

Freescale Semiconductor

Order this document by AN1738/D

AN1738

Instruction Cycle Timing of MC68HC05JJ/JP Series Microcontrollers

By Mark L. Shaw

Member, Technical Staff, Sensor Products Division Transportation Systems Group Phoenix, Arizona

Introduction

The MC68HC05JJ and MC68HC05JP (JJ/JP) series of microcontrollers has an asynchronous analog interface coupled to the digital CPU. Because of this, events can occur which are not specifically synchronized to the software that is running.

For example, when sampling the outputs of the two voltage comparators, the actual time when the CMP1 or CMP2 bits are read is dependent on bus speed and the instruction being executed. The user can determine the time and bus cycles of an instruction based on the oscillator frequency being used. The timing within an instruction is usually not known, although some assemblers provide the cycles per instruction or the time between instructions.

Normally, such timing for microcontrollers is not published, since this is not a consideration when all their peripherals are digital or have analogto-digital (A/D) convertors which have defined sampling schemes. Also, the user must understand this instruction timing to be able to write software which properly measures the exact timing of the external ramping capacitor when doing A/D conversions in mode 0 or mode 1.

AN1738

Information in this application note describes the hardware timing of the JJ/JP series and provides a method whereby the user can make individual timing measurements.

This measurement technique also can be applied to other members of the MC68HC05 Family of MCUs.

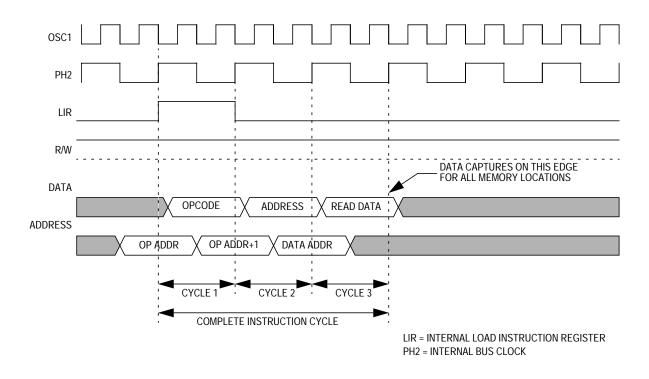
Typical Read Instruction

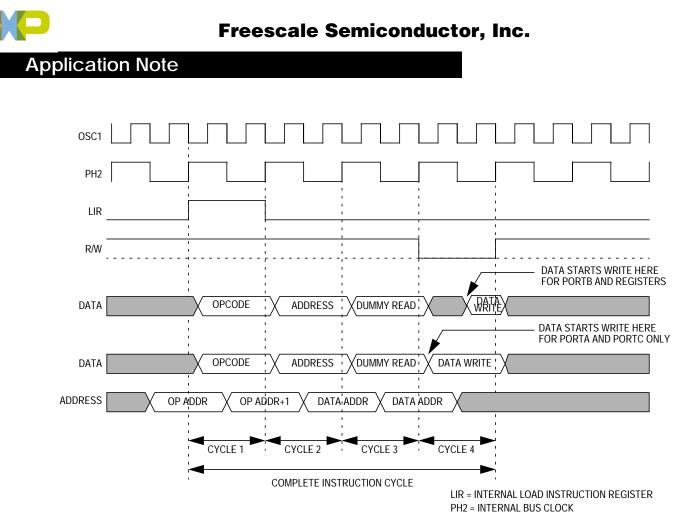
The typical timing diagram for a 3-cycle LDA instruction (direct addressing mode) is shown in **Figure 1**.

The important time for all instructions which read data is the rising edge of the internal bus clock during the read cycle. Even though the location may be enabled before the end of the cycle, it is the next rising edge of the internal bus clock (usually called PH2) where the data is latched into the CPU.

Not all instructions which read data will do so at the end of the instruction cycle in the sequence. For instance, instructions such as BRCLR, BRSET, or any of the read-modify-write instructions will read the data on an earlier cycle so that the data can be used in the later cycles of the instruction.

Also, there may be "dummy" read cycles where the CPU has pointed the address toward the target register, but has not actually accessed its data.




Figure 1. Typical Instruction Timing (LDA, Direct)

Typical Write Instruction

The typical timing diagram for a 4-cycle STA instruction (direct addressing mode) is shown in **Figure 2**.

The important time for all instructions which write data is the last cycle of the instruction sequence where the data is written into the target location. For most locations, like port B and the internal registers, the data is written at the middle of this last cycle. However, any writes to port A or port C will start at the beginning of the last instruction cycle. Essentially, the port B or internal registers are written about one-half cycle later in the instruction than port A or port C. The data may be presented to the target location for the complete write cycle, but the actual change in the data location will occur as soon as the data is presented to the location.

AN1738

Figure 2. Typical Instruction Timing (STA, Direct)

The actual times at which the data is latched on a read cycle and the data is written on a write cycle may be up to 100 ns before or after the rising and/or falling edges of the internal PH2 bus clock.

This level of timing accuracy is not needed for several reasons:

- The user cannot see the PH2 clock externally.
- The highest bus frequency is 2.1 MHz (period = 476 ns).
- The core timer counts every four bus cycles (period = 1.9 seconds).
- The 16-bit timer counts every four bus cycles (period = 1.9 seconds).
- The fastest software polling loop is five bus cycles (2.4 seconds).

Application Note Typical Write Instruction

With these timing resolutions, a 100-ns variation is less than approximately 5% of a count. Better accuracy in measuring time is best done by relating the timing of events to the nearest one-half cycle from the first instruction.

Instruction TimingIn Table 1 a summary of the read and write timing is given for theSummaryinstructions most often used to manipulate or poll the registers and ports.

Table 2 gives similar timing information for the other instructions which can manipulate or read the registers or ports. These other instructions are only given for the direct addressing mode. Using the extended or indexed addressing modes will add one or two additional addressing cycles which will appear before the read or write cycles.

Table 1. Read/Write Timing for Common Instructions
--

Opcode	Instruction	Addressing	Total CPU	Dummy read	Timing edge from start of instruction (cycles)			
Opcode	instruction	mode	cycles	cycle	Read (note 2)	Write (note 3)	Write (note 4)	
BCLR0:BCLR7 BSET0:BSET7	Bit clear Bit set	Bit manipulation (note 1)	5	3	4	4	4.5	
BRCLR:BRCLR7 BRSET:BRST7	Branch if bit clear Branch if bit set	Bit test and branch	5	_	3	_	_	
		Direct	3	_	3	_	_	
	Load	Extended	4	_	4	_		
LDA	accumulator or	Index, no offset	3	_	3		_	
LDX	LDX Load index		4	_	4		_	
	register	Index, 16-bit offset	5	_	5		_	
		Direct	4	3	_	3	3.5	
	Store	Extended	5	4	_	4	4.5	
STA	accumulator or	Index, no offset	4	3	_	3	3.5	
STX	STX Store index		5	4		4	4.5	
	register	Index, 16-bit offset	6	5		5	5.5	

1) BCLR and BSET are read-modify-write instructions.

2) Data read is accessed up until to the end of the read cycle.

3) Data is written at the start of the write cycle for port B and internal registers.

4) Data is written halfway through write cycle for port A and port C only.

Opcode	Instruction	Addressing mode	Total CPU	Dummy	Timing edge from start of instruction (cycles)			
Opcode	instruction	(note 1)	cycles	read cycle	Read (note 2)	Write (note 3)	Write (note 4)	
ADC ADD AND	Add with carry Add w/o carry Logical AND	Direct	3		3	_		
ASL ASR	Arith. shift left Arith. shift right	Direct*	5	3	4	4	4.5	
BIH BIL	Branch, IRQ high Branch, IRQ low	Relative	3	_	2	_	_	
BIT	Bit test	Direct	3	_	2	_		
CLR	Clear	Direct*	5	3	4	4	4.5	
CMP CPX	Compare accumulator Compare X-reg	Direct	3	3	3	_	_	
COM	Complement	Direct*	5	3	4	4	4.5	
DEC	Decrement	Direct*	5	3	4	4	4.5	
EOR	Exclusive OR	Direct	3	_	3	_		
INC	Increment	Direct*	5	3	4	4	4.5	
LSL LSR	Logic shift left Logic shift right	Direct*	5	3	4	4	4.5	
NEG	Negate	Direct*	5	3	4	4	4.5	
ORA	Inclusive OR	Direct	3	_	3		_	
ROL ROR	Rotate left Rotate right	Direct*	5	3	4	4	4.5	
SBC	Subtract w/carry	Direct	3	_	3	_		
SUB	Subtract	Direct	3	_	3	—	—	
TST	Test for neg/zero	Direct	4	_	3			

Table 2. Read/Write Timing for Other Instructions

1) Instructions with asterisk (*) are read-modify-write instructions.

2) Data read is accessed up until to the end of the read cycle.

3) Data written at start of write cycle for port B and internal registers.

4) Data written halfway through write cycle for ports A and C only.

Understanding MMDS05 Timing

The timing given in **Figure 3** shows the relative signals used on the MMDS05 for the instruction decode. The LIR/RW signal from the MCU being used for emulation has a double pulse, but the rising edge of the first E clock generates the proper LIR signal. The start of each instruction opcode is, therefore, the rising edge of PH2 just as the LIR signal rises.

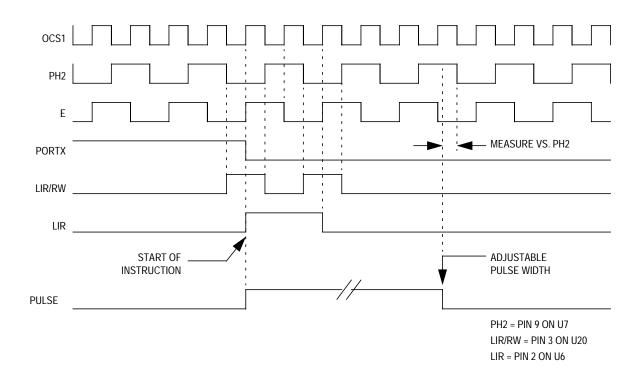


Figure 3. MMDS05 Timing

The actual setup used to measure exact read and write timing is shown in **Figure 4**. The steps are:

- The LIR signal is to drive two 74HC00 NAND gates in series (connected as inverters) from the LIR signal at pin 2 of U6 on the MMDS05 to the trigger input of the pulse generator. This buffers the trigger input which wants to see 50 inputs.
- The output of the pulse generator is then fed through two more 74HC00 NAND gates in series (also connected as inverters) to one input channel of a 4-channel oscilloscope.
- Another input of the oscilloscope is connected to the PH2 signal at pin 9 or U7 on the MMDS05.
- Another channel is connected to the trigger input of the pulse generator.

The software, *timing.asm*, used is given at the end of this application note.

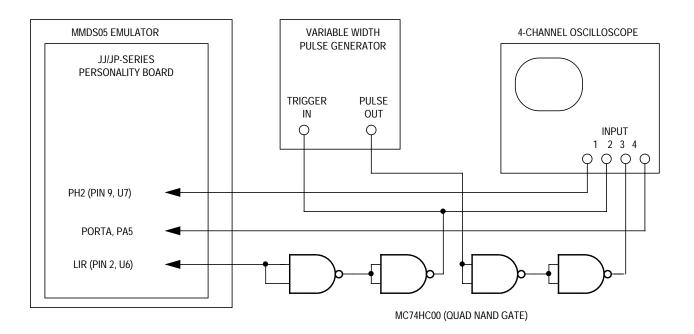
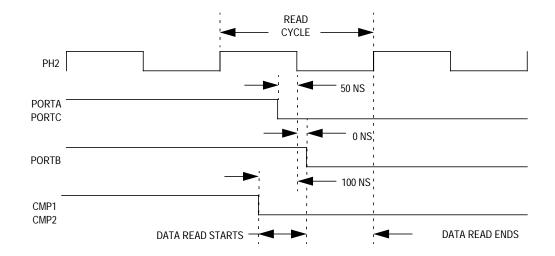


Figure 4. Timing Measurement Setup

For read timing, the software takes a reading on the desired input and then reflects the input state to the PA5 pin as an output. This PA5 output is then fed to another input on the oscilloscope. The pulse duration is adjusted to cause only a random change in the PA3 output during the expected read cycle of the instruction being used. The expected read cycle is counted from the rising edge of PH2 just as the LIR signal goes high (trigger input). The phase timing can be measured between the trigger input and the PH2 signal on pin 9 of U7 on the MMDS05.

The measured read timing for PORTA, PORTB, PORTC, and the comparator outputs is shown in **Figure 5**.


NOTE: Even though the data begins to be read about halfway through the cycle, the actual state that is read and latched into the CPU occurs at the end of the read cycle.

For write timing, the software simply toggles the state of the desired output. This output is then fed to another input on the oscilloscope. The change in the output with respect to the PH2 signal is measured during the expected write cycle of the instruction being used. The expected write cycle is counted from the rising edge of PH2 just as the LIR signal goes high (trigger input).

The measured write timing for PORTA, PORTB, PORTC, and the current source to PB0 is shown in **Figure 6**.

Application Note Typical Write Instruction

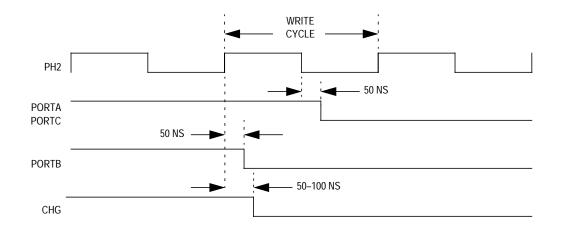


Figure 6. STA Write Timing

Referring to the **Figure 5** and **Figure 6**, the timing for read and write operations is summarized in **Table 3**.

Operation	Source	Start vs. PH2 rise (ns)	Start vs. PH2 fall (ns)	End vs. next PH2 fall (ns)	Equiv. portion of PH2 cycle		
	PORTA	—	-50	0	1.0		
READ	PORTB		0	0	1.0		
READ	PORTC		-50	0	1.0		
	CMP1/CMP2	_	-100	0	1.0		
Operation	Destination	Start vs. PH2 rise (ns)	Start vs. PH2 fall (ns)	End vs. Next PH2 fall (ns)	Equiv. portion of PH2 cycle		
	PORTA	_	+50	0	0.5		
WRITE	PORTB	+50	—	0	0.0		
	PORTC	_	+50	0	0.5		
	CHG	+75	—	0	0.0		

Table 3. Read/Write Cycle Timing

Using the bus state analyzer in the MMDS05, the actual cycle used for read/write can be measured for all the various instruction types and their addressing modes as given in Table 1 and Table 2.

Timing Measurements on Other MC68HC05 MCUs

Similar timing measurements can be made on other members of the MC68HC05 Family of MCUs by using the technique shown in Figure 4. The user can find the appropriate PH2, LIR, and f_{osc} signals on the schematics supplied with each emulator personality module for the MMDS05.

TimingThe software included here was used to measure the timing of reads andMeasurementwrites on the JJ/JP series and can be adapted for other MCUs, as well.Software

Application Note Typical Write Instruction

timing.asm - Timing Test Setup Software

annig.aoni	Thining Test	octup (

	* TIMIN	Time Setup									
	*										
	* Desig										
	*										
	* Orig	inal:	Mark Shaw	1	12Aug97						
	* Revis	ed:	Mark Shaw	06	5Sep97						
	* * * * * * *	* * * * * *	* * * * * * * * * * * *	***	* * * * * * * * * * * * * * * * * * * *						
	; MC68H	; MC68HC705JP7 definitions.									
	i										
ADDR CODE	; Regis	ter ad	dresses								
0000	PORTA	equ	\$00	;	port A data register						
0001	PORTB	equ	\$01	;	port B data register						
0002	PORTC	equ	\$02	;	port C data register						
0003	AMUX	equ	\$03	;	Analog Mux register						
0004	DDRA	equ	\$04	;	port A data direction register						
0005	DDRB	equ	\$05	;	port B data direction register						
0006	DDRC	equ	\$06	;	port C data direction register						
000D	ISCR	equ	\$0d	;	interrupt status/control register						
0010	PDRA	equ	\$10	;	port A & C pull-down register						
0011	PDRB	equ	\$11	;	port B pull-down register						
001D	ACR	equ	\$1d	;	analog subsystem control register						
001E	ASR	equ	\$1e	;	analog subsystem status register						
	;										
	; Bit addresses										
	i										
	: Port	A (POR	TA)								
0005	PA5	equ	5	;	bit 5						
0002	PA2	equ	2	;	bit 2						
0000	PAO	equ	0	;	bit 0						
	; Port	C (POR	TC)								
0000	PC0	equ	0	;	bit O						
		rupt s	tatus & cont	ro	l register (ISCR)						
0006	OM2	equ	6	;	Oscillator mode select 2						
0005	OM1	equ	5	;	Oscillator mode select 1						
	;										
	;Memory	;Memory addresses									
	;										
0020	RAM	equ	\$0020	;	lowest RAM address						

	:			
0800	,	org	\$0800	
		DEVICE		
0800 9C		rsp		Redundant reset of stack pointer
0801 9B	_	sei		;Redundant set of int. mask bit, I
0802 A660	SU1	lda	#\$60	;OM2 and OM1
0804 B70D		sta	ISCR	;Enable both the LPO and EPO
0806 A620	SU3	lda	#\$20	;OM1 only
0808 B70D		sta	ISCR	;Switch clock source to the EPO
	;			
	; SETUF ;	PORTS		
080A A6FF	SU4	lda	#\$FF	
080C B710				;Inhibit port A & C pulldowns
080E B711		sta	PDRB	;Inhibit port B pulldowns
0810 B700	SU5	sta	PORTA	;Set all port A pins, LEDs off
0812 B702		sta	PORTC	;Set all port C pins, LEDs off
0814 B704	SU6	sta	DDRA	;Set up port A as outputs
0816 3F05		clr	DDRB	;Set up port B as inputs
0818 B706		sta	DDRC	;Set up port C as outputs
	,			
	; LOOP ;	ON PORI	TO FIND TI	MING
081A CC081D		jmp	CHECK1	;Jump to check of choice
				;Change CHECK to start of
				; of routine desired.
				;Test read timing of ACR
081D 1A00	CHECK1	bset		;Send out pip
081F 1B00		bclr	PA5,PORTA	
0821 A681		lda	#\$81	;Set ICEN and CHG
0823 C7		fcb	\$C7	
0824 00		fcb	\$00	
0825 1D		fcb	\$1D	
0826 A601		lda	#\$01	;Clear CHG
0828 C7		fcb fcb	\$C7	
0829 00 082A 1D		fcb fcb	\$00 \$1D	
0828 20F0		bra	SID CHECK1	
		~ 1 4	CULCUL	

Application Note Typical Write Instruction

082D	A6FF	CHECK2	lda	#\$FF	;Testing write timing
082F	В704		sta	DDRA	;Set ports as outputs
0831	В705		sta	DDRB	
0833	В706		sta	DDRC	
0835		LOOP1	lda	#\$FF	;Set all port pins high
0837			sta	PORTA	
0839			sta	PORTB	
083B	В702		sta	PORTC	
083D	1 5		clra		;Set all port pins low
083E			sta	PORTA	Bet all poit pins low
0840				PORTB	
			sta		
0842	B102		sta	PORTC	
0844	20EF		bra	LOOP1	
					;Test reads of comparator outputs
0846	1104	CHECK3	bclr	PA0,DDRA	;Set PAO as input
0848			bclr		;Set PCO as input
084A			lda	#\$06	
084C			sta	ACR	;Turn on comps
084E			lda	#\$81	
0850			sta	AMUX	;Select PB1
0850	6703		Sla	AMUX	Select PBI
0852	1A00	LOOP2	bset	PA5,PORTA	;Send out trigger
0854	1B00		bclr	PA5,PORTA	;End trigger
0856	B61E		lda	ASR	;Fetch data
0858	A402		and	#\$02	;Mask off PA0
085A	2704		beq	LOW	;If low, set PA2 low
085C	1400		bset	PA2,PORTA	; else set PA2 high
085E	20F2		bra	LOOP2	
0860	1500	LOW	bclr	PA2,PORTA	
0862		TOW	bra	LOOP2	
0002			bra	10012	
		;			
		; INTERN	RUPT TRAP	2	
0864	20fe	ITRAP	bra	ITRAP	
1FF2			org	\$1FF2	
		;			
		; RESET		ERRUPT VECTO	
1FF2			fdb	ITRAP	;Analog vector
1FF4			fdb		;Serial vector
1FF6			fdb	ITRAP	;Timer vector
1FF8			fdb		;Core timer vector
1FFA			fdb	ITRAP	;Ext IRQ vector
1FFC			fdb	ITRAP	;SWI vector
1FFE	0800		fdb	BEGIN	;Reset vector
2000			end		

AN1738

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale Semiconductor, Inc