

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
n

c
..

.

Order this document
by AN1731/D

AN1731

VPW J1850 Multiplexing and MotorolaÕs Byte Data Link
Controller (BDLC) Module

By Kim Sparks
Systems Engineering
Austin, Texas

Introduction

This application note primarily is intended to teach people about variable
pulse width (VPW) J1850 multiplexing and Motorola’s byte data link
controller (BDLC) module.

Application note structure:

• Evolution of multiplexing

• J1850 overview

• VPW J1850

• Message structure

• Motorola’s MDLC vs. BDLC

• A closer look at the BDLC

• Example flowcharts, schematic and software program

The example software program demonstrates how to transmit and
receive messages, deal with loss of arbitration, filter messages, switch
to 4X mode, and perform error checking with the BDLC. The software
closely follows the flowcharts shown in the Byte Data Link Controller

AN1731
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

rxzb30
Rectangle

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual , Freescale document number BDLCRM/AD. It is
recommended that the reference manual be used in conjunction with this
application note.

Evolution of Multiplexing

Over the years, there has been an evolution in how communication is
handled between electronic devices within automobiles. Traditionally, a
wiring harness carried messages throughout the car. But with the
dramatic increase in the amount of electronics in a car, the wiring
harness grew in complexity, expense, and weight. It soon became a
nightmare to install, and its overall reliability declined.

In an effort to alleviate some of the problems created by the growing
wiring harness, the automotive manufacturers started installing
communication buses that allowed multiple electronic devices to
communicate via shared wiring. Not only did this eliminate wires from the
wiring harness, but also connectors and duplicate sensors.

The cost savings due to these bus architectures made them immediately
popular with the automotive manufacturers, and, consequently, several
UART (universal asynchronous receiver transmitter) protocols emerged.
Unfortunately, the manufacturers did not standardize on the same
multiplexing strategies, which resulted in the automotive suppliers
constantly struggling to keep up with the nuances in the technology. It
became such a burden that the Society of Automotive Engineers (SAE)
decided to standardize the allowable multiplexing networks within
automobiles, which resulted in three classes of data communications
standards. Each class is designed with specific systems in mind. See
Table 1 for details on each class of communication.
AN1731

2
For More Information On This Product,

 Go to: www.freescale.com

Application Note
J1850 Overview

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Today’s cars rely heavily on multiplexing, and the benefits are far
reaching. The most apparent benefit is the reduction of hardware. This
drives down cost and mechanical failures, but increases the need for
more sophisticated software controlling the devices (or nodes) on a bus.
Even the slightest software bug can be as catastrophic as a hardware
defect. Freescale has addressed this issue by producing microcontrollers
with FLASH memory that can be reprogrammed over a multiplex bus. In
the future, automotive manufactures will be using both multiplexing
technology and FLASH technology to ensure that each node on the bus
has the latest revision of software during the entire life of the car.

J1850 Overview

For nodes that need to communicate at medium speeds, the class B
data communications network is used. To communicate at this speed, at
the present time SAE has approved one bus architecture called J1850,
which is an open architecture bus allowing nodes to be added or deleted
easily without affecting other nodes. See Figure 1 for a diagram of the
typical nodes connected to a J1850 bus.

Table 1. SAE-Approved Classes of Data Communications

Class A Class B Class C

Speed Low Medium High

Bit timings
< 10 Kbits per second

(bps) 10 Kbps to 125 Kbps 125 Kbps to 1+ Mbps

Application Comfort systems Non-critical systems Human-critical systems
AN1731

3
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. J1850 System Example

J1850 is widely accepted in the U.S. automotive world because it is
flexible enough to satisfy both simple and complex applications. The
architecture is so flexible that during its development two separate
messaging protocols emerged:

• Variable pulse width modulation (VPW)

• Pulse width modulation (PWM)

Both of these protocols map to the International Standards
Organization’s (ISO) Open Systems Interconnection (OSI) model. The
ISO organization is responsible for setting the standards for applications
that run over a network. Their OSI model is composed of seven layers
that networks attempt to conform to. Of these seven layers, VPW and
PWM have the same application and data link layers. Since they have
the same application layer, they both use the same messages, filtering
schemes and diagnostic codes. Conforming to the same data link layer
ensures that the addressing strategy, message buffering, arbitration,
framing, error detection, and many other aspects of data transmission
AN1731

4
For More Information On This Product,

 Go to: www.freescale.com

Application Note
VPW J1850

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

are handled the same. (See the SAE J1850 specification for more
information on the application and data link layers.)

In the OSI model, VPW and PWM differ in the physical layer. This layer
defines the physical methods used to transmit and receive data on a
J1850 bus, including wiring, signal types, and bit timings. Table 2 shows
the main differences in the physical layer.

The PWM messaging structure works just like a standard PWM with the
level of the signal representing a logic 1 or 0. VPW messaging is quite
different. Not only does the state of the bus determine a logic 1 or 0, but
also the width of a pulse.

VPW J1850

The physical layer of a VPW J1850 bus is a single wire that can have up
to 32 nodes connected to it. This includes any diagnostic equipment that
will be connected to the car by the manufacturer or dealer in the future.
The maximum length of the bus can be 35 meters within a car, with an
additional 5 meters connected externally for diagnostic equipment.

A VPW bus operates in two states:

• Active — In the active state, the bus is driven between 6.25 V and
8.00 V.

• Passive — In the passive state, the bus is pulled down to between
1.5 V and 0 V.

As each bit of a message is transmitted, there is always a transition
between states. Therefore, the message is made up of a series of high,

Table 2. Physical Layer Differences Between VPW & PWM J1850

VPW PWM

Bit rate 10.4 Kbps 41.6 Kbps

Bit pulse width Variable Constant

Media Single wire Dual wire
AN1731

5
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

low, high, low, etc. pulses. Logic 0s and 1s are uniquely encoded into
both the active and passive states by varying the width of the pulse. Only
two pulse widths are used when encoding data, either a short of 64 µs
or a long of 128 µs. Figure 2 shows how 0s and 1s are encoded in the
passive and active states.

Figure 2. VPW Logic 0 and Logic 1

The 64 µs and 128 µs bit timings are only nominal timings. It doesn’t
make sense to place strict timing specs on signals that have to travel a
considerable distance in a noisy environment. SAE recognized this and
placed liberal specifications on the allowable bit timings. Table 3 shows
the valid ranges. Notice that the receiver specs are even more tolerant
than the transmitter specs. This is understandable, considering most of
the noise will be injected while the message is traveling to a node.

Another problem inherent to single wire buses is grounding. With a
single wire, it is assumed that all the nodes on the bus are using the
exact same ground. If the nodes are at different ground levels, then
ground offset problems can result. In this case, the transmitting node
sends a message with the correct bit timings and pulse levels according
to its ground. But, the receiving node has a different ground, so the bit
timings look either slightly longer or shorter than nominal. Usually, this
isn’t a problem because of the tolerant specs. However, if the difference
in ground levels is severe enough, then an invalid symbol error may
occur on the bus.

Logic 0 Logic 1

Passive Bus

Active Bus

64us

64us

128us

128us
AN1731

6
For More Information On This Product,

 Go to: www.freescale.com

Application Note
VPW J1850

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

One other issue that should be addressed is how noise emissions are
controlled. Since the J1850 messages travel down a single wire bus at
10.4 Kbps, some people will be concerned that noise will be radiated into
other systems. After all, a single wire radiates substantially more noise
than a twisted pair of wires. This was taken into consideration when the
VPW architecture was designed, and it was decided that the signal had
to be wave-shaped to meet specific rise and fall times. By smoothing the
sharp corners of the waveform, the noise can be effectively reduced.
See Figure 3 for an example pulse.

Figure 3. VPW Signal Example Pulse

Table 3. VPW Pulse Width Times (µs)

Symbol Tx, Min Tx, Nom Tx, Max Rx, Min Rx, Max

Short pulse ≥49 64 ≤79 >34 ≤96

Long pulse ≥112 128 ≤145 >96 ≤163

SOF/EOD ≥182 200 ≤218 >163 ≤239

EOF ≥261 280 N/A >239 N/A

BRK ≥280 300 ≤5,000 >239 <1.0 s

IFS ≥280 300 N/A >280 N/A

0.0 V

7.0 V
AN1731

7
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Message Structure

A legal J1850 message can have several formats. Figure 4 shows the
structure of a full message. The BDLC reference manual contains a
more detailed description of each of these fields.

Figure 4. General Message Format

Every message begins with a start-of-frame (SOF) symbol. This is an
active pulse that remains high for nominally 200 µs. Its unique bit timing
sets it apart from other symbols on the bus, such that all the nodes will
know exactly when a message is starting.

Following the SOF is the header information. Either one byte or three
bytes is used for header information. There are two different kinds of 1-
byte headers, either the single byte header or the 1-byte consolidated
header. The difference between the two is bit 4. For the 1-byte
consolidated header, bit 4 must be set to a 1 to signal the receiver that
a 1-byte consolidated header is being used, instead of a 3-byte
consolidated header. The 3-byte consolidated header consists of a
priority/message type byte, target address byte, and source address
information byte. Figure 5 shows the different types of headers
approved by SAE.

At this point, realizing the significance of the header byte is important.
Since a VPW bus is masterless, meaning that each node has an equal
opportunity to transmit a message on an idle bus, there has to be a way
to resolve conflicts when multiple nodes try to transmit at the same time.
The method SAE has approved is called bit-by-bit arbitration, which is a
non-destructive way of allowing the node with the highest priority to win
control of the bus. The arbitration process begins with the SOF and
usually ends with the header information. As the nodes go through
arbitration, they start transmitting simultaneously. An active state always
dominates over a passive, or a zero always dominates a one. Therefore,
whichever message has a lower value in the header information wins

SOF Header Data_0 ... Data_N CRC EOD NB IFR_I ... IFR_N EOF IFS
AN1731

8
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Message Structure

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

arbitration. If the nodes are arbitrating with the same header information,
then arbitration continues through every byte of the message until one
node wins.

Figure 5. SAE-Approved Header Formats

Following the header information are the data bytes. The maximum
number of data bytes that SAE allows in a normal J1850 message is 12,
which will be transmitted most significant bit (MSB) first. Once all the
data is transmitted, a cyclic redundancy check (CRC) byte is calculated
and appended to the message. The microcontroller’s hardware
generates the CRC by feeding the header and data bytes into the
polynomial P(X) = X8 + X4 + X3 + X2 + 1. The resulting byte is appended
to the outgoing message. On the other end, when the message is
received by the receiving node, it shifts the header, data, and CRC bytes
through the CRC circuitry. The circuitry performs another polynomial
calculation that should produce $C4 (hex). If it doesn’t, then the
receiving node should flag the sender that an error has occurred. If the
result does equal $C4 (hex), then it is safe to assume the data received
is accurate.

Single Byte Header

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Message ID (256 bytes)

1-Byte Form of Consolidated Header

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

x x x H = 1 x x x x

Message ID (128 bytes)

3-Byte Form of Consolidated Header

Byte 1 Byte 2 Byte 3

Priority level?
IFR required?

Functional / physical addressing?
Speci c message type?

Target address Source address
AN1731

9
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Freescale has developed two modules that can communicate on an SAE
J1850 10.4- Kbps VPW bus:

• Message data link controller (MDLC)

• Byte data link controller (BDLC)

These names refer to how the module handles transmitting and
receiving messages on the bus, either an entire message at a time or a
byte at a time. Both modules are designed to perform the critical J1850
protocol requirements automatically, such as automatic transmission
synchronization to bus frame slots, calculation/auto-insertion/checking
of message CRCs, and checking for symbol/framing errors.

The MDLC was the first integrated J1850 module on an 8-bit
microcontroller. It is optimized for messages that require a 3-byte
header, CRC, and no IFR. One transmit and two receive buffers are built
into the MDLC’s hardware. Each buffer is 11 bytes long, which means
that only 11 data bytes can be transmitted in a message. However, since
there are two receive buffers, a message of any length can be received
correctly by the module.

There are several benefits to having built-in buffers like the MDLC. For
instance, it makes transmitting and receiving messages easy from a
software point of view. When a transmission fails to go out due to a loss
of arbitration, the hardware is designed to retransmit the message
automatically once the bus is available. Again, this reduces the amount
of user code needed. Aside from software savings, the MDLC also
affords hardware savings because it has a built-in transceiver.

The next integrated J1850 module that was developed by Freescale is the
BDLC. As the name implies, it deals with messages on a byte-by-byte
basis, unlike the MDLC which handles entire messages at a time. The
BDLC was intended to be a more simplistic MDLC, where the user
software has more control over how the node reacts to messages on the
bus. One example of this is how filtering is handled by the BDLC. Since
the user’s software can evaluate each byte as it is being received, the
software can determine whether to process or ignore the message. With
AN1731

10
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Motorola’s MDLC vs. BDLC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

this added control comes the price of needing more sophisticated
software.

Another benefit of the BDLC is that it supports all the features in the
J1850-VPW specification, including the optional ones, such as in-frame
response. It has become a popular module and has been integrated on
several families of microcontrollers, including the HC05, HC08, and
HC12.

Similarities of the MDLC and the BDLC modules include:

• SAE J1850 compatible

• 10.4-Kbps variable pulse width (VPW) modulation format

• Digital noise filter

• Collision detection

• Hardware cyclical redundancy check (CRC) generation and
verification

• Two power-saving modes with automatic wake up on network
activity

• Polling and CPU interrupts available

• Receive block mode supported

Differences between the MDLC and the BDLC modules include:

• The MDLC cannot transmit in block mode, but the BDLC can.

• The MDLC can co-exist with devices supporting 4X mode, but it
ignores all the 4X messages. The BDLC can receive messages in
4X mode, but cannot transmit in that mode.

• The MDLC automatically will try to retransmit a message when it
loses arbitration during a transmission. The BDLC will generate an
interrupt when the module loses arbitration, but the user’s
software must take care of retransmitting the message.

• The MDLC does not support in-frame response (IFR). The BDLC
supports IFR types 0, 1, 2, and 3.
AN1731

11
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• The MDLC has a built-in transceiver, whereas an external
transceiver must be provided for the BDLC for most parts. The
BDLC modules that do not have built-in transceivers have analog
and digital loopback modes for debugging the transceiver.

 A Closer Look at BDLC

For an in-depth description of the BDLC module, use the Byte Data Link
Controller Reference Manual. It provides information about the BDLC for
any HC05, HC08, and HC12 microcontroller. This section of the
application note explains some of the less intuitive features of the BDLC,
including:

• How the BDLC is enabled

• When receiver and transmitter circuitry is activated following a
reset

• What flags are set in the BDLC state vector register (BSVR) as a
result of an error

• How an EOF flag can wake a part from wait mode

• How the digital loopback mode works with stop mode

How the BDLC
is Enabled

The BDLC does not have an enable bit like Motorola’s SPI (serial
peripheral interface) and SCI (serial communications interface)
communications modules on microcontrollers. Instead, it is
automatically enabled during any type of microcontroller reset.

When Receiver
and Transmitter
Circuitry is
Activated
After a Reset

The first thing the BDLC does following a reset is wait until it observes
an idle bus for ~280 µs or an EOF time period. When it sees this, it
enables the receiver circuitry and sets the EOF flag in the BSVR. At this
point, the BDLC is ready to receive messages, but first the EOF flag
should be cleared by the user’s software.

The only situation where the EOF flag will not be set after a reset is if the
ignore message bit (IMSG) in BDLC control register 1 (BCR1) is set at
AN1731

12
For More Information On This Product,

 Go to: www.freescale.com

Application Note
A Closer Look at BDLC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

the end of the 280-µs startup period. With IMSG bit set, all the BDLC
interrupt requests are masked and the status bits in the BSVR are held
in their reset state. Even with the EOF flag not being set, the receiver
circuitry is still activated.

NOTE: It is recommended that the IMSG bit in BCR1 not be cleared by the
user’s software. The BDLC hardware automatically clears this bit when
receiving a message, re-enabling the BDLC interrupts. The IMSG bit
should be set only when the user has determined that the incoming
message is of no interest.

Similarly, the BDLC won’t activate the transmitter circuitry until it
observes a passive period of 20 µs on the bus or an inter-frame
separator (IFS) time period. Since there isn’t an IFS flag in the BSVR,
this enable sequence is transparent to the user.

What Flags are Set
in the BSVR as a
Result of an Error

The BDLC has two error flags:

• CRC error flag

• Invalid symbol or out-of-range error flag

A CRC error occurs when the BDLC shifts an incoming message
through its CRC error checking circuitry and the result is not correct.
When this happens, the BDLC handles the error like this:

• While the data bytes are being received, the RDRF flag gets set
as usual.

• When the erroneous CRC is received, first the RDRF flag is set
because the CRC byte is received.

• Then the CRC error flag is set, because the result of the CRC
polynomial calculation was not correct. This does not stop the
reception of the rest of the message, so the EOD, NB, IFR, EOF,
and IFS symbols are received as normal.

• At the end of the message an EOF flag will be set, just like it would
be for a good message. At this point, the message is completely
received, and the user’s code should deal with the bad message
appropriately.
AN1731

13
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• Once all the flags are cleared, the BDLC is ready to continue
transmitting and receiving messages.

The invalid symbol or out-of-range error flag is handled slightly
differently than the CRC error. This error flag encompasses all errors on
the bus outside of the CRC error. Therefore, the user will not be able to
determine exactly what caused the invalid symbol error. For this reason,
the BDLC will stop transmitting a byte immediately if an error occurs
during transmission and will set the invalid symbol flag. Likewise, if the
BDLC receives a bad byte, it immediately will discard the incoming byte
and set the invalid symbol flag. In this case, the BDLC waits until the bus
is idle for an EOF time period (~280 µs) before receiving any new
messages. The BDLC will signal that an EOF time period has expired by
setting the EOF flag. After the invalid symbol and EOF flags are cleared,
the BDLC is ready to continue communicating on the J1850 bus.

How an EOF Flag
Can Wake a Part
from Wait Mode

If the part is in wait mode with the internal clocks running, an EOF flag
will wake it up. Under most circumstances, this won’t happen because
the EOF flag is generated only after a message is received, a reset, or
an invalid symbol.

NOTE: Be careful to execute the WAIT instruction after the EOF interrupt after
a reset or an invalid symbol.

How the Digital
Loopback Mode
Works with Stop
Mode

When the digital loopback mode bit (DLOOP) is set in the BDLC control
register 2 (BCR2), the transmit and receive pins are tied together
internally. This works fine for all scenarios except one: when using digital
loopback, stop mode, and an external transceiver that inverts the polarity
of the receive pin. When using a transceiver that inverts the receive
signal, most users clear the receive pin polarity bit (RXPOL) in the BDLC
analog and roundtrip delay register (BARD). That way the receive pin is
inverted back to normal orientation internally by the microcontroller.

If the STOP instruction is executed with the above hardware and
software set up, then the transmit pin will idle low when not transmitting
and the receive pin will see a high. This is because of the internal inverter
on the receive pin and the DLOOP is set. When the STOP instruction is
AN1731

14
For More Information On This Product,

 Go to: www.freescale.com

Application Note
BDLC Example Software Program

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

executed with the two opposite polarities on the pins, the BDLC will
interpret this as activity on the bus and immediately wake up the part.

The best way to work around this scenario is to put an inverter integrated
circuit between the transceiver’s RX pin and the microcontroller’s
BDRxD pin and set the RXPOL bit in the BARD to normal/true polarity.

BDLC Example Software Program

Refer to the BDLC reference manual for generic flowcharts on initializing
the BDLC, transmitting messages, receiving messages, and transmitting
IFRs.

The program GEN_BDLC in Appendix A shows one of the many ways
of writing drivers for the BDLC. Its purpose is to demonstrate the main
functionality of the BDLC module, including transmitting a message,
receiving messages, filtering incoming messages, and dealing with loss
of arbitration and various errors. It points out the correct sequence that
should be used to program the module and any idiosyncrasies that the
user may run into with the BDLC.

The comments in the program explain in detail how it works, but here’s
a brief description of what it does.

• Immediately after a reset, the message $55 $55 $55 $55 is loaded
into a RAM buffer and is transmitted on the J1850 bus. That's the
only transmission that the program performs, but it can be
modified easily by loading the RAM buffer with another message
and transmitting it.

• As far as receiving messages, the program is designed to receive
any message that contains a $55 in the second byte. It will filter
out any message that doesn’t meet this requirement. If the
message $6c $55 $01 $04 is received, then the module will switch
into 4X receive mode and start receiving messages at 41.6 Kbps.

The most important part of the program is how the BDLC interrupts are
handled. For the HC08 Family of microcontrollers, a jump table is used
to service the interrupts.
AN1731

15
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: It is strongly recommended that interrupts are used with the BDLC with
a jump table to ensure that data isn’t lost.

Figure 6 shows the flowchart of what happens when a BDLC interrupt
occurs.

Figure 7 shows the schematic for the hardware set up.
AN1731

16
For More Information On This Product,

 Go to: www.freescale.com

Application Note
BDLC Example Software Program

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. BDLC Interrupt Service Routine

EOF RxIFR RDRF TDRE LOA CRC SYM. WAKE

EOF

INV. UP

$04 $08 $0C $10 $14 $18 $1C $20

bdlc_int:
BDLC INTERRUPT
SERVICE ROUTINE

BSVR = ?

RETURN Ð NOT USED

RxIFR

SHOULD THE PART
SWITCH INTO 4X
RECEIVE MODE?

DID AN LOA OCCUR?

DID EOF OCCUR
AS A RESULT OF A
TRANSMISSION?

CLEAR RC BUFFER
AND 4X MODE FLAG

RETURN

CLEAR LOA FLAG

YES

YES

NO

NO

NO

YES ENABLE 4X RECEIVE IN BCR2

CLEAR TX BUFFER
AN1731

17
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. BDLC Interrupt Service Routine, Continued

STORE RECEIVED DATA
BYTE TO RC BUFFER

WHICH NUMBER

RDRF

YES

BYTE WAS RECEIVED?

DOES THE BYTE
RECEIVED = $6C?

BYTE 1 BYTE 2 BYTE 3 BYTE 4

INCREMENT 4X
MODE FLAG

RETURN

NO

YESDOES THE BYTE
RECEIVED = $04?

INCREMENT 4X
MODE FLAG

RETURN

NO

YESDOES THE BYTE
RECEIVED = $01?

INCREMENT 4X
MODE FLAG

RETURN

NO

YESDOES THE BYTE
RECEIVED = $55?

INCREMENT 4X
MODE FLAG

RETURN

NO

IGNORE MESSAGE;
CLEAR THE RC BUFFER

AND 4X MODE FLAG

TDRE

YESHAS THE LAST
BYTE BEEN

SET THE
TEOD BIT

RETURN

NO

TRANSMIT THE NEXT
BYTE OF THE MESSAGE

FROM TX BUFFER

TRANSMITTED?

AND THE RC BUFFER

CRC

NO
DID THE CRC

ERROR OCCUR

CLEAR THE
4X MODE FLAG

RETURN

YES

CLEAR THE BYTE
TRANSMISSION COUNTER

AND INCREMENT THE

DURING MESSAGE
TRANSMISSION?

RETRANSMISSION FLAG

LOA

RETURN

INCREMENT THE LOA
AND RETRANSMIT FLAG.

CLEAR THE
TRANSMISSION BYTE

COUNTER.
AN1731

18
For More Information On This Product,

 Go to: www.freescale.com

Application Note
BDLC Example Software Program

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. BDLC Interrupt Service Routine, Continued

SYM.

RETURN Ð NOT USED

WAKE

DID THE CRC ERROR

DELAY FOR AN EOF
TIME PERIOD

RETURN

CLEAR THE 4X MODE FLAG
YES

NO

CLEAR THE BYTE

UPINV.

OCCUR DURING MESSAGE
TRANSMISSION?

AND THE RC BUFFER

TRANSMISSION COUNTER
AND INCREMENT

THE RETRANSMISSION
FLAG
AN1731

19
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 D
a
t
e
:

D
e
c
e
m
b
e
r

1
7
,

1
9
9
7
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
1

T
i
t
l
e

M
C
6
8
H
C
0
8
A
S
2
0

J
1
8
5
0

C
o
m
m
u
n
i
c
a
t
i
o
n
s

M
o
d
u
l
e

B
o
d
y

E
l
e
c
t
r
o
n
i
c
s

S
y
s
t
e
m
s

E
n
g
i
n
e
e
r
i
n
g

J
1
8
5
0

C
o
m
m
u
n
i
c
a
t
i
o
n
s

M
o
d
u
l
e

M
C
6
8
H
C
0
8
A
S
2
0

1
2

V

V
E
H
I
C
L
E

B
A
T
T
E
R
Y

C
1

0
.
3
3
u
F

V
B
A
T
T

V
O
U
T

3

V
I
N

1

G N D

2

U
1

M
C
7
8
0
5
A
C

V
E
H
I
C
L
E

G
N
D

V
B
A
T
T

V
B
A
T
T

V
C
C

C
2

1
u
FV
C
C

G
N
D

C
5

0
.
1
u
F

G
N
D

V
C
C

V
C
C

J
1
8
5
0

B
U
S

G
N
D

G
N
D

G
N
D

C
4
0
.
0
1
u
F

R
3
1
0

R
4
1
5
K

R
5
5
0
0

G
N
D

G
N
D

V
B
A
T
T

R
1

5
K

V
C
C

V
C
C

B
A
T
T

1

T
X

2

R
/
F

T
I
M
E

3

R
X

4

G
N
D

8

B
U
S

O
U
T

7

L
B

E
N
*

6

B
U
S

I
N

5

U
2

H
I
P
7
0
2
0

R
6

1
0
K

R
7

1
0
K

R
2

5
6
.
2
K

+
/
-

1
%

C
3

1
0
0

p
F

V
C
C

G
N
D

V
C
C

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4 7
4 8
4 9
5 0
5 1V D D A

5 2V S S A

1C G M X F C

2O S C 2

3O S C 1

4
5
6
7

8

I
R
Q
*

9

R
S
T
*

1
0

1
1

1
2

1
3

1
4

B
D
R
X
D

1
5

B
D
T
X
D

1
6

1
7

1
8

1
9

2
0

2 1
2 2

2 3

V S S

2 4

V D D

2 5
2 6

2 7
2 8

2 9
3 0

3 1
3 2

3 4
U
3

M
C
6
8
H
C
0
8
A
S
2
0

N
o
t
e
:

C
o
m
p
o
n
e
n
t

v
a
l
u
e
s

i
n

t
h
i
s

s
c
h
e
m
a
t
i
c

a
r
e

f
o
r

a

t
w
o

n
o
d
e

n
e
t
w
o
r
k
.

T
h
e
y

w
i
l
l

h
a
v
e

t
o

b
e

S
A
E

J
1
8
5
0

s
p
e
c
i
f
i
c
a
t
i
o
n
s
.

a
d
j
u
s
t
e
d

i
n

u
s
e
r

a
p
p
l
i
c
a
t
i
o
n
s

t
o

m
e
e
t

t
h
e

G
N
D

V
E
H
I
C
L
E

G
N
D

G
N
D

N C

1

V C C

1 4

O U T

8

G N D

7

U
4

4
.
0
M
H
Z
_
F
S

F
ig

u
re

 7
. M

C
68

H
C

08
A

S
20

 a
n

d
 T

ra
n

sc
ei

ve
r

S
ch

em
at

ic
AN1731

20
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

General BDLC Driver Routines for J1850 Communication

* *
* General BDLC Driver Routines for J1850 Communication *
* *

* *
* File Name: gen_bdlc.asm Copyright (c) 1997 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: 2/18/98 *
* *
* Current Release Written By: Kim Sparks *
* Freescale Systems Engineering - Austin, TX *
* *
* Assembled Under: CASM08 (P&E Micro Inc.) Ver.: 3.06 SLD *
* *
* Project Folder Name: GEN_BDLC *
* *
* *
* Part Family Software Routine Works With: HC08 *
* Part Module(s) Software Routine Works With: bdlc_d20 *
* bdc_a20 *
* *
* Routine Size (Bytes): 312 *
* RAM Used (Bytes): 30 *
* *
* Full Functional Description Of Routine Design: *
* *
* This program demonstrates the main functionality of the BDLC module, *
* including transmitting a message, receiving messages, filtering *
* incoming messages, dealing with loss of arbitration and various errors. *
* It points out the correct procedures for programming the module and *
* any idiosyncrasies with the BDLC module. *
* *
* Immediately following a reset the message $55 $55 $55 $55 is loaded *
* into a ram buffer and transmitted on the J1850 bus. The format of the *
* message being transmitted consists of a three byte consolidated header *
* followed by one data byte. In real-life user applications, the messages *
* used for J1850 communication will contain more data bytes and possibly *
* a different header format. The one transmission following a reset is *
* the only transmission that the program performs. This can be easily *
* modified by loading the RAM buffer with another message and initiating *
* a transmission. *
* *
* As far as receiving messages, the program is designed to receive only *
AN1731

21
For More Information On This Product,

 Go to: www.freescale.com

Application Note

 *

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* messages that contain a $55 in the second byte. The program will *
* filter out messages that don't meet this criteria. If the message *
* $6c $55 $01 $04 is received, then the module will switch into 4x *
* receive mode and start receiving messages at 41.6 Kbps. *
* *
* This program was developed for the 68HC908AS20 and 68HC908AT60, but it *
* will work with any HC08 that has the BDLC ver. bdlc_d20 or greater. *
* The other hardware used in the application was a 4.0 MHz canned *
* oscillator to clock the AS20 and a HIP7020 transceiver to waveshape the *
* the J1850 messages. *
* *

* *
* Freescale reserves the right to make changes without further notice to *
* any product herein to improve reliability, function, or design. Freescale*
* does not assume any liability arising out of the application or use of *
* any product, circuit, or software described herein; neither does it *
* convey any license under its patent rights nor the rights of others. *
* Freescale products are not designed, intended, or authorized for use as *
* components in systems intended for surgical implant into the body, or *
* other applications intended to support life, or for any other *
* application in which the failure of the Freescale product could create a *
* situation where personal injury or death may occur. Should Buyer *
* purchase or use Freescale products for any such intended or unauthorized *
* application, Buyer shall indemnify and hold Freescale and its officers, *
* employees, subsidiaries, affiliates, and distributors harmless against *
* all claims, costs, damages, and expenses, and reasonable attorney fees *
* arising out of, directly or indirectly, any claim of personal injury or *
* death associated with such unintended or unauthorized use, even if such *
* manufacture of the part. Freescale claim alleges that Freescale was *
* negligent regarding the design or and the Freesca;e Logo are registered *
* trademarks of Freescale Semiconductor Inc.
* *

***** Equates *****

*** BDLC Register Equates ***

bard equ $3b ;BDLC analog and roundtrip delay
bcr1 equ $3c ;BDLC control register 1
bcr2 equ $3d ;BDLC control register 2
bsvr equ $3e ;BDLC state vector register
bdr equ $3f ;BDLC data register

*** BARD Bit Assignments ***

ate equ 7 ;Analog transceiver enable bit
rxpol equ 6 ;Receive pin polarity bit
bo3 equ 3 ;Bard offset bit 3
bo2 equ 2 ;Bard offset bit 2
AN1731

22
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

bo1 equ 1 ;Bard offset bit 1
bo0 equ 0 ;Bard offset bit 0

*** BCR1 Bit Assignments ***

imsg equ 7 ;Ignore message bit
clks equ 6 ;Clock bit
r1 equ 5 ;Rate select bit 1
r0 equ 4 ;Rate select bit 0
test1 equ 3 ;Mode pins when using an MMDS
test0 equ 2 ; dev. sys with EM board
ie equ 1 ;Interrupt enable bit
wcm equ 0 ;Wait clock mode bit

*** BCR2 Bit Assignments ***

aloop equ 7 ;Analog loopback mode bit
dloop equ 6 ;Digital loopback mode bit
rx4xe equ 5 ;Receive 4x enable bit
nbfs equ 4 ;Normalization bit format select bit
teod equ 3 ;Transmit end of data bit
tsifr equ 2 ;Transmit single byte IFR with no CRC bit
tmifr1 equ 1 ;Transmit multiple byte IFR with CRC bit
tmifr0 equ 0 ;Transmit multiple byte IFR without CRC bit

*** BDLC Interrupt Sources ***

eof equ $04 ;Received an end of frame
rxifr equ $08 ;Received IFR byte
rdrf equ $0c ;BDLC Rx data register full
tdre equ $10 ;BDLC Tx data register empty
loa equ $14 ;Loss of arbitration
crc_err equ $18 ;Cyclical redundancy check error
invalid equ $1c ;Symbol invalid or out of range
wake_up equ $20 ;Wakeup

*** General Equates for the MC68HC08AS20 ***

ram equ $50 ;User RAM
rom equ $ae00 ;User ROM
config equ $1f ;Configuration register

bdlc_vec equ $ffdc ;BDLC interrupt vector (high)
reset equ $fffe ;Reset vector (high)
AN1731

23
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

***** HC08 RAM Storage Assignments *****

 org ram

*** BDLC Flags ***

retx_flag rmb $1 ;Retransmit flag
rc4x_flag rmb $1 ;4x mode flag
loa_flag rmb $1 ;Loss of arbitration flag

*** Transmit Message Count and Buffer ***

tdre_cnt rmb $1 ;Total number of bytes that have been
 ; transmitted
tx_message rmb $d ;Transmit buffer, first byte is the # of
 ; bytes in the message to transmit & the
 ; remaining bytes make up the message

*** Receive Message Count and Buffer ***

rc_message rmb $d ;Receive buffer, first byte is the # of
 ; bytes received & remaining bytes are
 ; the message

***** Main Program *****

* Following a reset the BDLC and MCU are initialized, and the transmit
* routine is called. Once the first byte of the message is loaded into the
* the BDR the program stays in a loop that checks to see if the message
* needs to be retransmitted.

 org rom
start: mov #$03,config ;Enable the stop instruction & disable
 ; the COP
 jsr bdlc_init ;Initialize the BDLC module
 jsr mcu_init ;Initialize the MCU

retran: jsr transmit ;Transmit a message

 clra ;Check for loss of arbitration or CRC
here: cbeq retx_flag,here ; error, retransmit the message if set
 clr retx_flag ;Reset the error flag
 bra retran ;Branch back to the where the transmit
 ; routine is called
AN1731

24
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

***** BDLC Initialization Subroutine *****

* To initialize the BDLC there are three main steps. First initialize the
* BARD, BCR2 & BCR1. Leave the BDLC in digital and analog loopback modes
* such that loopback tests can be performed. Exit from loopback mode and
* clear any pending interrupts. Finally enable the BDLC interrupts.

bdlc_init:
 mov #$07,bard ;Select off-chip analog Xcver with
 ; inverted polarity, 16 us delay
 mov #$c0,bcr2 ;Remain in loopback modes, set NBFS if using
 ; IFS, leave last 4 bits 0's to prevent
 ; undesirable BDLC operation
 mov #$ac,bcr1 ;Ignore messages until a valid SOF, Set up
 ; the clocks, set bits 2 & 3 for emulation

 ;User should perform loopback tests if
 ; desired

 mov #$00,bcr2 ;Exit out of A & D loopback modes

int_chk:
 ldx bsvr ;Read BDLC status register
 cbeqx #$00,en_int ;Check if a status flag has been set
 jmp bdlc_int ;Service set flags
 bra int_chk ;Branch to check status register

en_int: mov #$ae,bcr1 ;Enable BDLC interrupts
 rts

***** MCU Initialization Subroutine *****

* This subroutine clears the appropriate RAM variables used by the program,
* and delays for one EOF time period (~280 us). This delay allows the
* BDLC to monitor the bus and enable the receiver circuitry internally
* after it sees the bus idle for an EOF time period. Since the IMSG bit is
* left set until the first SOF is received, there will not be an EOF
* interrupt. When the first SOF is received the IMSG bit is automatically
* cleared by the hardware.
*
* The final step of the microcontroller's initialization is to clear its
* interrupt mask bit.

AN1731

25
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mcu_init:
 clr tdre_cnt ;Clear all flags, counters and the first
 clr retx_flag ; byte of the transmit and receive buffers
 clr loa_flag
 clr rc4x_flag
 clr rc_message
 clr tx_message
 jsr eof_delay ;Delay for one EOF time period

 cli ;Clear interrupt mask bit for MCU

 rts ;Return from subroutine

***** BDLC Transmit Subroutine *****

* This subroutine moves the message $04 $55 $55 $55 $55 into the
* tx_message RAM buffer. The first byte represents how many data bytes
* are in the message. The following four bytes are the actual data bytes
* that will be transmitted on the bus. After the RAM buffer is loaded the
* first data byte of the message is loaded into the BDR, which initiates
* the transmission. The tdre_cnt counter is incremented to keep track of
* how many bytes have been transmitted.

transmit:
 mov #$04,tx_message ;Load the number of bytes to transmit
 ; to the transmit buffer
 mov #$55,tx_message+1;Load first byte of the message to the
 ; transmit buffer
 mov #$55,tx_message+2;Load second byte of the message to the
 ; transmit buffer
 mov #$55,tx_message+3;Load third byte of the message to the
 ; transmit buffer
 mov #$55,tx_message+4;Load fourth byte of the message to the
 ; transmit buffer

 lda tx_message+1 ;Transmit the first byte of the
 sta bdr ; message
 inc tdre_cnt ;Increment the transmit byte counter
 rts
AN1731

26
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

***** EOF Delay Subroutine *****

* This subroutine delays for approximately one EOF time period (280 us).

eof_delay: ;Delay for approx. 280 us or 1 EOF period
 lda #$5b ;2 cycles => 2 us
inner: dbnza inner ;3 cycles => 3 us x 91 = 273 us
 rts ;4 cycles => 4 us
 ;Total = 2 + 273 + 4 = 279 us

***** BDLC Interrupt Service Routine *****

* The key to servicing the interrupts generated by the BDLC is to use a
* jump table. The value in the BSVR is used to index to the correct
* location in the jump table. When the BSVR is accessed by the user's
* software, the bit value read reflects only the highest priority
* interrupt. Once that interrupt is cleared, any pending interrupts are set.
*
* The following is a summary of the actions taken by the each interrupt
* service routine:
* $00 - No Interrupts Pending. This interrupt service routine should
* never happen.
* $04 - EOF Interrupt. First, the routine checks to see if loss of arbi--
* tration occurred. If so, then the message that needs to be retrans-
* mitted has already been loaded by the program and the transmit
* RAM variables should not be cleared, only the receiver variables.
* Next, the routine checks to see if the EOF was a result of transmit-
* ting a message or receiving one. If it was result of transmitting,
* then the transmitter & receiver RAM variables are cleared. If the
* EOF was a result of receiving a message, then the received message
* is analyzed to see if the BDLC should switch into 4x receive mode or
* not. If so, then it is switched and the receiver RAM variables are
* cleared. If not, then just the receiver RAM variables are cleared.
* $08 - RXIFR Interrupt. IFR is not used in this program, so this interrupt
* should not happen.
* $0C - RDRF Interrupt. This interrupt occurs when a data byte is received.
* Two things are checked as the bytes are received. First does the
* second byte = $55 if not then ignore the rest of the message.
* Second, does the first 4 bytes of the message = $6c $55 $01 $04?
* If so, then switch into 4x receive mode.
* $10 - TDRE Interrupt. This routine continues to transmit the message
* that has been stored in the tx_message buffer. If the last byte
* has been sent, then an EOD is transmitted.
AN1731

27
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* $14 - LOA Interrupt. In this routine, the loss of arbitration and
* retransmit RAM variables are set, and the transmit counter is
* cleared. That way the message to be transmitted will be loaded
* and transmitted again.
* $18 - CRC Error flag. If the CRC error occurred during a transmission
* then the retransmit RAM variable is set. Also the transmit and
* receiver RAM variables are cleared. If the CRC error occurred
* while receiving a message, then only the receiver RAM variables
* are cleared.
* $1C - Symbol Invalid Interrupt. Same sequence is used as for a CRC error,
* except that an EOF delay (~280 us) is added before the software
* returns from the interrupt service routine. The delay is added
* because after an invalid symbol interrupt the BDLC module needs to
* see the bus idle for an EOF time period. This ensures that there
* isn't still a fault on the bus. An EOF interrupt will be generated
* once the EOF time period has expired.
* $20 - Wakeup flag. Low power modes are not being used in this program,
* so this interrupt should never occur.

bdlc_int:
 pshh ;Push H onto the stack
 clrh ;Clear H. This will ensure that the indexed
 ; addressing will jump to the correct BDLC
 ; routine
 ldx bsvr ;Read the bsvr value
 jmp jmptab,x

jmptab: jmp serve0 ;Jump to no interrupt service
 nop
 jmp serve1 ;Jump to EOF interrupt service
 nop
 jmp serve2 ;Jump to RxIFR interrupt service
 nop
 jmp serve3 ;Jump to RDRF interrupt service
 nop
 jmp serve4 ;Jump to TDRE interrupt service
 nop
 jmp serve5 ;Jump to LOA interrupt service
 nop
 jmp serve6 ;Jump to CRC error interrupt service
 nop
 jmp serve7 ;Jump to symbol invalid interrupt service
 nop
 jmp serve8 ;Jump to wake up interrupt service
AN1731

28
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

****************************** No Interrupt *******************************

serve0: pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return

***************************** EOF Interrupt *******************************

serve1: lda #$01 ;Check to see if a LOA occurred
 cbeq loa_flag,clear_loa
 ;If so, then skip clearing the transmit
 ; flags because the BDR is loaded with
 ; the message to retransmit

 clra ;Check to see if the EOF occurred because of
 cbeq tdre_cnt,check_4x ;a transmission or just reception of a message

 clr tdre_cnt ;If EOF occurred because a message was trans-
 clr tx_message ; mitted then clear transmission flags
 jmp no_rc4x ;Skip to where the receiver RAM variables
 ; are cleared

clear_loa:
 clr loa_flag ;Clear the LOA flag and continue with
 ; clearing the proper receiver flags

check_4x:
 lda rc4x_flag ;Check to see if the message just received
 cmp mode_4x ; signaled for the node to switch into 4x
 bne no_rc4x ; receive mode

 mov #$20,bcr2 ;Enable 4x mode

no_rc4x:
 clr rc4x_flag ;Do not switch in 4x mode
 clr rc_message ;Clear the receive byte count
 pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return from the interrupt

**************************** RxIFR Interrupt ******************************

serve2: pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Not using IFR, return
AN1731

29
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**************************** RDRF Interrupt *******************************

serve3: lda bdr ;Store the receive byte of BDLC data to
 ; acc. and clear the RDRF flag

 ldx rc_message ;Load the count byte into the index reg.
 sta rc_message+1,X ;Store received byte to receive RAM buffer
 inc rc_message ;Increment to next RAM location
 ldx rc_message ;Load the index reg. with the byte # received
 cbeqx #$01,byte_1
 cbeqx #$02,byte_2
 cbeqx #$03,byte_3
 cbeqx #$04,byte_4
 jmp return

byte_1:
 cmp byte1 ;Compare the 1st byte received with the
 ; 1st byte in the message look up table
 bne return ;If the bytes are not equal then return
 inc rc4x_flag ;Increment the 4x mode flag
 jmp return

byte_2:
 cmp byte2 ;Compare the 2nd byte received with the
 ; 2nd byte in the message look up table
 beq keep_mes ;If the bytes equal keep the message

 bset imsg,bcr1 ;If not, ignore the message
 clr rc_message ;Clear the number of bytes received
 clr rc4x_flag ;Clear the 4x mode flag
 jmp return
keep_mes:
 inc rc4x_flag ;Increment the 4x mode flag
 jmp return

byte_3:
 cmp byte3 ;Compare the 3rd byte received with the
 ; 3rd byte in the message look up table
 bne return ;If they don't match, then continue
 inc rc4x_flag ;If they match, then increment the 4x
 ; mode flag
 jmp return

byte_4:
 cmp byte4 ;Compare the 4th byte received with the
 ; 4th byte in the message look up table
 bne return ;If they don't match, then continue
AN1731

30
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 inc rc4x_flag ;If they match, then increment the 4x
 ; mode flag
return:
 pulh ;Pull the H to return to previous operating
 ; conditions
 rti

**************************** TDRE Interrupt *******************************

serve4: lda tx_message ;Load the acc with the number of bytes
 ; that have been transmitted
 cbeq tdre_cnt,txdone ;Compare it with the number of total
 ; bytes in the message to transmit,
 ; branch if equal
 inc tdre_cnt ;Increment transmit byte counter
 ldx tdre_cnt ;Load the number of the byte to transmit
 ; in the index reg.
 lda tx_message,X ;Load the byte to transmit in acc
 sta bdr ;Transmit byte
 bra ret4 ;Jump to return
txdone: bset teod,bcr2 ;Transmit an EOD on the bus
ret4: pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return from the interrupt

***************************** LOA Interrupt *******************************

serve5: inc loa_flag ;Increment the loa flag
 inc retx_flag ;Increment retransmit flag because a LOA
 ; occurred during arbitration
 clr tdre_cnt ;Clear transmit byte counter
 pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return from the interrupt

************************** CRC Error Interrupt ****************************

serve6: clra ;Check if the CRC error occurred during
 cbeq tdre_cnt,rec6 ; message reception from another node.
 ; If so, jump to rec6

 clr tdre_cnt ;Clear the transmit byte count
 inc retx_flag ;If not, then retransmit the message

rec6: ;CRC error occurred while receiving a
 ; message from another node
 clr rc4x_flag ;Clear the 4x mode flag
 clr rc_message ;Clear the receive byte count
AN1731

31
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 ;*User may want to add s/w here*
 pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return from the interrupt

************************* Symbol Invalid Interrupt ************************

serve7: clra ;Check if the Sym Inv error occurred during
 cbeq tdre_cnt,rec7 ; message reception from another node.
 ; If so jump to rec7

 clr tdre_cnt ;Clear the transmit byte count
 inc retx_flag ;If not, then retransmit the message

rec7: ;Inv Sym occurred while receiving a
 ; message from another node
 clr rc4x_flag ;Clear the 4x mode flag
 clr rc_message ;Clear the receive byte count
 ;*User may want to add s/w here*
 jsr eof_delay ;Delay for the eof to be generated
 pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return from the interrupt

**************************** Wake Up Interrupt ****************************

serve8: pulh ;Pull the H to return to previous operating
 ; conditions
 rti ;Return from the interrupt

***** Message Look Up Table *****

* These are the bytes that have to be received in order to switch the part
* into 4x receive mode.

mode_4x fcb $04
byte1 fcb $6c
byte2 fcb $55
byte3 fcb $01
byte4 fcb $04
AN1731

32
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

***** MC68HC08AS20 Reset Vectors *****

 org bdlc_vec ;BDLC interrupt vector
 fdb bdlc_int

 org reset ;Reset interrupt vector
 fdb start
AN1731

33
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN1731

34
For More Information On This Product,

 Go to: www.freescale.com

Application Note
General BDLC Driver Routines for J1850 Communication

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN1731

35
For More Information On This Product,

 Go to: www.freescale.com

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Evolution of Multiplexing
	J1850 Overview
	VPW J1850
	Message Structure
	Motorola’s MDLC vs. BDLC
	A Closer Look at BDLC
	How the BDLC is Enabled
	When Receiver and Transmitter Circuitry is Activat...
	What Flags are Set in the BSVR as a Result of an E...
	How an EOF Flag Can Wake a Part from Wait Mode
	How the Digital Loopback Mode Works with Stop Mode...

	BDLC Example Software Program
	General BDLC Driver Routines for J1850 Communicati...

