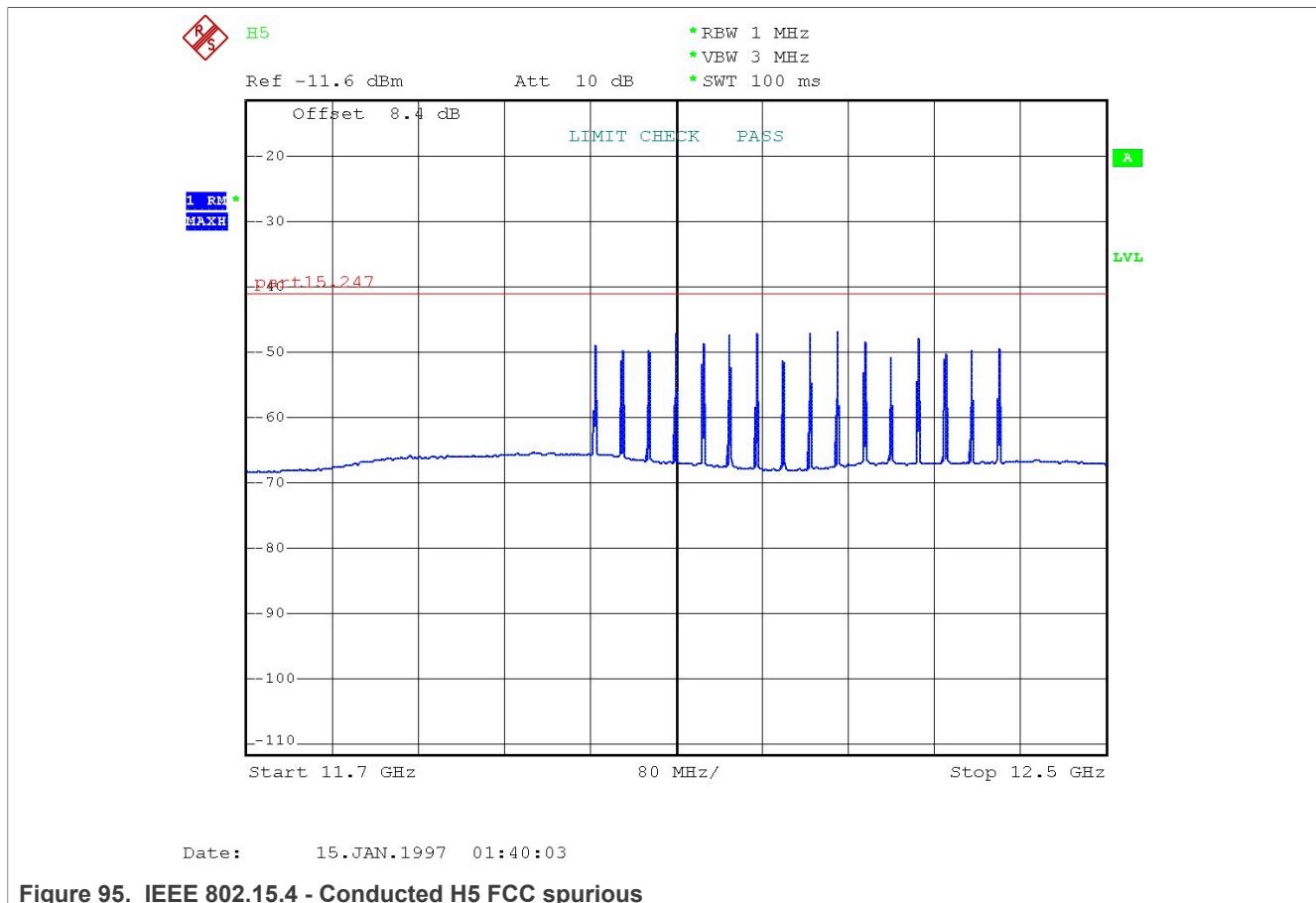


Figure 94. IEEE 802.15.4 - Conducted H4 FCC spurious

Result

- Maximum power is at frequency 9.7 GHz: -58.14 dBm.


Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 17.0 dB margin for Bluetooth LE to the FCC limit

3.3.1.6.13 H5 (FCC test conditions)

The test method is similar as for the H2, except the spectrum analyzer frequency span is set from 12 GHz to 12.5 GHz.

Figure 95. IEEE 802.15.4 - Conducted H5 FCC spurious

Result:

- Maximum power is at frequency 12.25 GHz: -46.96 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 5.8 dB margin for Bluetooth LE to the FCC limit

3.3.1.6.14 H6 (FCC test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 14.1 GHz to 15 GHz.

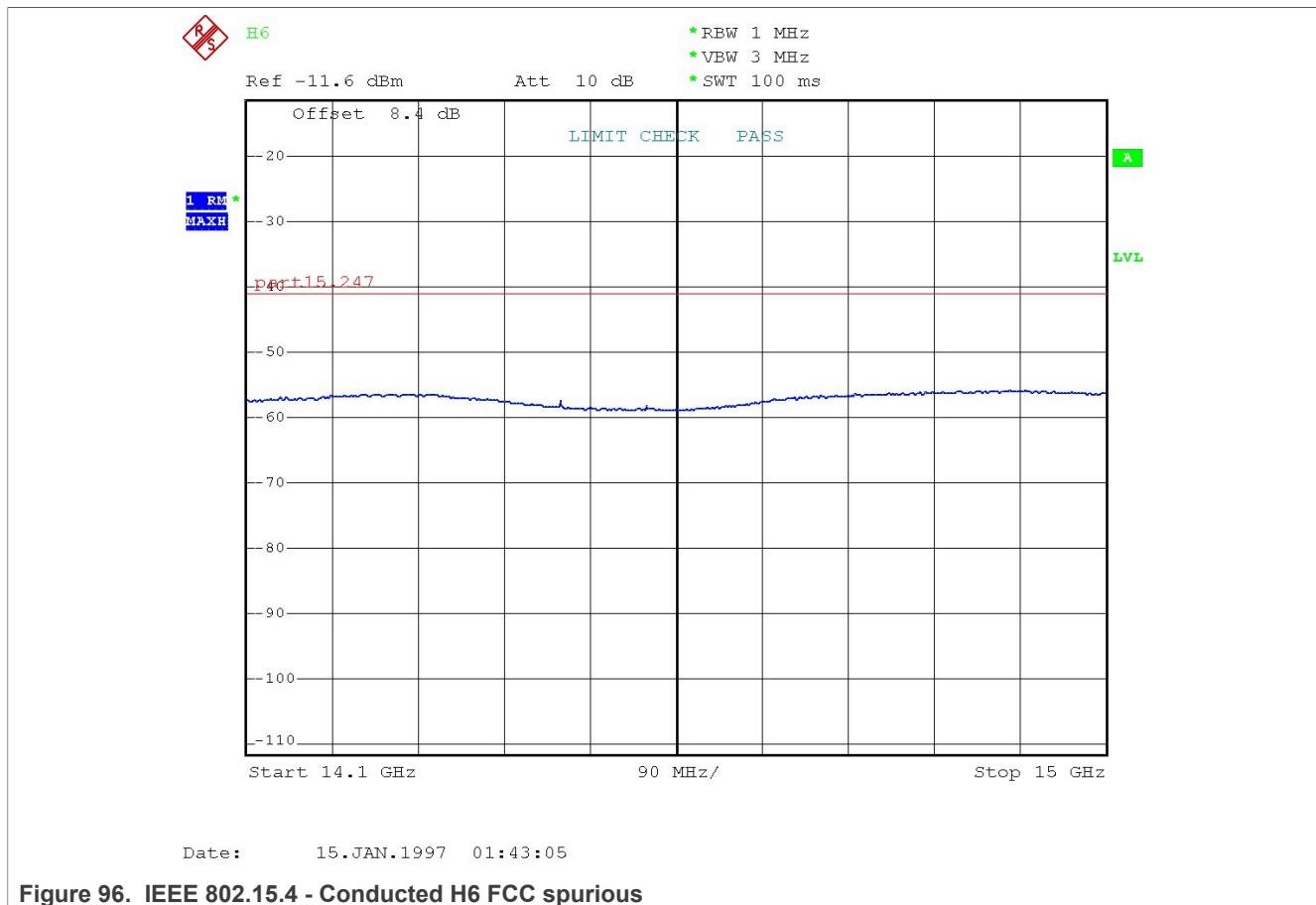


Figure 96. IEEE 802.15.4 - Conducted H6 FCC spurious

Result:

- Maximum power is at frequency 14.92 GHz: -55.88 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 14.8 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.15 H7 (FCC test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

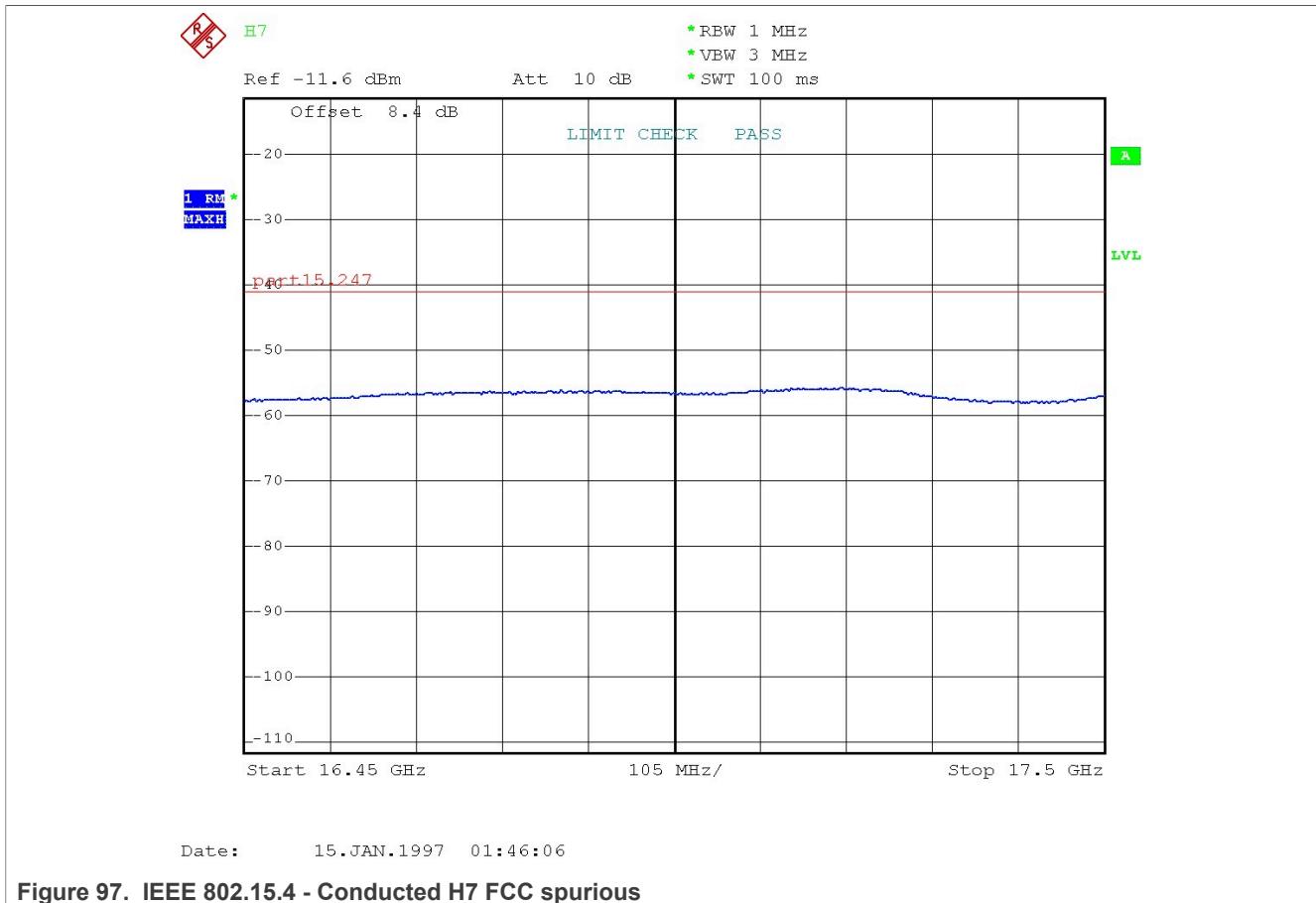
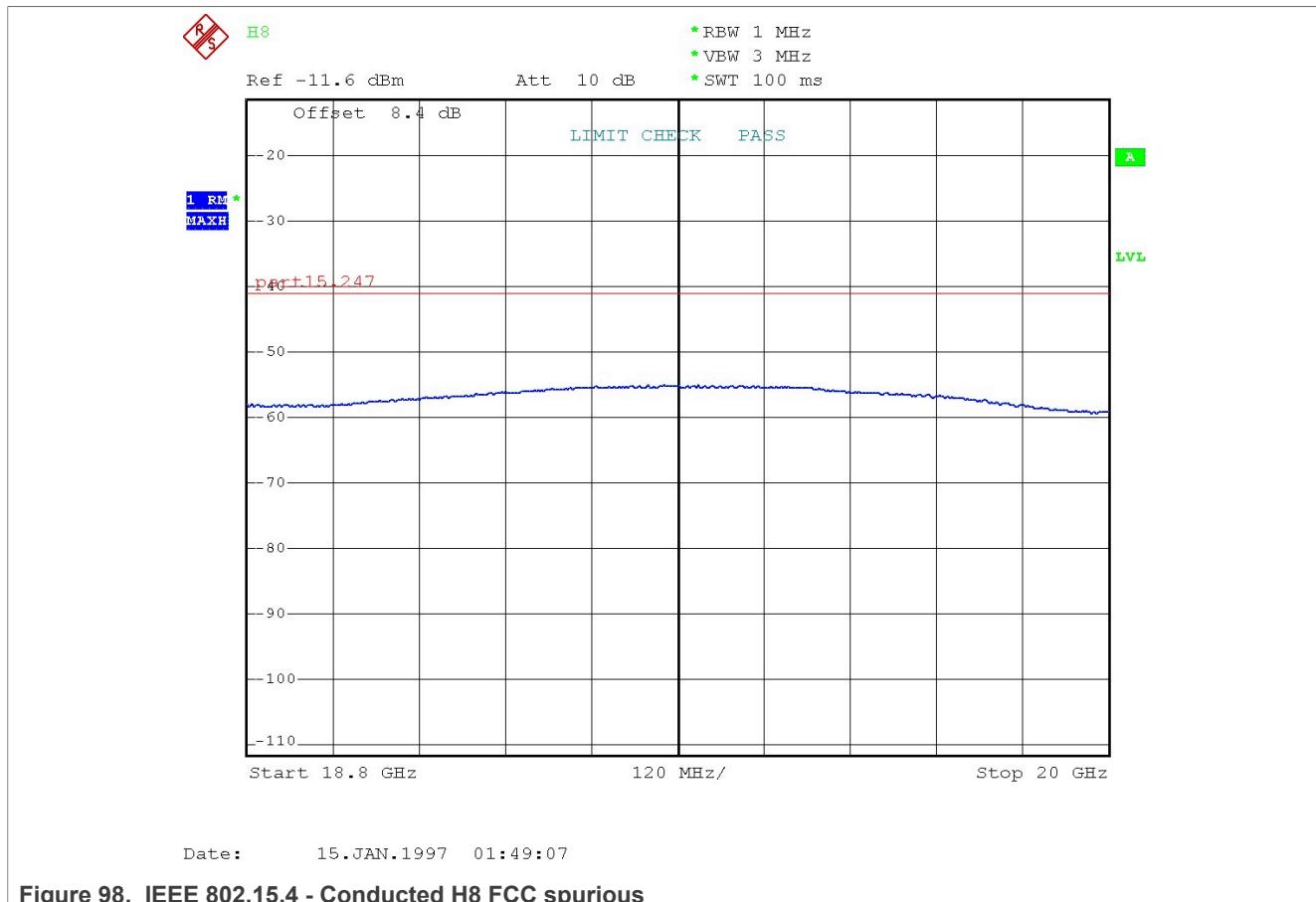


Figure 97. IEEE 802.15.4 - Conducted H7 FCC spurious

Result:

- Maximum power is at frequency 17.18 GHz: -55.75 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.


Conclusion:

- There is more than 14.6 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.16 H8 (FCC test conditions)

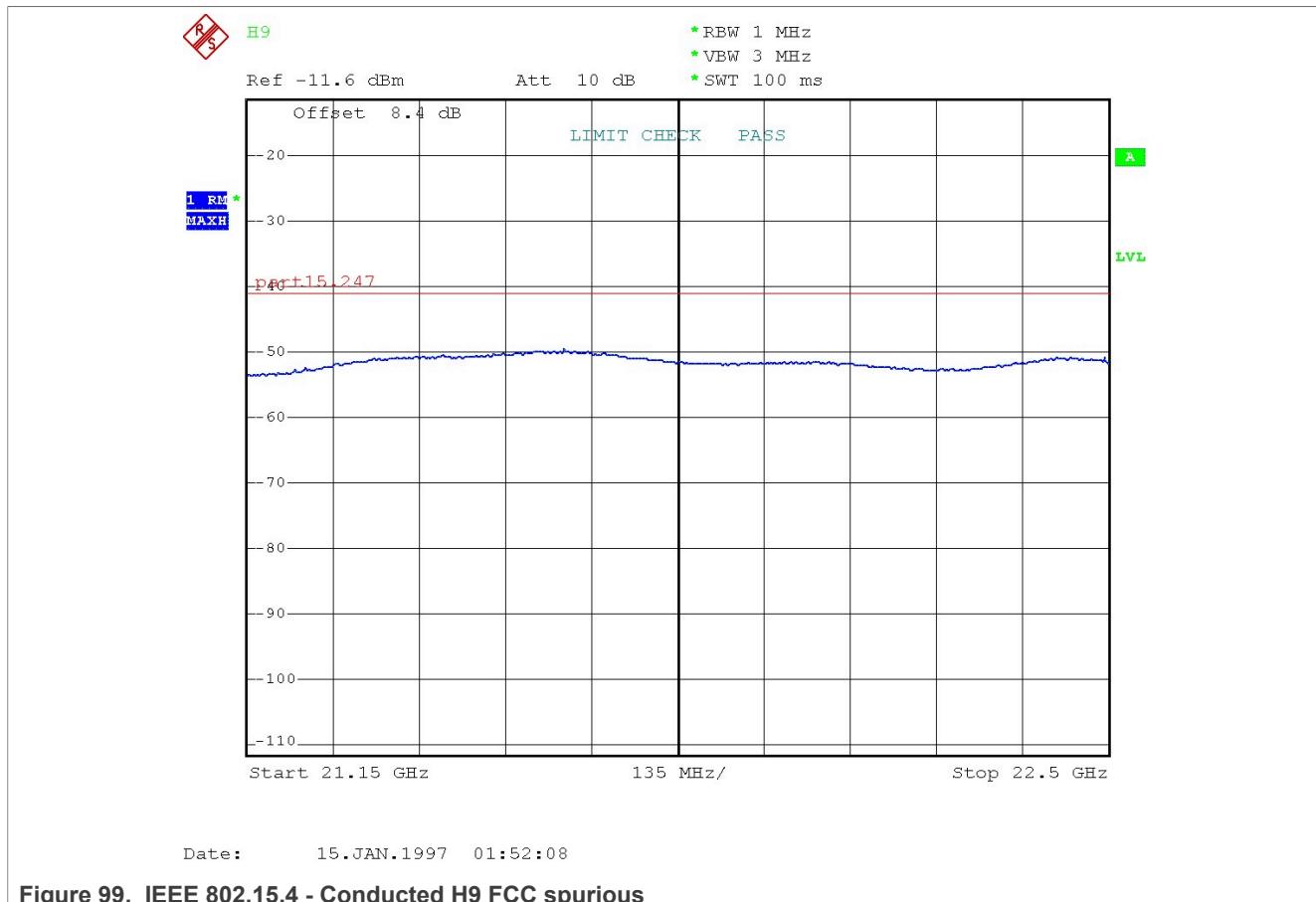
Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 18.8 GHz to 20 GHz.

Result:

Figure 98. IEEE 802.15.4 - Conducted H8 FCC spurious

- Maximum power is at frequency 19.38 GHz: -55.16 dBm

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.


Conclusion

- There is more than 14.0 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.17 H9 (FCC test conditions)

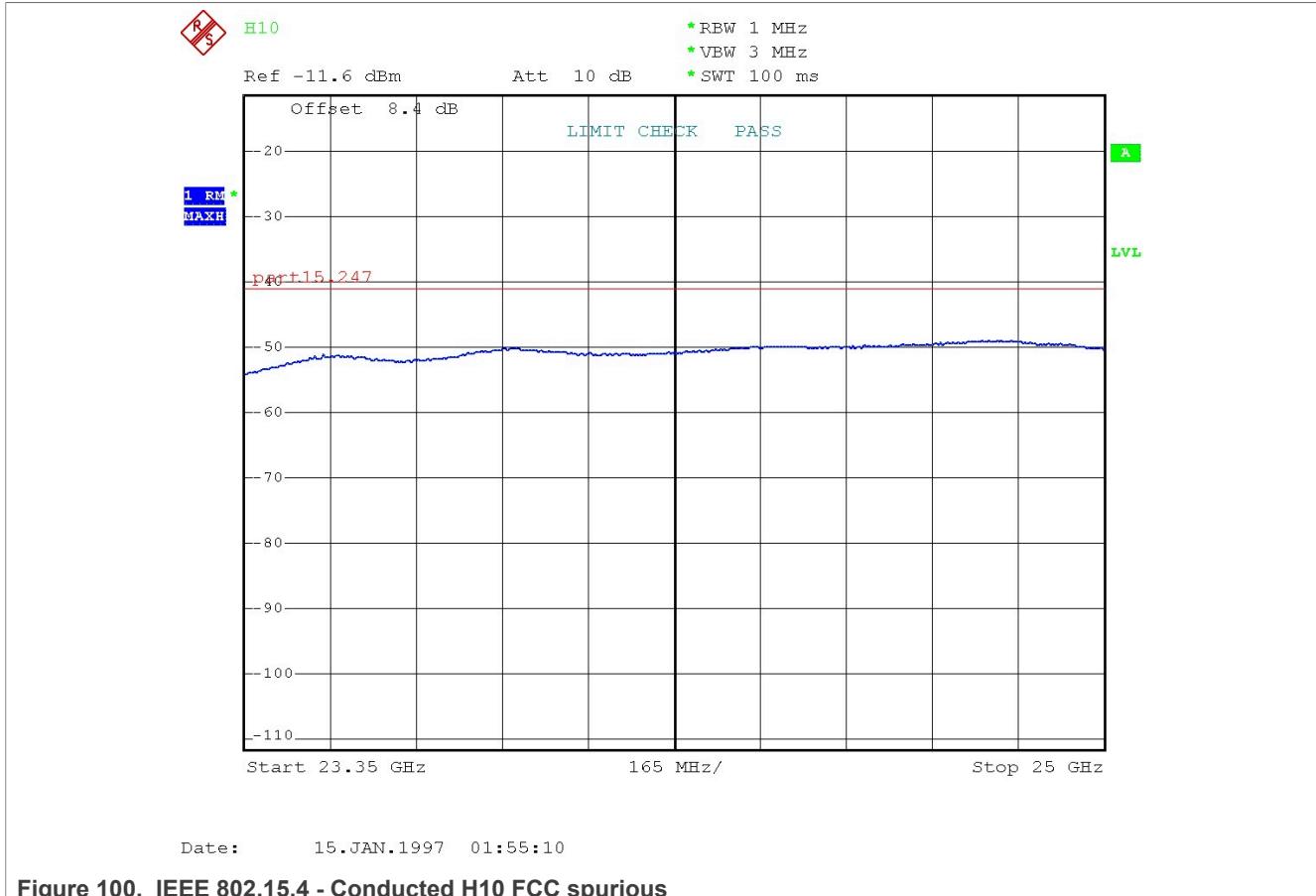
Test method

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 21.15 GHz to 22.5 GHz. Result:

Date: 15.JAN.1997 01:52:08

Figure 99. IEEE 802.15.4 - Conducted H9 FCC spurious

- The maximum power is at frequency 21.65 GHz: -50.03 dBm.


Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion

There is more than 8.9 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.18 H10 (FCC test conditions)

Use the same method as the test for H2, except that the spectrum analyzer frequency span is set from 23.35 GHz to 25 GHz.

Result:

- Maximum power is at the frequency 24.8 GHz: -49.03 dBm.

Note: These results are for illustration only as they were obtained using a uFL connector calibrated up to 6 GHz only.

Conclusion:

- There is more than 7.9 dB margin for Bluetooth LE to the FCC limit.

3.3.1.7 TX modulation

Test method:

- Use the Test setup N6. See [Figure 74](#).
- To do the EVM measurement, use the specific menu of the Spectrum analyzer.
- Set the MCX W72 in continuous modulated mode.
- First set the TX frequency to IEEE 802.15.4 Channel 11.
- Measure the offset EVM value.
- Repeat the test for each channel from IEEE 802.15.4 Channel 11 to IEEE 802.15.4 Channel 26.

3.3.1.7.1 EVM

The following graph shows the EVM test result.

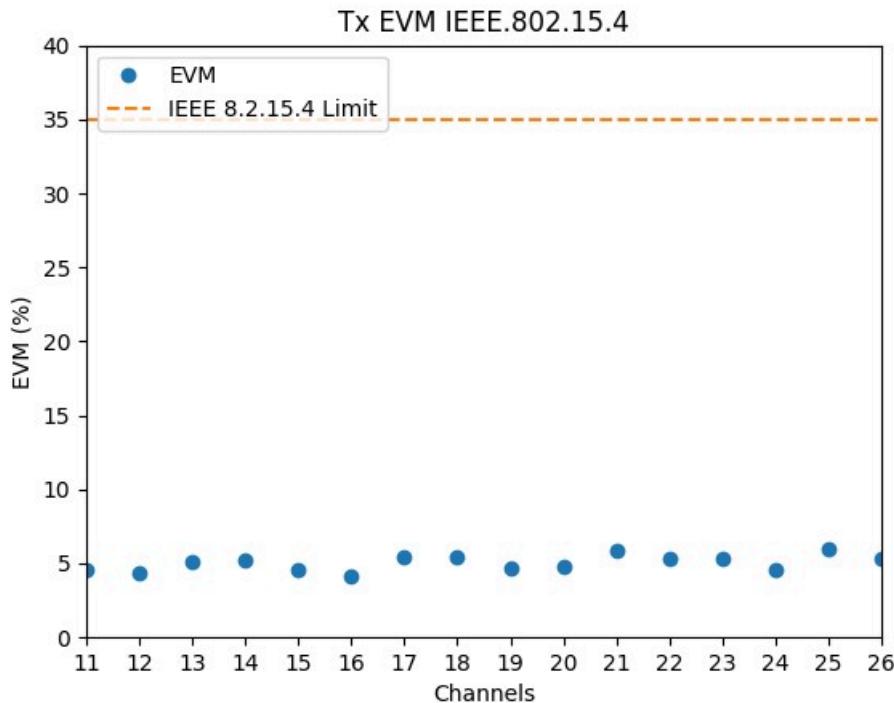


Figure 101. EVM in regular mode

The maximum value is on channel 25 with **5.95 %**.

Conclusion:

- The board passes the IEEE 802.15.4 EVM certification test.

3.3.1.7.2 Offset EVM

Test method:

- Use a similar method as for the EVM measurement.

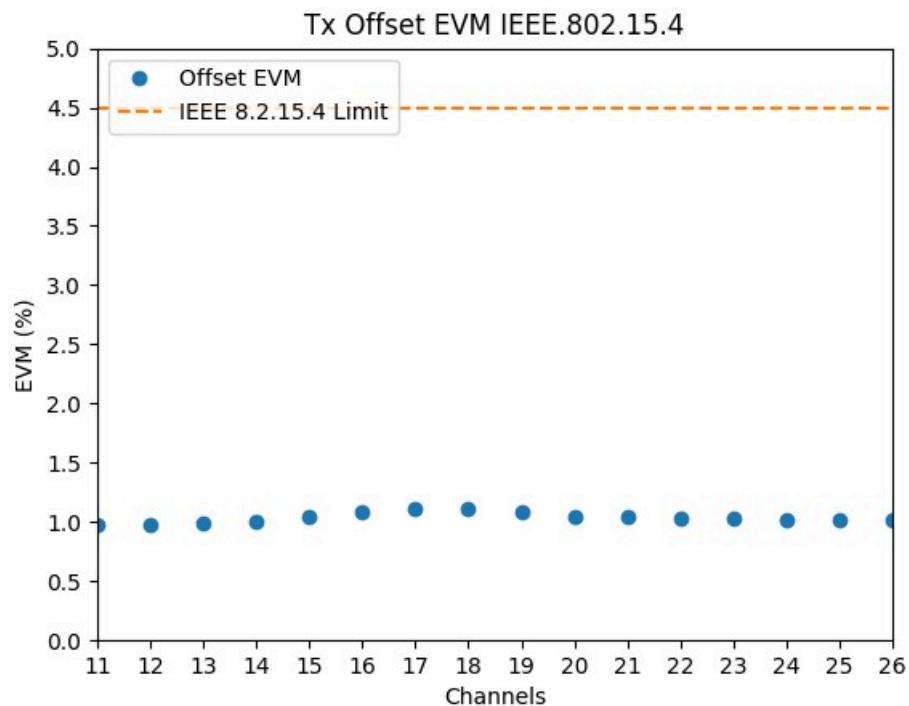


Figure 102. Offset EVM in regular mode

Result

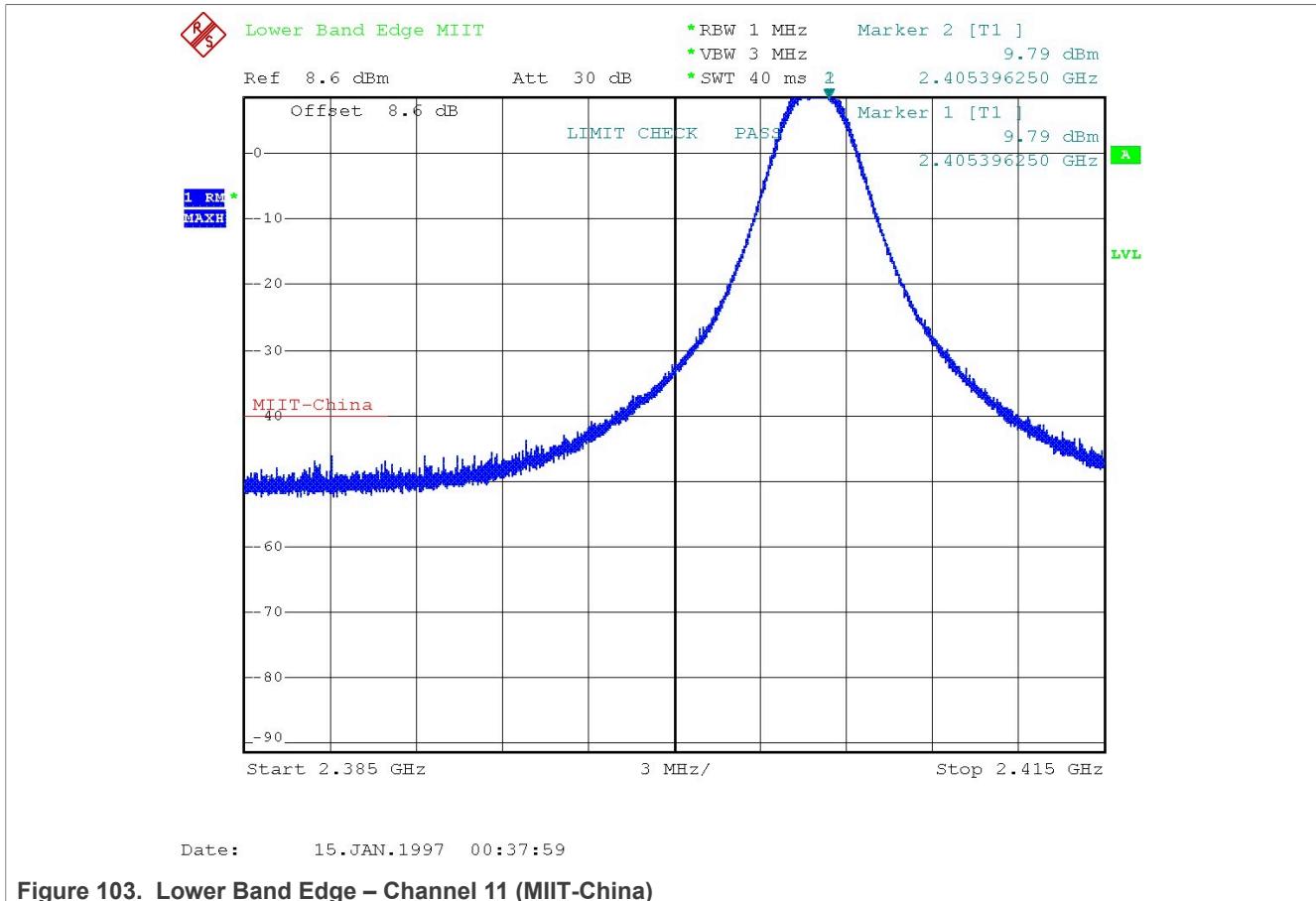
The maximum value is on channel 17 with 1.11 %.

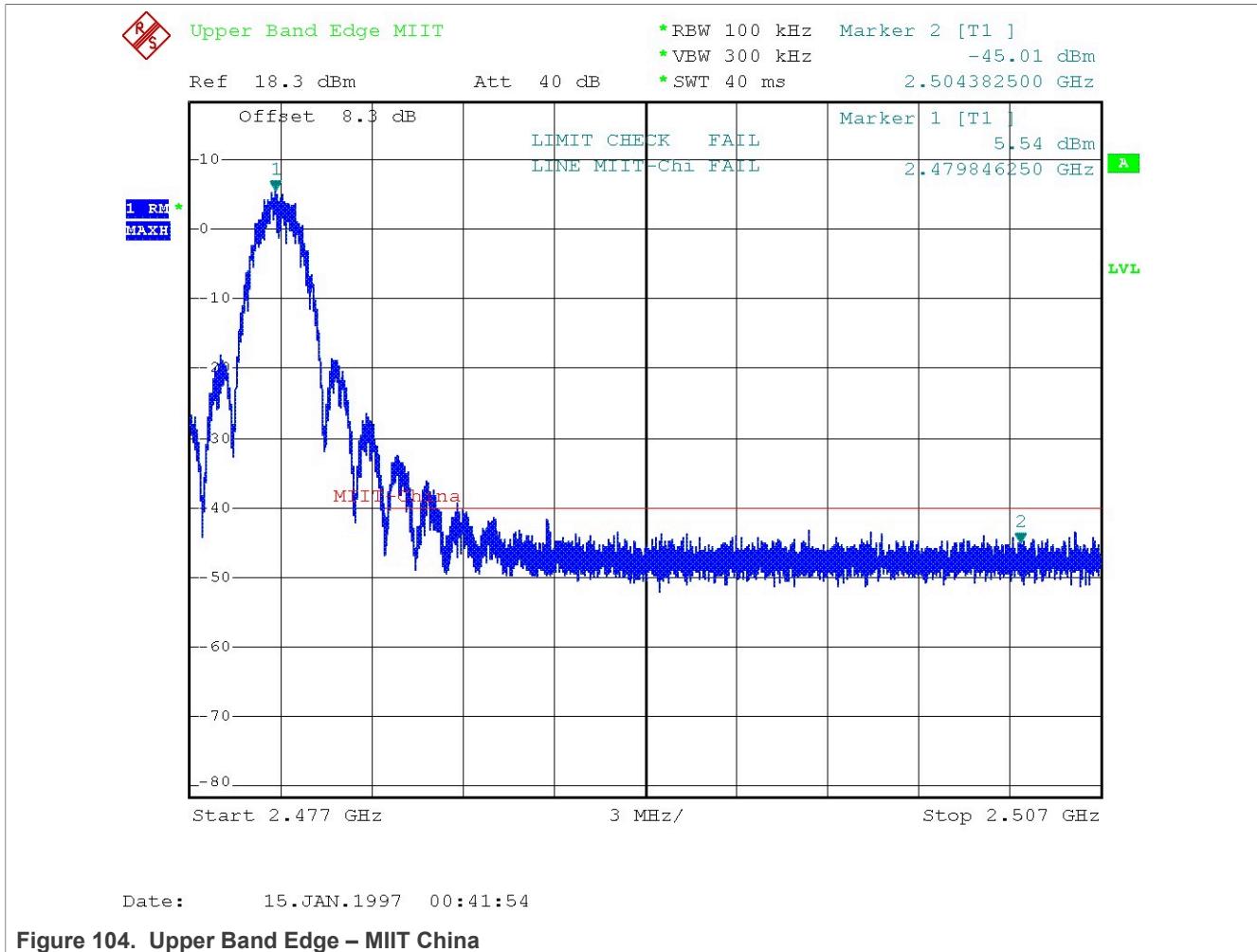
Conclusion

- The board passes the IEEE.802.15.4 Offset EVM certification test.

3.3.1.8 Lower Band Edge – China MIIT

- Use the Test setup N6. See [Figure 74](#)
- Set the radio parameters of the board to:
 - TX mode, modulated, burst mode
- Set the IEEE 802.15.4 Channel 11 (2.405 GHz)
- Set the analyzer to:
 - Start frequency= 2.385 GHz
 - Stop frequency = 2.415 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 100 ms
 - Sweep point: 8001 pts
 - RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector Mode = RMS
 - Trace Mode = Max Hold



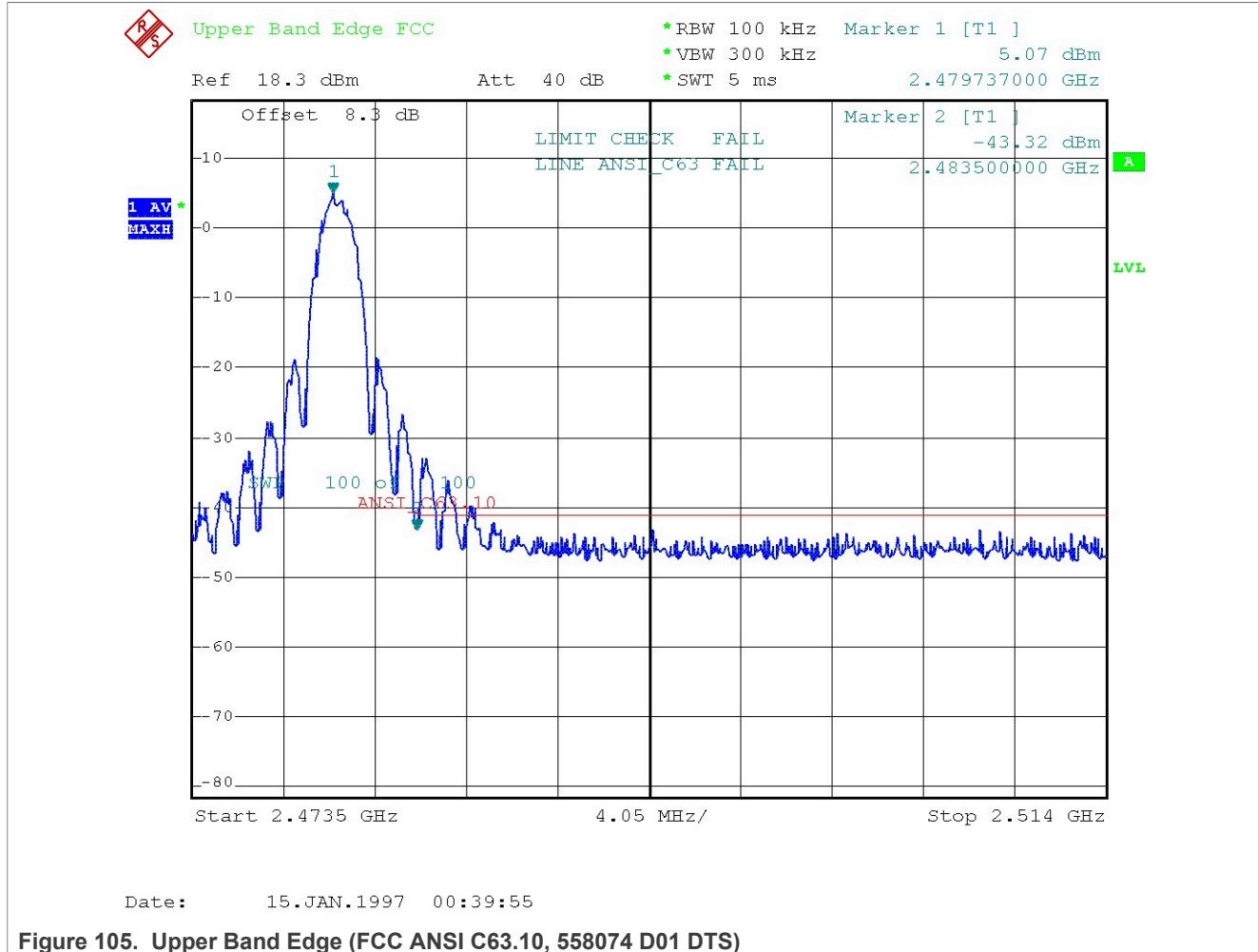

Figure 103. Lower Band Edge – Channel 11 (MIIT-China)

Conclusion

- The Lower Band Edge test passes the MIIT-China certification.

3.3.1.9 Upper Band Edge – MIIT China

- Use the Test setup N6. See [Figure 74](#)
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the channel 26 (2.48 GHz)
- Set the TX output power to -5 dBm
- Set the analyzer to:
 - Start frequency = 2.477 GHz
 - Stop frequency = 2.507 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 40 ms
 - Sweep point: 8001 pts
 - RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector Mode = RMS
 - Trace Mode = Max Hold


Conclusion:

- The MCX W72-FRDM passes the Upper Band Edge MIIT test by lowering the max Output Power level.

3.3.1.10 Upper Band Edge (FCC ANSI C63.10, 558074 D01 DTS)

- Use the Test setup N6. See [Figure 74](#)
- Set the radio parameters of the board to:
 - TX mode, modulated, and continuous emitting mode.
- Set the analyzer to:
 - Start frequency = 2.475 GHz
 - Stop frequency = 2.485 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 100 ms
 - RBW = 100 kHz
 - Video BW = 300 kHz
 - Detector = Average
 - Average mode: power
 - Number of sweeps = 100
- Set the channel 26 (2.48 GHz)

- Trace mode: Max hold

Results:

Table 72. Upper Band Edge (FCC ANSI)

Modulation	TX power
Level @2.4835 GHz	-44.62 dBm

FCC limit: <-41.15 dBm

Conclusion:

- The board passes the Upper Band Edge FCC Certification.
- There is a minimum of 3.47 dB margin.

3.3.1.11 Out Of Band (ETSI 300 328 chapter 5.4.8.2.1)

Test method:

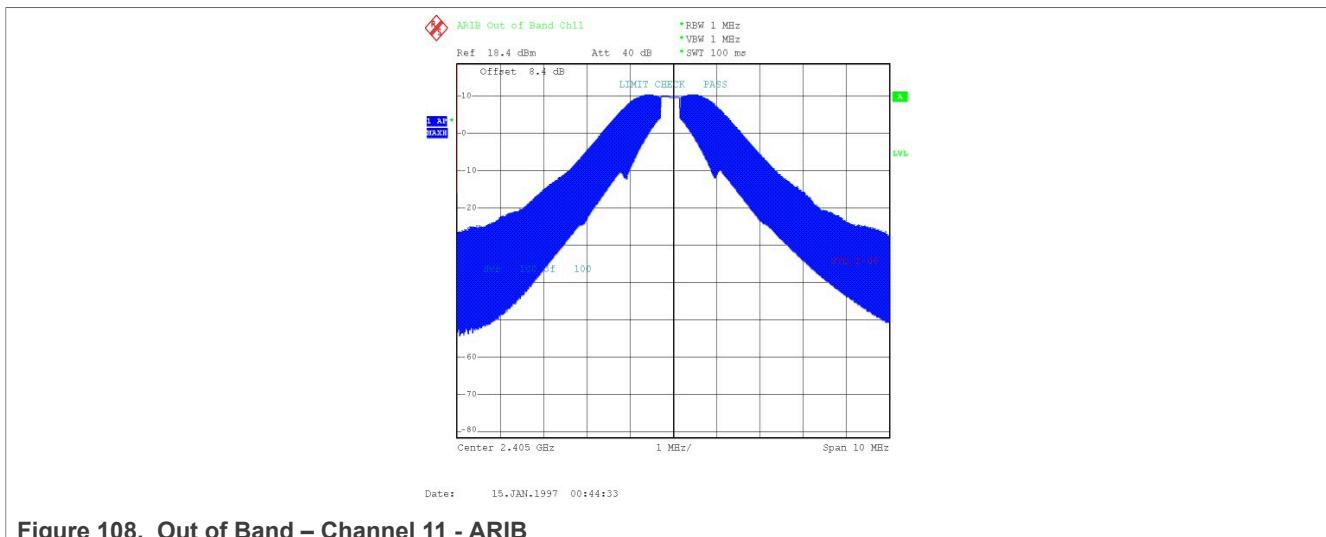
- Use the Test setup N6. See [Figure 74](#)
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency = 2.375 GHz
 - Stop frequency = 2.510 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 100 ms
 - RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector mode = RMS
 - Average mode: power
 - Number of sweeps = 100
- Set the channel 11 (2.405 GHz) and 26 (2.48 GHz)
- Trace mode: Max hold

Results

Figure 106. Out Of Band – Channel 11

Figure 107. Out Of Band – Channel 26

Conclusion:


- The FRDM-MCX W72 board passes the Out Of Band ETSI test for IEEE.802.15.4 Applications.

3.3.1.12 Out Of Band (ARIB STD T-66)

Test method:

- Use the Test setup N6. See [Figure 74](#)
- Set the radio parameters of the board to:
 - TX mode, modulated, continuous emitting mode
- Set the analyzer to:
 - Start frequency = 2.475 GHz
 - Stop frequency = 2.485 GHz
 - Reference amplitude = -20 dBm
 - Sweep time = 100 ms
 - RBW = 1 MHz, Video BW = 1 MHz
 - Detector mode = Peak
 - Average mode: power
 - Number of sweeps = 100
- Set the channel to Channel 11 (2.405 GHz) and Channel 26 (2.48 GHz)
- Trace mode: Max hold

Results:

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

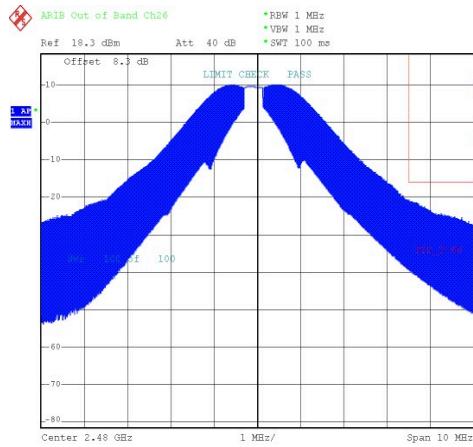


Figure 109. Out of Band – Channel 26 - ARIB

Conclusion

The FRDM-MCX W72 board passes the Out Of Band ARIB test for IEEE.802.15.4 Applications.

3.3.2 RX tests

This section explains various IEEE 802.15.4 reception tests, their test methods, and test results.

3.3.2.1 IEEE RX test setup

This section explains various test setup methods to conduct IEEE receiver tests such as sensitivity, interference rejection, spurious, and intermodulation.

3.3.2.1.1 Test setup N7

[Figure 110](#) shows the test setup to conduct IEEE RX sensitivity tests.

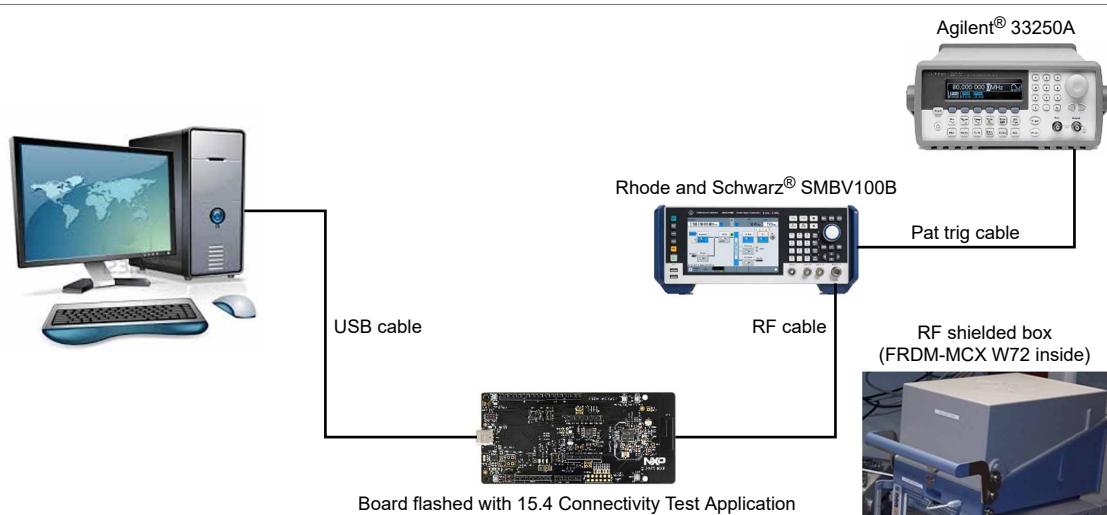


Figure 110. Test setup N7

Note: This test setup is identical to [test setup N3](#) except for the application used.

3.3.2.1.2 Test setup N8

[Figure 93](#) shows the test setup to conduct Rx Bluetooth LE interference rejection tests.

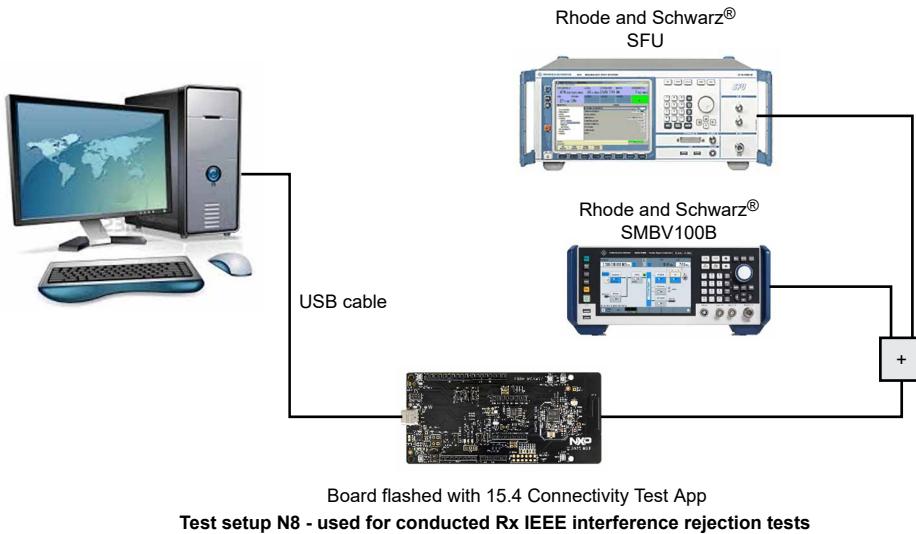


Figure 111. Test setup N8

Note: This test setup is totally identical to [test setup N4](#) except for the application used.

3.3.2.1.3 Test setup N9

[Figure 112](#) shows the test setup to conduct RX IEEE 15.4 spurious tests.

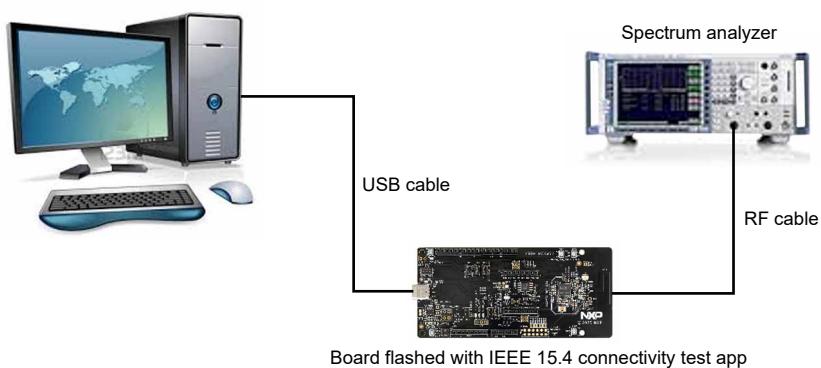
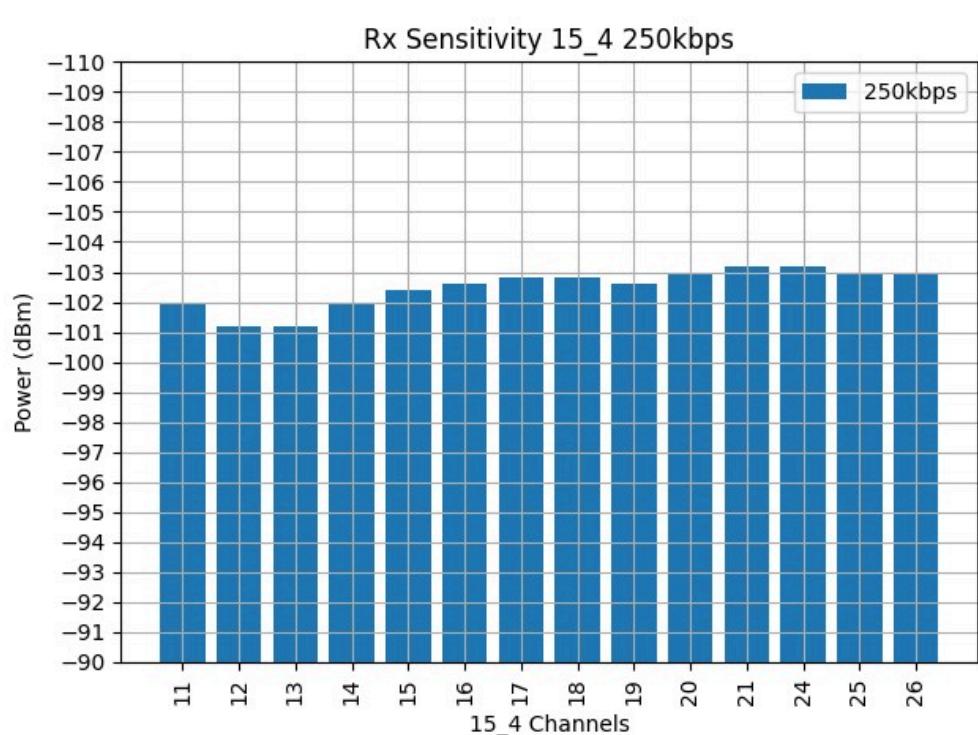


Figure 112. Test setup N9


Note: This test setup is identical to [Test setup N6](#).

3.3.2.2 RX sensitivity

Test method

- Use the Test setup N7. See [Figure 110](#).
- The FRDM-MCXW72 is placed in an RF shield box to limit external interferences.
- The generator is used in ARB mode to send 1000 packets of 20 octets each.
- A serial terminal window is used to control the module.
- Set the receive frequency to Channel 11.
- The connection is automatically established, and the Packet Error Rate (PER) is measured.
- Decrease the level of the generator at the RF input of the module until PER = 1%.
- Perform the same for other channels.

Result:

Figure 113. Rx Sensitivity

Conclusion:

- The best sensitivity is on channel 21: -103.2 dBm
- The lowest sensitivity is on channel 12: -101.2 dBm
- Delta over channels: 2.0 dB

FRDM-MCXW72 shows an average value of -102.5 dBm at SMA connector.

Attention: In the Rx test, FRDM-MCX W72 is not able to receives all packages when set interval time <1.6 ms between two packets. However, the calculation below shows that 832 μ s is ok:

- All frames are 20 bytes = 40 bytes + 12 symbols for PHY header = 52 symbols
- Time delta between two 20 bytes frames is 832 μ s = 52 symbols.
- Time delta = SFD2 - SFD1 = [4 bytes preamble, 1 byte SFD] of frame2 + [IFS] + [length + PHY payload] of frame 1 = 10 symbols +IFS + 42 symbols = 52 symbols + IFS => IFS = 0

3.3.2.3 RX sensitivity bathtub

Test method:

- Use the Test setup N7. See [Figure 110](#).
- Place the FRDM-MCXW72 board in an RF shield box to limit external interferences.
- To send 1000 packets of 20 octets each, use the generator in ARB mode.
- Use a serial terminal window to control the module.
- Set the receive frequency to Channel 11.
- The connection is automatically established, and the Packet Error Rate (PER) is measured.
- Decrease the level of the generator at the RF input of the module until PER = 1 %.
- Note the value.

Result:

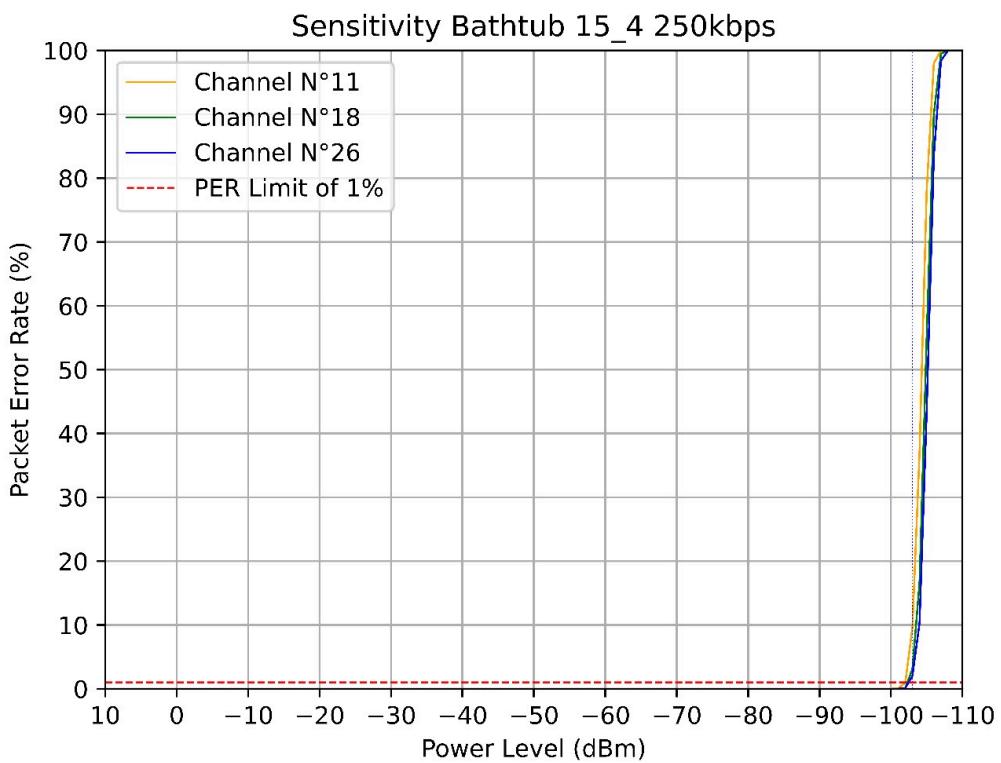
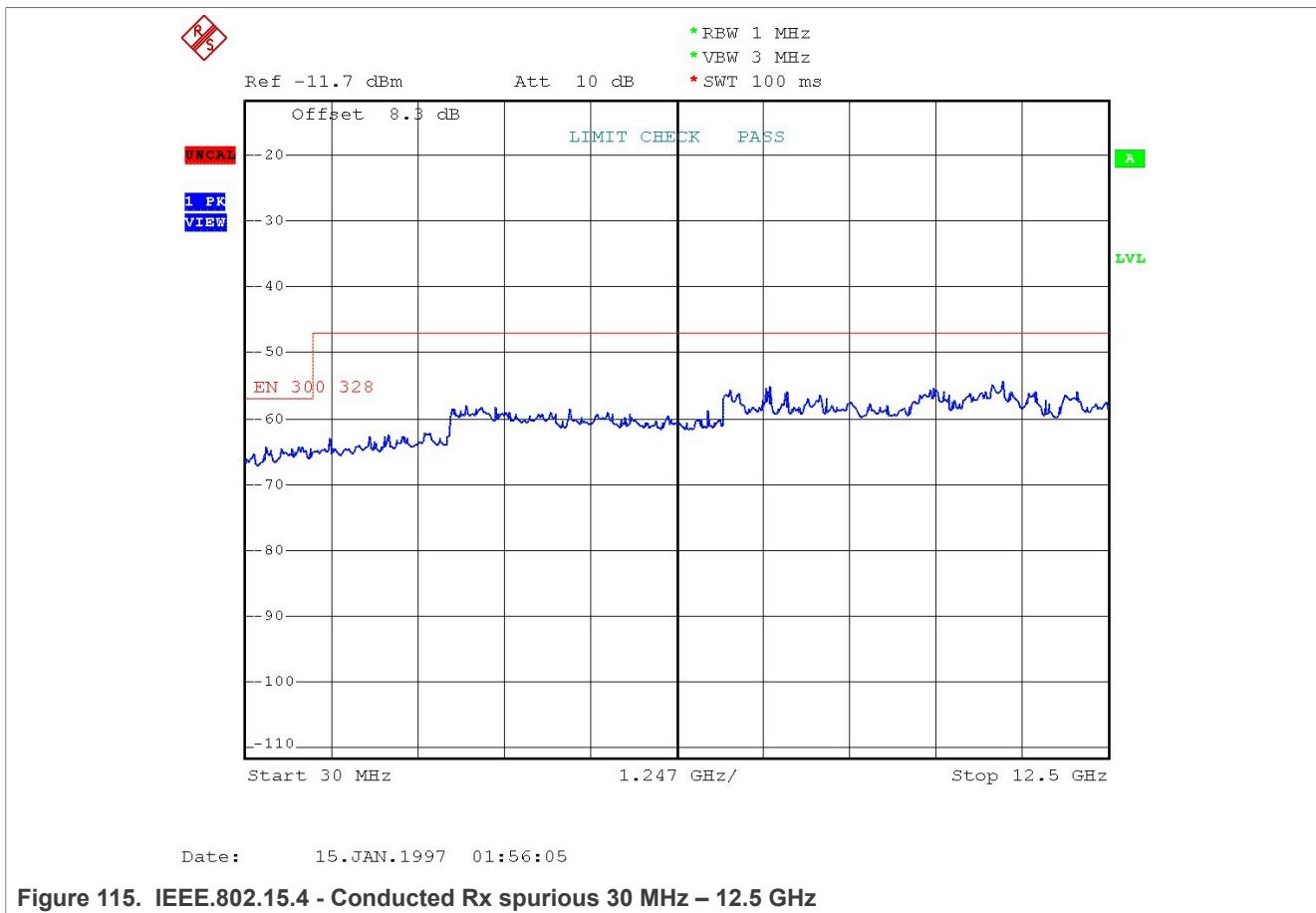



Figure 114. Sensitivity bathtub

3.3.2.4 RX spurious

Test method:

- Use the Test setup N9. See [Figure 112](#).
- Set the radio in: Receiver mode, frequency: channel 18
- Set the analyzer to:
 - Reference amplitude = -20 dBm, Trace = max hold, detector = max peak
 - Start/stop frequency: 30 MHz/1 GHz, RBW = 100 kHz,
 - Then the start/stop frequency: 1 GHz/12.75 GHz, RBW = 1 MHz

Results:**Conclusion:**

- The FRDM-MCXW72 passes the ETSI limit.
- There is 7.28 dB margin to the limit.

3.3.2.5 Receiver interference rejection

This section describes the IEEE 802.15.4 receiver interference rejection for adjacent and alternate channels with standard interferers.

3.3.2.5.1 Adjacent and alternate channels with standard interferers

The interferers are at the adjacent and alternate channels (+/-1 MHz, +/-2 MHz, +/-3 MHz) or co-channel. The test is performed with only one interfering unmodulated signal at a time.

Test method:

- Test setup N8 is used. See [Figure 111](#).
- Criterion: PER < 1.0 % with 1000 packets.
- The wanted signal is set to -82 dBm; the interferer is increased until the PER threshold is reached.
- Channels under test: Channel 11 (2.405 GHz), Channel 18 (2.440 GHz), and Channel 26 (2.480 GHz)

Note:

- n-1, n-2 are not system relevant for channel 11.

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

– $n+1$, $n+2$ are not system relevant for channel 26.

Table 73. IEEE RX Interference rejection results for Channel 11

Wanted channel:	Channel 11						
Wanted frequency (MHz):	2405						
Interferer:	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz):	2390	2395	2400	2405	2410	2415	2420
Maximum Interferer level (dBm):	12.0	8.0	4.0	-61.0	4.0	8.0	12.0
Maximum Interferer level (C/I dB):	-94.0	-90.0	-86.0	-21.0	-86.0	-90.0	-94.0
Bluetooth LE 5.x limit (C/I limit):	-27	-17	15	21	15	-17	-27
Margin (dB):	67.0	73.0	101.0	42.0	101.0	73.0	67.0

Table 74. IEEE RX Interference rejection results for Channel 18

Wanted:	Channel 18						
Wanted frequency (MHz):	2440						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz):	2425	2430	2435	2440	2445	2450	2455
Maximum Interferer level (dBm):	12.0	7.0	3.0	-62.0	3.0	6.0	10.0
Maximum Interferer level (C/I dB)	-94.0	-89.0	-85.0	-20.0	-85.0	-88.0	-92.0
Bluetooth LE 5.x limit (C/I limit)	-27	-17	15	21	15	-17	-27
Margin (dB):	67.0	72.0	100.0	41.0	100.0	71.0	65.0

Table 75. IEEE RX Interference rejection results for Channel 26

Wanted	Channel 26						
Wanted frequency (MHz):	2480						
Interferer	N-3 MHz (Adjacent)	N-2 MHz (Adjacent)	N-1 MHz (Adjacent)	N (Co-channel)	N+1 MHz (Adjacent)	N+2 MHz (Adjacent)	N+3 MHz (Adjacent)
Interferer frequency (MHz):	2465	2470	2475	2480	2485	2490	2495
Maximum Interferer level (dBm):	11.0	7.0	4.0	-61.0	4.0	7.0	12.0
Maximum Interferer level (C/I dB):	-93.0	-89.0	-86.0	-21.0	-86.0	-89.0	-94.0
Bluetooth LE 5.x limit (C/I limit):	-27	-17	15	21	15	-17	-27

Table 75. IEEE RX Interference rejection results for Channel 26...continued

Wanted	Channel 26							
Margin (dB):	66.0	72.0	101.0	42.0	101.0	72.0	67.0	

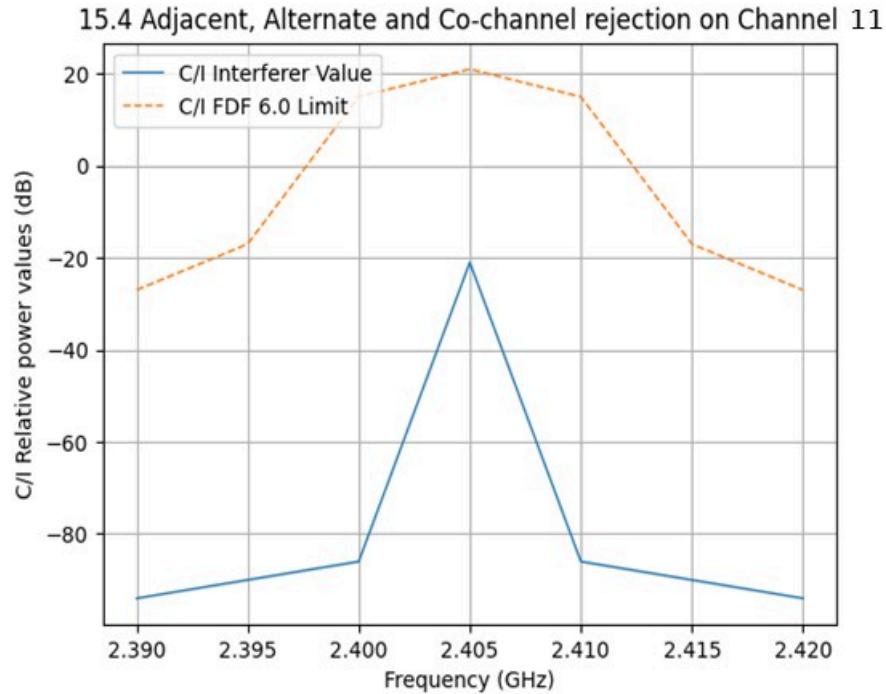


Figure 116. Adjacent, alternate, and co-channel rejection @ channel 11

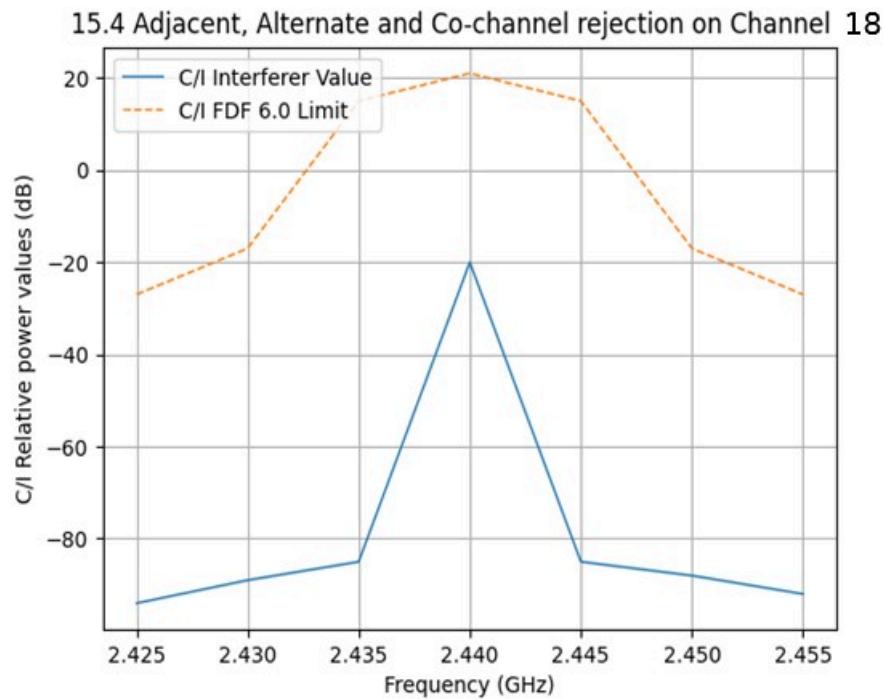


Figure 117. Adjacent, alternate, and co-channel rejection @ channel 18

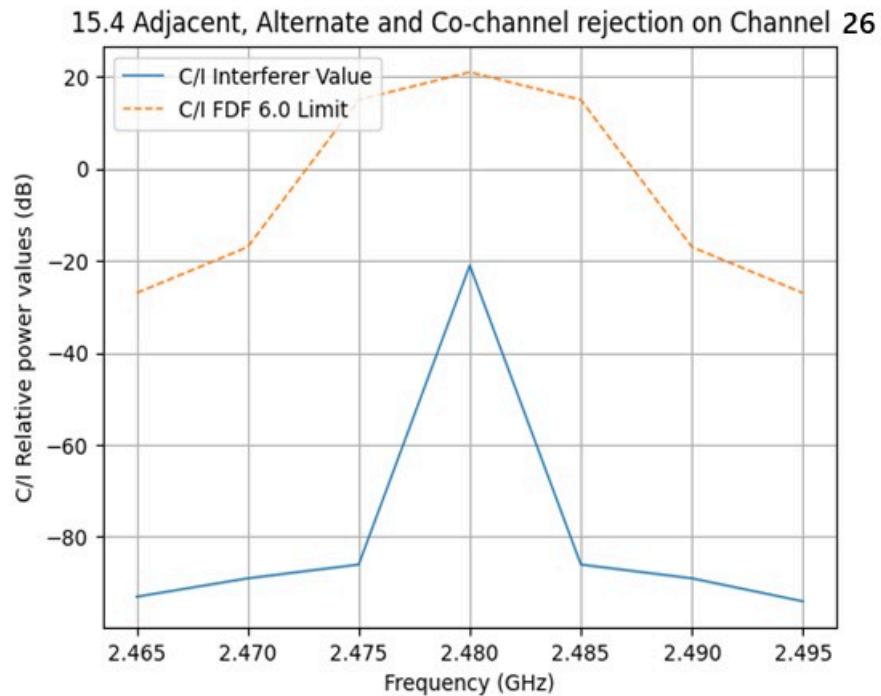


Figure 118. Adjacent, alternate, and co-channel rejection @ channel 26

Conclusion: The FRDM-MCXW72 board passes the IEEE 802.15.4 certification for this test with a worst margin of 41.0.

3.3.2.6 Receiver blocking

Refer to ETSI 300.328 2.2.2 Chapter 4.3.1.12.4.2 for the details of receiver blocking tests.

3.3.2.6.1 Receiver category 1

The test is performed with only one interfering signal at a time.

The Application flashed on the board is the 15.4 Connectivity Test App.

Test method:

- Test setup N8 is used. See [Figure 111](#).
- The interferer is a continuous waveform (CW) signal.
- Criterion: PER < 10 %
- For an interferer set at 2.380 GHz and 2.504 GHz, set the wanted signal to the lowest value between $10\log(\text{OCBW})-133$ dBm and -68 dBm.
- For interferers set at 2.300 GHz, 2.330 GHz, 2.360 GHz, 2.524 GHz, 2.584 GHz, and 2.674 GHz, set the wanted signal to the lowest value between $10\log(\text{OCBW})-139$ dBm and -74 dBm.
- In both cases, the interferer power level is increased until the PER threshold is reached.
- IEEE.802.15.4 channels under test: 11 (2.405 GHz) and 26 (2.480 GHz)

Result

Table 76. Receiver Blocking (Out of Band) rejection Category 1 (Channel 11)

Channel	11							
Frequency (MHz)	2405							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	>10	>10	>10	>10	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0

Table 77. Receiver Blocking (Out of Band) rejection Category 1 (Channel 26)

Channel	26							
Frequency (MHz)	2480							

Table 77. Receiver Blocking (Out of Band) rejection Category 1 (Channel 26)...continued

Channel	26							
Interferer Type	Low	Low	Low	Low	High	High	High	High
Interferer Frequency (MHz)	2300	2330	2360	2380	2504	2524	2584	2674
Maximum Interferer Level (dBm)	>10	>10	>10	>10	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34	-34	-34	-34	-34
Margin(dB)	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 1 test, there is a margin of 44.0 dB until the limit.

3.3.2.6.2 Receiver category 2

The test is performed with only one interfering signal at a time.

The application flashed on the board: 15.4 Connectivity Test App

Test method:

- Test setup N8 is used. See [Figure 111](#).
- Interferer is a continuous waveform (CW) signal.
- Criterion: PER < 10 %
- The wanted signal is set to the lowest value between -64 dBm and $10\log(OCBW) - 129$ dBm. The continuous waveform (CW) interferer is increased until the PER threshold is reached.
- Channels under test: IEEE.802.15.4 Channel 11 (2.405 GHz) and Channel 26 (2.480 GHz).

Result

Table 78. Results for Receiver category 2 (Channel 11)

Channel	Channel 11			
Frequency (MHz)	2405			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	44.0	44.0	44.0	44.0

Table 79. Results for Receiver category 2 (Channel 26)

Channel	Channel 26			
Frequency (MHz)	2480			
Interferer Type	Low	Low	High	High
Interferer Frequency (MHz)	2300	2380	2504	2584
Maximum Interferer Level (dBm)	>10	>10	>10	>10
300.328 Lower limit (dBm)	-34	-34	-34	-34
Margin(dB)	44.0	44.0	44.0	44.0

Receiver Blocking (Out Of Band) rejection

Conclusion: The FRDM-MCXW72 passes the Receiver Blocking Category 2 test, there is a margin of 44.0 dB until the limit.

4 Return loss

This section describes the return loss in receiver and transmitter modes.

4.1 RX mode

In the RX mode, the return loss measurement is performed by setting the LNA gain of MCX W72 to the maximum.

Hardware: FRDM-MCXW72

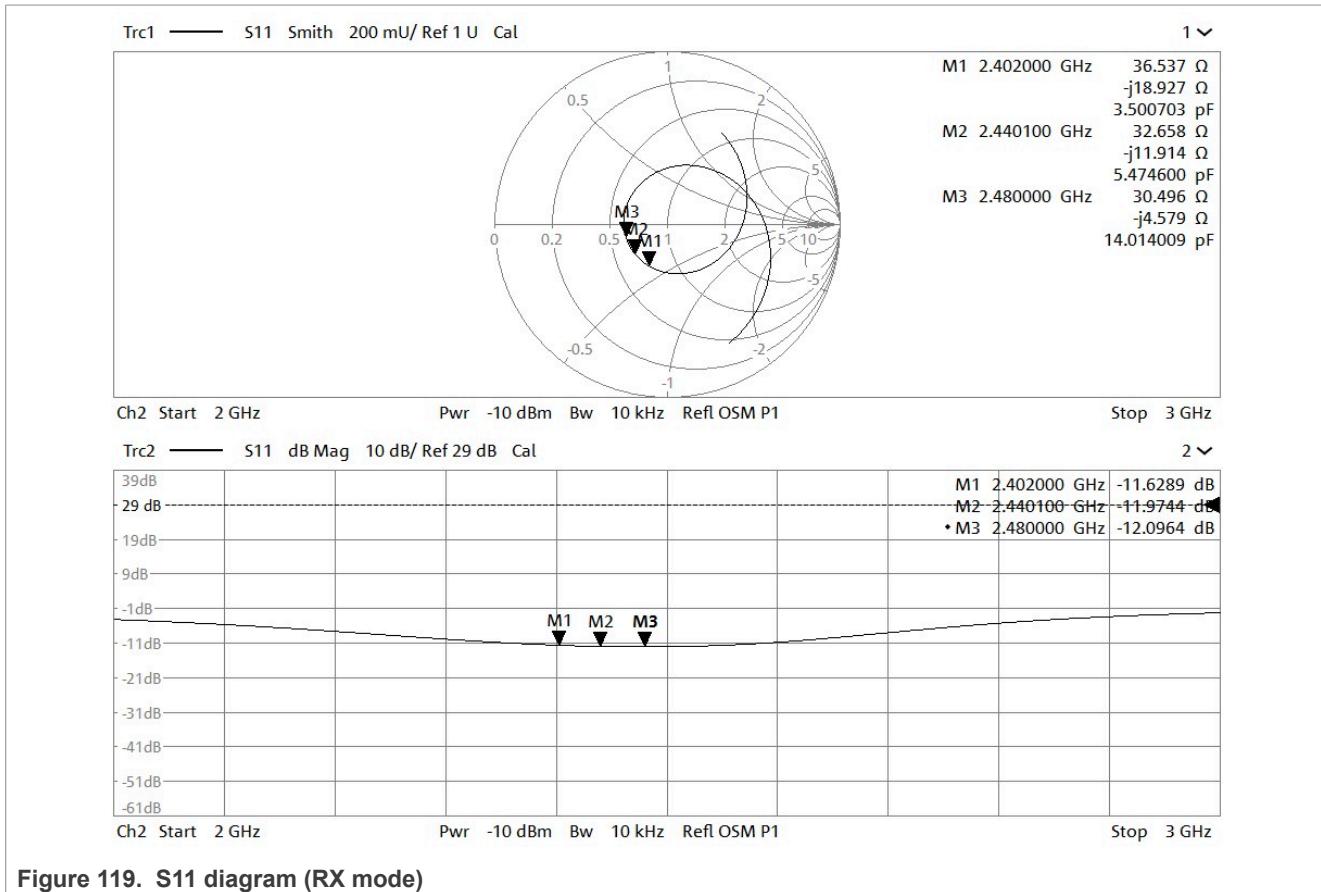
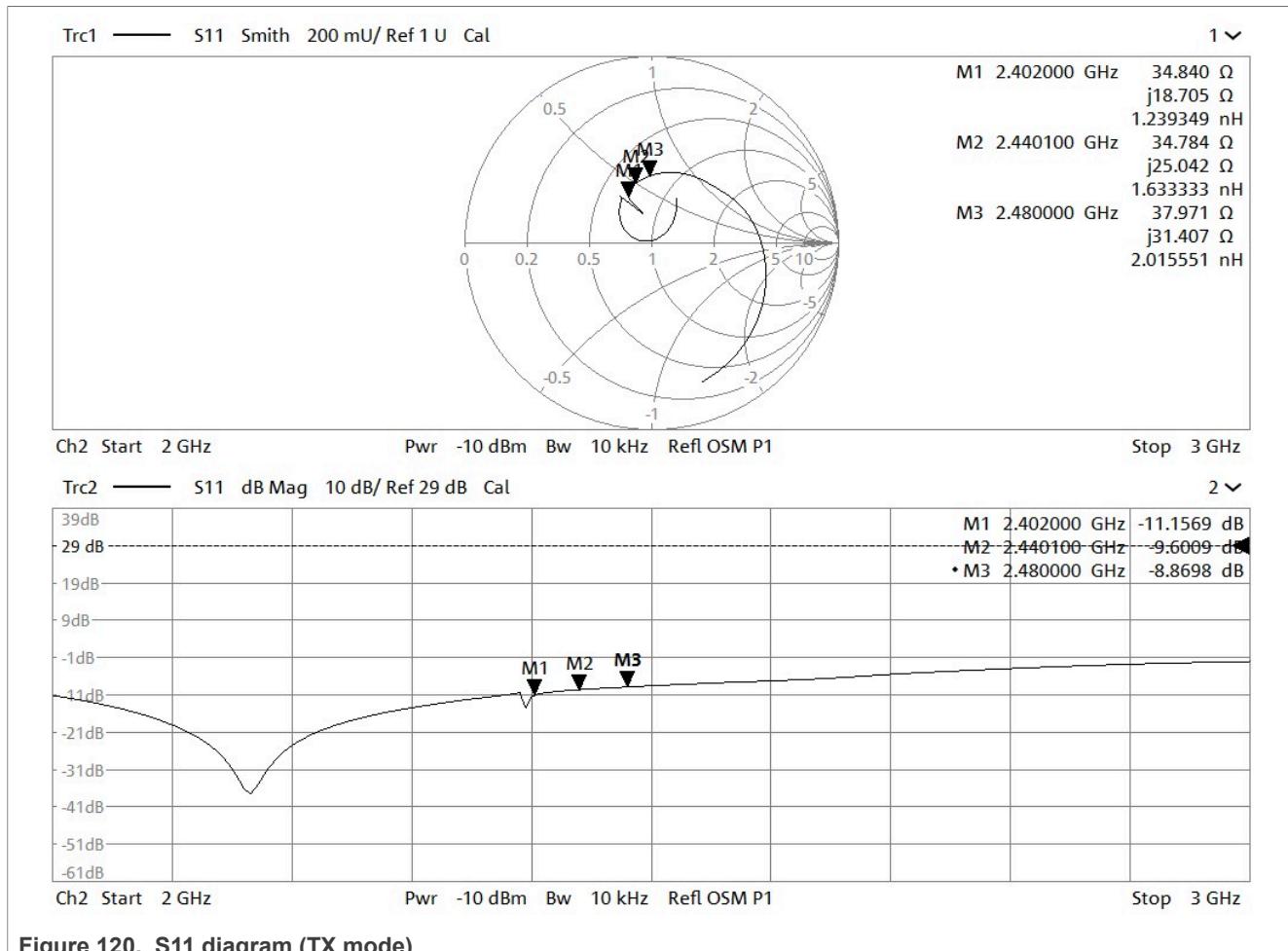


Figure 119. S11 diagram (RX mode)


There is no specification for the return loss.

4.2 TX mode

In the TX mode, the return loss measurement is performed by setting the MCX W72 RF output power to the maximum.

Hardware: FRDM-MCXW72

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

There is no specification for the return loss.

5 Conclusion

Beyond the RED, FCC, Bluetooth LE 6.0 and IEEE 802.15.4 compliances, these radio tests prove a good performance of the MCX W72 wireless MCU.

6 References

- **FCC:** 47 CFR Part 15C
- **RED:** European Radio Equipment Directive applied from June 2016
- **R&TTE:** Radio & Telecommunications Terminal Equipment Directive (R&TTED) (1999/5/EC) was stopped on June 2016
- **ETSI EN 300 328 v2.2.2:** European Telecommunication Standard - Radio Equipment and Systems (RES) Wideband data transmission systems, technical characteristics and test conditions for data transmission equipment operating in the 2.4 GHz ISM band and using spread spectrum modulation techniques
- **RF-PHY TS 6.0:** Bluetooth Test Specification. This document defines test structures and procedures for qualification testing of Bluetooth implementations of the Bluetooth Low Energy RF PHY.
- **IEEE 802.15.4:** IEEE standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personnel Area Networks (LR-WPANs)

Table 80. Related documentation

Document Title	Description	Link / how to obtain
MCX W72 Reference Manual	Provides a detailed description about the MCX W72 MCU and its features, including memory maps, power supplies, and clocks.	https://www.nxp.com/products/MCX-W72#documentation
MCX W72 Product Family Data Sheet	Provides information about the MCX W72 electrical characteristics, hardware design considerations, and ordering information.	
FRDM-MCXW72 board schematics	Provides a circuit representation showing the functionality and connectivity of the FRDM-MCXW72 board components.	https://www.nxp.com/FRDM-MCXW72#design-resources

7 Acronyms

[Table 81](#) lists the acronyms used in this document.

Table 81. Acronyms

Acronym	Description
ARB	Arbitrary waveform generator
CCC	Car connectivity consortium
CDE	Complex-domain distance estimation
CS	Channel sounding
CW	Continuous wave
FRDM	Freedom development platform
GenFSK	Generic frequency shift keying
GPIB	General-purpose interface bus
HADM	High accuracy distance measurement
MCIQ	Multichannel IQ: Method to capture IQ samples of data exchanged between two devices on multiple channels.
MUSIC	Multiple signal classification
PCT	Phase correction term
OQPSK	Offset quadrature phase-shift keying
RADE	Rapid accelerate distance estimation
RSSI	Received signal strength indicator (in dBm)
RTP	Round-trip phase
RTT	Round-trip time
RX	Receiver
SRDE	Super resolution distance estimation
ToF	Time of flight
TX	Transmitter

8 Revision history

[Table 82](#) lists the updates to this document.

Table 82. Revision history

Document ID	Release date	Description
AN14889 v.1.0	5 February 2026	Initial public release

9 Appendix A

This section describes the IEEE.802.15.4 Connectivity Test Tool settings that must be used for performing the IEEE tests described in this application note.

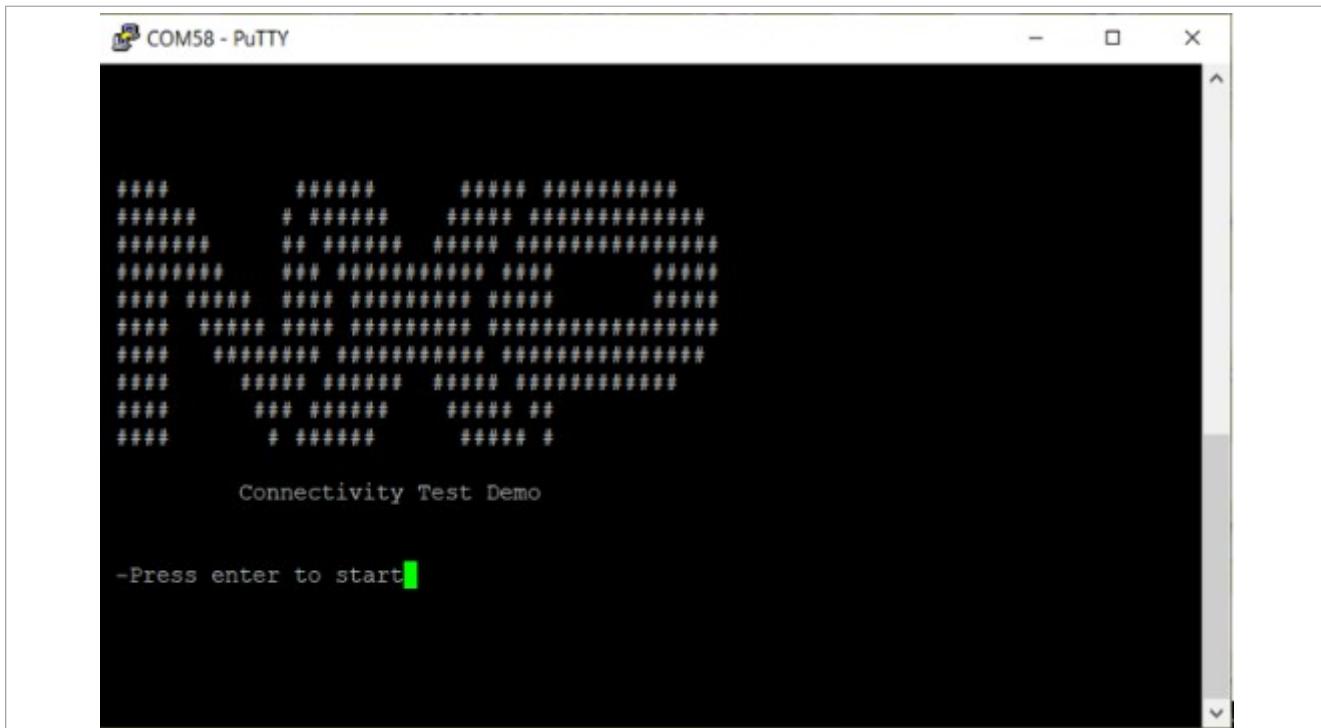


Figure 121. Connectivity Test App

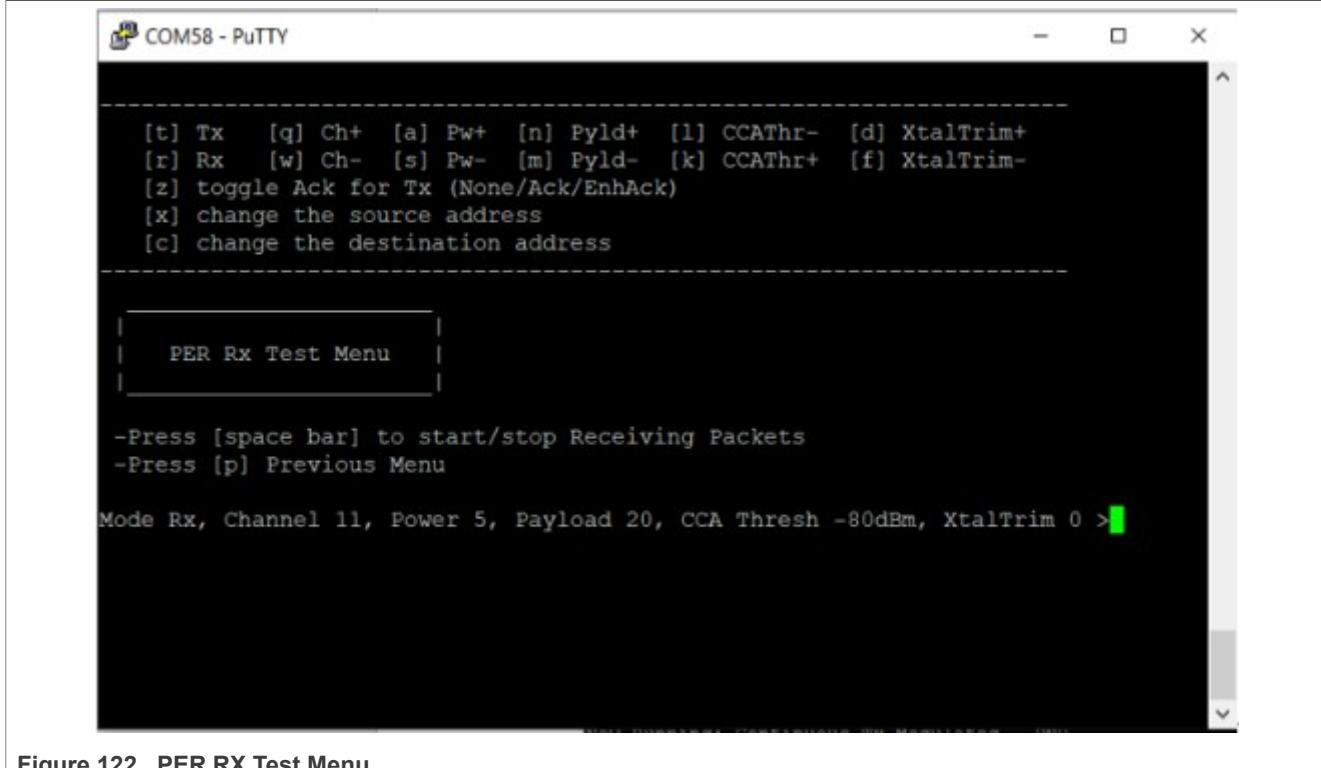
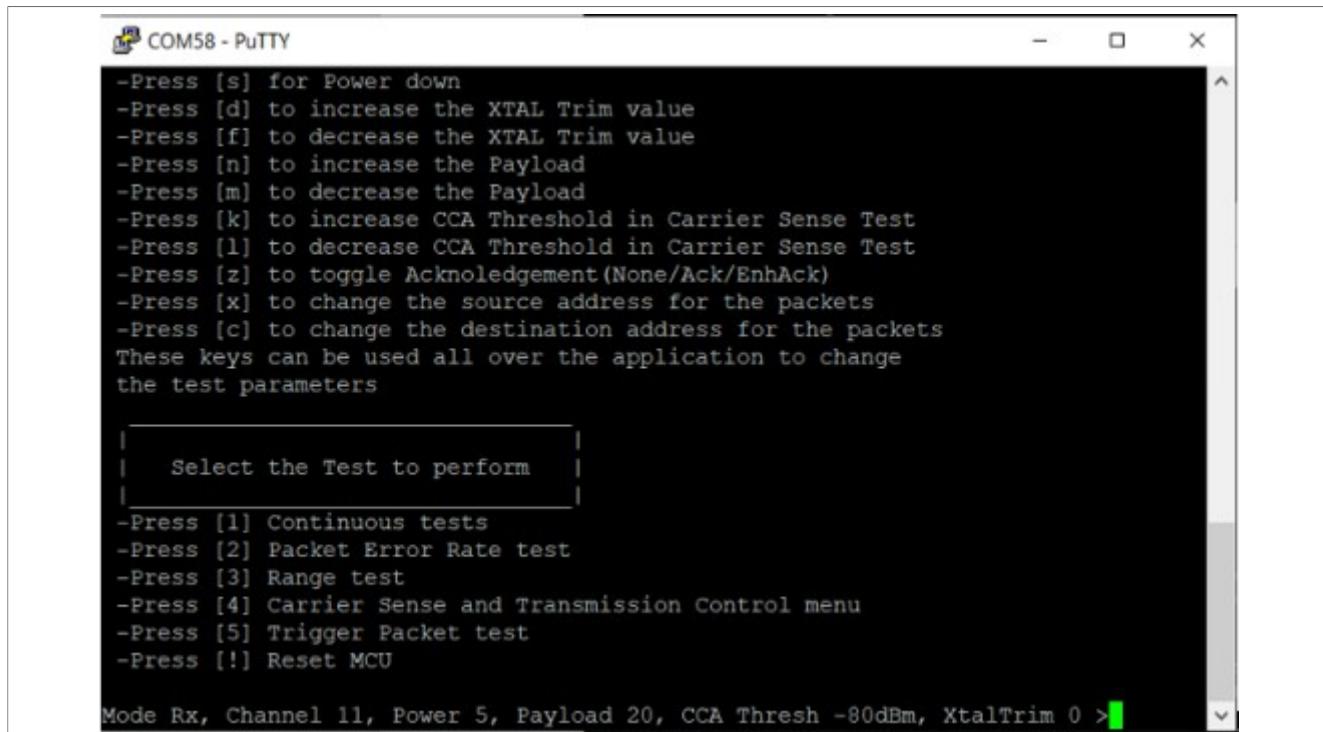
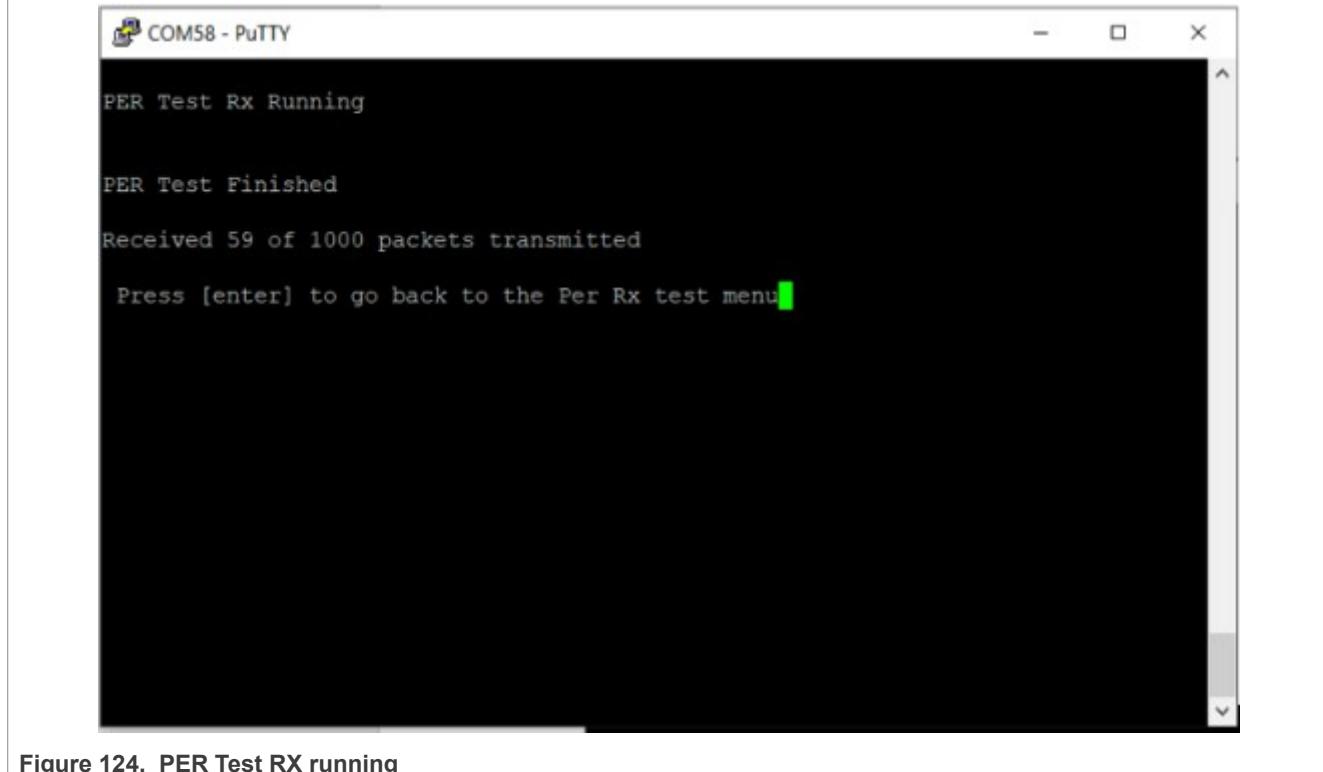



Figure 122. PER RX Test Menu




```
-Press [s] for Power down
-Press [d] to increase the XTAL Trim value
-Press [f] to decrease the XTAL Trim value
-Press [n] to increase the Payload
-Press [m] to decrease the Payload
-Press [k] to increase CCA Threshold in Carrier Sense Test
-Press [l] to decrease CCA Threshold in Carrier Sense Test
-Press [z] to toggle Acknoledgement(None/Ack/EnhAck)
-Press [x] to change the source address for the packets
-Press [c] to change the destination address for the packets
These keys can be used all over the application to change
the test parameters

| Select the Test to perform |
|                               |
-Press [1] Continuous tests
-Press [2] Packet Error Rate test
-Press [3] Range test
-Press [4] Carrier Sense and Transmission Control menu
-Press [5] Trigger Packet test
-Press [!] Reset MCU

Mode Rx, Channel 11, Power 5, Payload 20, CCA Thresh -80dBm, XtalTrim 0 >
```

Figure 123. Test selection menu


```
PER Test Rx Running

PER Test Finished

Received 59 of 1000 packets transmitted

Press [enter] to go back to the Per Rx test menu
```

Figure 124. PER Test RX running

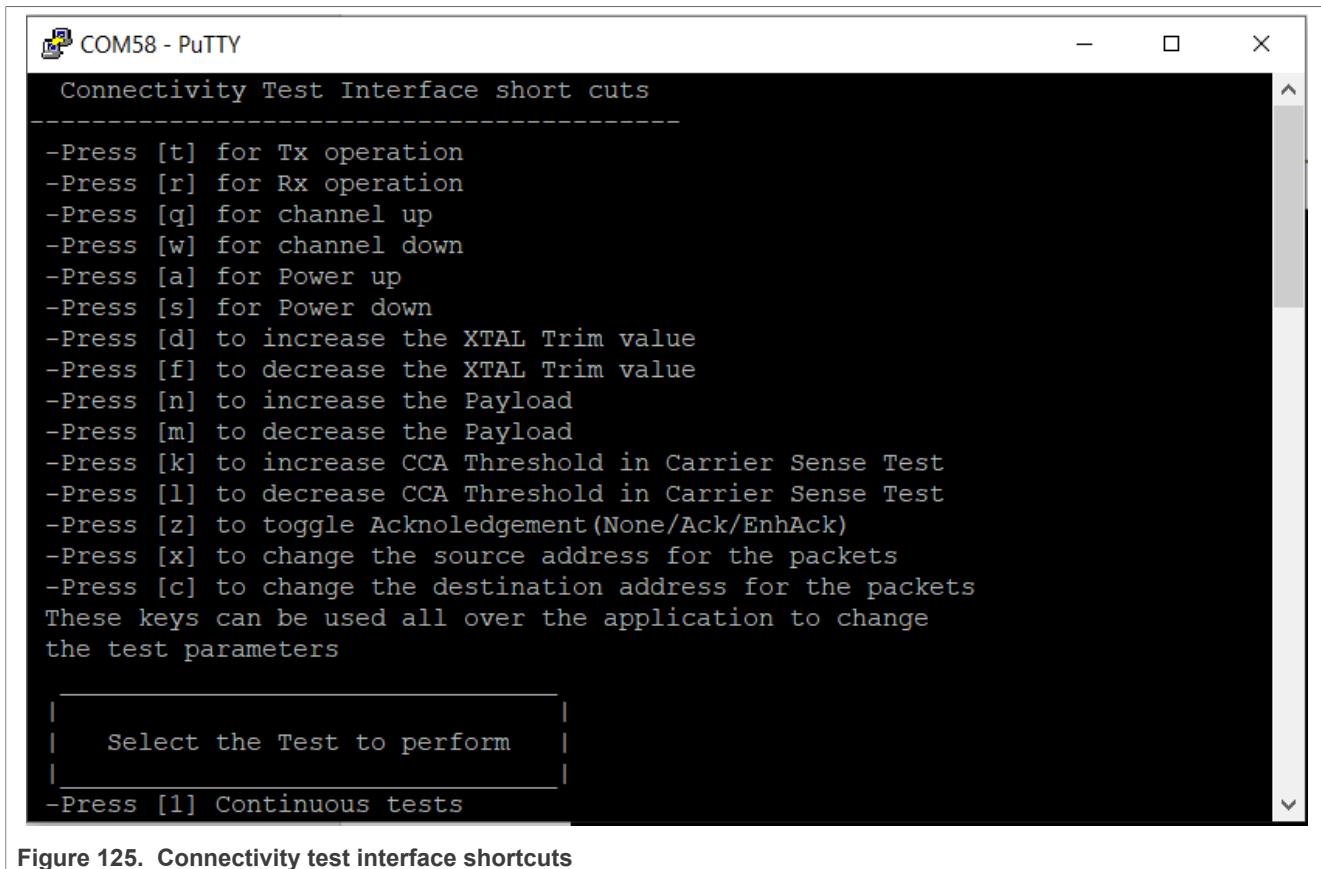


Figure 125. Connectivity test interface shortcuts

Table 12 lists the key selection for the menus available in the Connectivity Test Tool application GUI. These key sequences can be used for performing the tests described in the left column.

Table 83. CMET selection key for tests in Transmit modes

Link to the Section §	CMET selection key in Connectivity Tool Application
Frequency Accuracy	1)4)
Phase Noise @ 100 kHz offset	1)4)
TX Power (fundamental)	1)3)2)+/-
TX spurious	1)3)2)
TX Modulation	1)3)2)
EVM	1)3)2
Offset EVM	1)4)
Upper band edge	1)3)ch26
TX return loss	1)3)2)

A signal generator sends packets to the FRDM-MCXW72 device. Then, the packets received by the FRDM-MCXW72 board are counted for about 6 seconds and tests are performed.

Tests done

The ratio of the “packets received” and the “sent packets” is calculated and displayed.

Table 84. CMET selection key for PER test

Chapter #§	CMET key selection
IEEE RX Sensitivity	5)Space bar)+/-
Sensitivity PER bathtub	5)Space bar)
Receiver Maximum Input Level	5)Space bar)+/-
Rx Spurious	5)Space bar)
Receiver interference rejection	5)Space bar)+/-
Receiver Blocking	5)Space bar)+/-
Rx return loss	

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.

Tables

Tab. 1.	Transmission tests for Europe	6
Tab. 2.	Reception tests for Europe	7
Tab. 3.	Miscellaneous tests for US	8
Tab. 4.	Transmission tests for US	8
Tab. 5.	Frequency accuracy	10
Tab. 6.	Bluetooth LE 1 Mbit/s	16
Tab. 7.	Bluetooth LE 2 Mbit/s	16
Tab. 8.	Bluetooth LE 500 kbit/s	16
Tab. 9.	Bluetooth LE 125 kbit/s	16
Tab. 10.	Channel 17, Bluetooth LE 1 Mbit/s	17
Tab. 11.	Channel 17, Bluetooth LE 2 Mbit/s	17
Tab. 12.	Channel 17, Bluetooth LE 500 kbit/s	17
Tab. 13.	Channel 17, Bluetooth LE 125 kbit/s	18
Tab. 14.	Channel 39, Bluetooth LE 1 Mbit/s	18
Tab. 15.	Channel 39, Bluetooth LE 2 Mbit/s	19
Tab. 16.	Channel 39, Bluetooth LE 500 kbit/s	19
Tab. 17.	Channel 39, Bluetooth LE 125 kbit/s	19
Tab. 18.	Upper Band Edge (FCC ANSI)	46
Tab. 19.	Bluetooth LE 1 Mbit/s (maximum TX output power)	52
Tab. 20.	Modulation characteristics at 1 Mbit/s	59
Tab. 21.	Modulation characteristics at 2 Mbit/s	60
Tab. 22.	Modulation characteristics at LE coded (S8)	60
Tab. 23.	Carrier frequency offset and drift at 1 Mbit/s	61
Tab. 24.	Carrier frequency offset and drift at 2 Mbit/s	61
Tab. 25.	500 kbit/s Bluetooth LE Channel, Carrier frequency offset and drift at LR (S=2)	62
Tab. 26.	125 kbps Bluetooth LE Channel, Carrier frequency offset and drift at LR (S=8)	63
Tab. 27.	Maximum input power – 1 Mbit/s	73
Tab. 28.	Maximum input power – 2 Mbit/s	73
Tab. 29.	Channel 1, 2405 MHz results	75
Tab. 30.	Channel 17, 2440 MHz	75
Tab. 31.	Channel 35, 2476 MHz	76
Tab. 32.	AAC Bluetooth LE @2 Mbit/s (LR S=2) Channel 1	78
Tab. 33.	AAC Bluetooth LE @2 Mbit/s (LR S=2) Channel 17	79
Tab. 34.	AAC Bluetooth LE @2 Mbit/s (LR S=2) Channel 35	79
Tab. 35.	AAC, Bluetooth LE @500 kbit/s (LR S=2) Channel 1	81
Tab. 36.	AAC, Bluetooth LE @500 kbit/s (LR S=2) Channel 17	82
Tab. 37.	AAC, Bluetooth LE @500 kbit/s (LR S=2) Channel 35	82
Tab. 38.	AAC Bluetooth LE @ 125 kbit/s (LR S=8) Channel 1	84
Tab. 39.	AAC Bluetooth LE @ 125 kbit/s (LR S=8) Channel 17	85
Tab. 40.	AAC Bluetooth LE @ 125 kbit/s (LR S=8) Channel 35	85
Tab. 41.	Receiver Blocking (Out of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 37	88
Tab. 42.	Receiver Blocking (Out of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 39	88
Tab. 43.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 37	89
Tab. 44.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 1 Mbit/s, Channel 39	89
Tab. 45.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 37	90
Tab. 46.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 39	91
Tab. 47.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 37	91
Tab. 48.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 2 Mbit/s, Channel 39	92
Tab. 49.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 500 kbit/s (LR S=2), Channel 37	92
Tab. 50.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 500 kbit/s (LR S=2), Channel 39	93
Tab. 51.	Receiver category 2 - Bluetooth LE 500 Kbit/s (LR S=2), Channel 37	93
Tab. 52.	Receiver category 2 - Bluetooth LE 500 Kbit/s (LR S=2), Channel 39	94
Tab. 53.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 125 Kbit/s (LR S=8), Channel 37	94
Tab. 54.	Receiver Blocking (Out Of Band) rejection - BLE-125 Kbit/s (LR S=8), Channel 39	95
Tab. 55.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 125 kbit/s (LR S=8)	95
Tab. 56.	Receiver Blocking (Out Of Band) rejection - Bluetooth LE 125 kbit/s (LR S=8)	96
Tab. 57.	Blocking interferers Bluetooth LE 1 Mbit/s	96
Tab. 58.	Blocking interferers Bluetooth LE 2 Mbit/s	97
Tab. 59.	Blocking interferers 500 kbit/s	98
Tab. 60.	Blocking Interferers – 125 kbit/s	98
Tab. 61.	Bluetooth LE RX Intermodulation 1 Mbit/s Channel 37	99
Tab. 62.	Bluetooth LE RX Intermodulation 1 Mbit/s Channel 17	100
Tab. 63.	Bluetooth LE RX Intermodulation 1 Mbit/s Channel 39	100
Tab. 64.	Bluetooth LE RX Intermodulation 2 Mbit/s Channel 37	101
Tab. 65.	Bluetooth LE RX Intermodulation 2 Mbit/s Channel 17	101
Tab. 66.	Bluetooth LE RX Intermodulation 2 Mbit/s Channel 39	102
Tab. 67.	List of Transmission tests (Europe)	104
Tab. 68.	List of reception tests (Europe)	104
Tab. 69.	List of Miscellaneous tests	104
Tab. 70.	List of Transmission tests (US)	104
Tab. 71.	Frequency accuracy (IEEE 802.15.4)	106
Tab. 72.	Upper Band Edge (FCC ANSI)	135

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Tab. 73. IEEE RX Interference rejection results for Channel 11	143	Tab. 78. Results for Receiver category 2 (Channel 11)	147
Tab. 74. IEEE RX Interference rejection results for Channel 18	143	Tab. 79. Results for Receiver category 2 (Channel 26)	148
Tab. 75. IEEE RX Interference rejection results for Channel 26	143	Tab. 80. Related documentation	152
Tab. 76. Receiver Blocking (Out of Band) rejection Category 1 (Channel 11)	146	Tab. 81. Acronyms	153
Tab. 77. Receiver Blocking (Out of Band) rejection Category 1 (Channel 26)	146	Tab. 82. Revision history	154
		Tab. 83. CMET selection key for tests in Transmit modes	157
		Tab. 84. CMET selection key for PER test	158

Figures

Fig. 1.	Block diagram of the FRDM-MCXW72 board	2
Fig. 2.	FRDM-MCXW72 board	3
Fig. 3.	Test setup N1	8
Fig. 4.	TX Bluetooth LE test setup (Test setup N2)	9
Fig. 5.	Frequency accuracy	10
Fig. 6.	Conducted phase noise	12
Fig. 7.	TX power (Bluetooth LE)	14
Fig. 8.	TX power In Band – Channel 37	15
Fig. 9.	TX power In Band – Channel 17	17
Fig. 10.	TX power In Band – Channel 39	18
Fig. 11.	Bluetooth LE - Conducted TX spurious (1 GHz to 25 GHz)	20
Fig. 12.	BLE - Zoom In - Conducted TX spurious (30 MHz to 1 GHz)	21
Fig. 13.	BLE - Conducted H2 spurious	23
Fig. 14.	Bluetooth LE - Conducted H3 spurious	24
Fig. 15.	Bluetooth LE - Conducted H4 spurious	25
Fig. 16.	Bluetooth LE - Conducted H5 spurious	26
Fig. 17.	Bluetooth LE - Conducted H6 spurious	27
Fig. 18.	Bluetooth LE - Conducted H7 spurious	28
Fig. 19.	Bluetooth LE - Conducted H8 spurious	29
Fig. 20.	Bluetooth LE - Conducted H9 spurious	30
Fig. 21.	Bluetooth LE - Conducted H10 spurious	31
Fig. 22.	Bluetooth LE - Conducted H2 FCC spurious	33
Fig. 23.	Bluetooth LE - Conducted H3 FCC spurious	34
Fig. 24.	Bluetooth LE - Conducted H4 FCC spurious	35
Fig. 25.	Bluetooth LE - Conducted H5 FCC spurious	36
Fig. 26.	Bluetooth LE - Conducted H6 FCC spurious	37
Fig. 27.	Bluetooth LE - Conducted H7 spurious	38
Fig. 28.	Bluetooth LE - Conducted H8 FCC spurious	39
Fig. 29.	Bluetooth LE - Conducted H9 FCC spurious	40
Fig. 30.	Bluetooth LE - Conducted H10 FCC spurious	41
Fig. 31.	Lower Band Edge – Channel 37	43
Fig. 32.	Upper Band Edge – Channel 39	44
Fig. 33.	Upper Band Edge – Channel 39 (Bluetooth LE) results	45
Fig. 34.	Upper Band Edge – Channel 39 (Bluetooth LE) results	46
Fig. 35.	Out of Band ETSI – Channel 37 (Bluetooth LE) results	47
Fig. 36.	Out of Band ETSI – Channel 39 (Bluetooth LE) results	47
Fig. 37.	Out of Band 1 Mbit/s Channel 37 ARIB	48
Fig. 38.	Out of Band 2 Mbit/s Channel 37 ARIB	49
Fig. 39.	Out of Band 500 Kbit/s Channel 37 ARIB	49
Fig. 40.	Out of Band 125 Kbit/s Channel 37 ARIB	50
Fig. 41.	Out of Band 1 Mbit/s Channel 39 ARIB	50
Fig. 42.	Out of Band 2 Mbit/s Channel 39 ARIB	51
Fig. 43.	Out of Band 500 Kbit/s Channel 39 ARIB	51
Fig. 44.	Out of Band 125 kbit/s Channel 39 ARIB	52
Fig. 45.	Bluetooth LE TX Output Spectrum Channel 2, 1 Mbit/s	54
Fig. 46.	Bluetooth LE TX Output Spectrum Channel 17, 1 Mbit/s	55
Fig. 47.	Bluetooth LE TX Output Spectrum Channel 35, 1 Mbit/s	56
Fig. 48.	Channel 2, 2 Mbit/s	57
Fig. 49.	Channel 17, 2 Mbit/s	58
Fig. 50.	Channel 35, 2 Mbit/s	59
Fig. 51.	Test setup N3	64
Fig. 52.	Test setup N4	65
Fig. 53.	Test setup N5	65
Fig. 54.	Sensitivity result – 1 Mbit/s	66
Fig. 55.	Sensitivity bathtub result – 1 Mbit/s	67
Fig. 56.	Sensitivity result – 2 Mbit/s	68
Fig. 57.	Sensitivity Bathtub result – 2 Mbit/s	69
Fig. 58.	Sensitivity result – LR (S=2) – 500 kbit/s	70
Fig. 59.	Sensitivity bathtub result – LR (S=2) (Bluetooth LE 500 kbit/s)	71
Fig. 60.	Sensitivity bathtub Bluetooth LE (125 kbit/s) result – LR (S=8)	72
Fig. 61.	Bluetooth LE - Conducted RX spurious 30 MHz – 12.5 GHz	74
Fig. 62.	Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Mbit/s, Channel 1	77
Fig. 63.	Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Mbit/s, Channel 17	77
Fig. 64.	Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Mbit/s, Channel 35	78
Fig. 65.	AAC on Bluetooth LE 2 Mbit/s Channel 1	80
Fig. 66.	AAC on Bluetooth LE 2 Mbit/s Channel 17	80
Fig. 67.	AAC on Bluetooth LE 2 Mbit/s Channel 35	81
Fig. 68.	AAC on Bluetooth LE 500 kbit/s Channel 1	83
Fig. 69.	AAC on Bluetooth LE 500 kbit/s Channel 17	83
Fig. 70.	AAC on Bluetooth LE 500 kbit/s Channel 35	84
Fig. 71.	AAC on Bluetooth LE 125 kbit/s Channel 1	86
Fig. 72.	AAC on Bluetooth LE 125 kbit/s Channel 17	87
Fig. 73.	AAC on Bluetooth LE 125 kbit/s Channel 35	87
Fig. 74.	Test setup N6	105
Fig. 75.	Frequency accuracy results for IEEE 802.15.4	106
Fig. 76.	Phase noise TX (IEEE 802.15.4)	107
Fig. 77.	IEEE 802.15.4 TX Power (fundamental)	108
Fig. 78.	IEEE 802.15.4 Tx power In Band – Channel 11	109

FRDM-MCXW72 Radio Frequency System Evaluation Report for Bluetooth Low Energy and for IEEE 802.15.4

Fig. 79.	IEEE 802.15.4 Tx power In Band – Channel 18	110	Fig. 100.	IEEE 802.15.4 - Conducted H10 FCC spurious	130
Fig. 80.	IEEE 802.15.4 Tx power In Band – Channel 26	110	Fig. 101.	EVM in regular mode	131
Fig. 81.	IEEE.802.15.4 - Conducted TX spurious (1 GHz to 25 GHz)	111	Fig. 102.	Offset EVM in regular mode	132
Fig. 82.	IEEE.802.15.4 - Conducted TX spurious (30 MHz to 1 GHz)	112	Fig. 103.	Lower Band Edge – Channel 11 (MIIT-China)	133
Fig. 83.	IEEE 802.15.4 - Conducted H2 spurious	113	Fig. 104.	Upper Band Edge – MIIT China	134
Fig. 84.	IEEE 802.15.4 - Conducted H3 spurious	114	Fig. 105.	Upper Band Edge (FCC ANSI C63.10, 558074 D01 DTS)	135
Fig. 85.	IEEE 802.15.4 - Conducted H4 spurious	115	Fig. 106.	Out Of Band – Channel 11	136
Fig. 86.	IEEE 802.15.4 - Conducted H5 spurious	116	Fig. 107.	Out Of Band – Channel 26	136
Fig. 87.	IEEE 802.15.4 - Conducted H6 spurious	117	Fig. 108.	Out of Band – Channel 11 - ARIB	137
Fig. 88.	IEEE 802.15.4 - Conducted H7 spurious	118	Fig. 109.	Out of Band – Channel 26 - ARIB	138
Fig. 89.	IEEE 802.15.4 - Conducted H8 spurious	119	Fig. 110.	Test setup N7	138
Fig. 90.	IEEE 802.15.4 - Conducted H9 spurious	120	Fig. 111.	Test setup N8	139
Fig. 91.	IEEE 802.15.4 - Conducted H10 spurious	121	Fig. 112.	Test setup N9	139
Fig. 92.	IEEE 802.15.4 - Conducted H2 FCC spurious	122	Fig. 113.	Rx Sensitivity	140
Fig. 93.	IEEE 802.15.4 - Conducted H3 FCC spurious	123	Fig. 114.	Sensitivity bathtub	141
Fig. 94.	IEEE 802.15.4 - Conducted H4 FCC spurious	124	Fig. 115.	IEEE.802.15.4 - Conducted Rx spurious 30 MHz – 12.5 GHz	142
Fig. 95.	IEEE 802.15.4 - Conducted H5 FCC spurious	125	Fig. 116.	Adjacent, alternate, and co-channel rejection @ channel 11	144
Fig. 96.	IEEE 802.15.4 - Conducted H6 FCC spurious	126	Fig. 117.	Adjacent, alternate, and co-channel rejection @ channel 18	145
Fig. 97.	IEEE 802.15.4 - Conducted H7 FCC spurious	127	Fig. 118.	Adjacent, alternate, and co-channel rejection @ channel 26	145
Fig. 98.	IEEE 802.15.4 - Conducted H8 FCC spurious	128	Fig. 119.	S11 diagram (RX mode)	149
Fig. 99.	IEEE 802.15.4 - Conducted H9 FCC spurious	129	Fig. 120.	S11 diagram (TX mode)	150
			Fig. 121.	Connectivity Test App	155
			Fig. 122.	PER RX Test Menu	155
			Fig. 123.	Test selection menu	156
			Fig. 124.	PER Test RX running	156
			Fig. 125.	Connectivity test interface shortcuts	157

Contents

1	Introduction	2	3.3.1.11	Out Of Band (ETSI 300 328 chapter 5.4.8.2.1)	135
1.1	Software and list of equipment	3	3.3.1.12	Out Of Band (ARIB STD T-66)	137
1.1.1	List of equipment used for Bluetooth Low Energy (Bluetooth LE) tests	3	3.3.2	RX tests	138
1.1.2	List of equipment used for IEEE 802.15.4 tests	4	3.3.2.1	IEEE RX test setup	138
2	Bluetooth LE application	5	3.3.2.2	RX sensitivity	139
2.1	List of tests	5	3.3.2.3	RX sensitivity bathtub	141
2.2	Summary of transmission and reception tests	6	3.3.2.4	RX spurious	141
2.3	Conducted tests	8	3.3.2.5	Receiver interference rejection	142
2.3.1	TX tests	8	3.3.2.6	Receiver blocking	146
2.3.1.1	Test setup N1	8	4	Return loss	149
2.3.1.2	Test setup N2	8	4.1	RX mode	149
2.3.1.3	Frequency accuracy	9	4.2	TX mode	149
2.3.1.4	Phase noise	11	5	Conclusion	151
2.3.1.5	TX power (fundamental)	12	6	References	152
2.3.1.6	TX power In Band	14	8	Acronyms	153
2.3.1.7	TX spurious	19	9	Revision history	154
2.3.1.8	Lower Band Edge – MIIT China	42		Appendix A	155
2.3.1.9	Upper Band Edge – MIIT China	43		Legal information	159
2.3.1.10	Upper Band Edge (FCC ANSI C63.10, 558074 D01 DTS)	45			
2.3.1.11	Out Of Band (ETSI 300 328 chapter 5.4.8.2.1)	46			
2.3.1.12	Out Of Band (ARIB STD T-66)	48			
2.3.1.13	Maximum TX output power	52			
2.3.1.14	Bluetooth LE TX output spectrum	53			
2.3.1.15	Modulation characteristics	59			
2.3.1.16	Carrier frequency offset and drift	61			
2.3.2	RX tests	64			
2.3.2.1	Test setups for Rx Bluetooth LE tests	64			
2.3.2.2	Sensitivity	66			
2.3.2.3	Receiver maximum input level	72			
2.3.2.4	RX spurious	73			
2.3.2.5	Interferer results in Bluetooth	75			
3	IEEE 802.15.4 application	103			
3.1	Test presentation	103			
3.1.1	List of tests	103			
3.2	Test summary	104			
3.3	Conducted tests	105			
3.3.1	TX tests	105			
3.3.1.1	Test setup N6	105			
3.3.1.2	Frequency accuracy	105			
3.3.1.3	Phase noise @ 100 kHz offset	106			
3.3.1.4	TX Power (fundamental)	107			
3.3.1.5	TX power In Band	108			
3.3.1.6	TX spurious	111			
3.3.1.7	TX modulation	130			
3.3.1.8	Lower Band Edge – China MIIT	132			
3.3.1.9	Upper Band Edge – MIIT China	133			
3.3.1.10	Upper Band Edge (FCC ANSI C63.10, 558074 D01 DTS)	134			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.