

Freescale Semiconductor

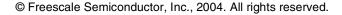
Order this document by AN1771/D

AN1771

Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs

By Joe Haas

TSG Body Electronics and Occupant Safety Division Austin, Texas


Introduction

The pervasive nature of the modern microcontroller (MCU) has resulted in numerous products that now contain one or more MCUs as central subsystems. Cell phones, base stations, repeaters, SLICs (subscriber line interface cards), and cordless telephones are just a few of the many products which have MCUs at the center of their functionality.

These products also require precision tone generators for functions such as dual-tone-multi-frequency signaling (DTMF), call progress tones, continuous tone-coded squelch system encode (CTCSS), digital continuous tone-coded squelch system encode (DCTCSS), and user interface chimes.

While off-the-shelf components generally are available for these functions, the added cost can be greatly reduced by using the already present MCU to synthesize the desired tones. This benefit is multiplied in systems where many unrelated tone protocols are required, since the same synthesis firmware/hardware can be used across a wide range of frequencies.

This application note presents basic tone synthesis techniques and illustrates their implementation using the HC08, HC05, HC11, and HC12 Families of MCUs.

© Motorola, Inc., 1998

AN1771

For More Information On This Product, Go to: www.freescale.com

Tone Synthesizer Basics

When an analog signal is stored in digital memory, an A/D (analog-todigital) converter is used to provide quantized samples at a specific data rate (known as the sample rate or F_S) to be stored in memory as binary values. To retrieve the stored signal, the binary samples are extracted from memory and sent to a D/A (digital-to-analog) converter at the same rate at which they were stored. As long as the analog signal has no frequency components greater than half the sample rate (as per the Nyquist criteria), the reconstructed signal will appear to closely follow the original waveform. (Quantization effects in the A/D will introduce some errors.)

To generate a tone at a specific frequency, one can simply digitize a sample of the tone to be reconstructed and store the sample in the system memory for later recall. However, for a multi-tone system, each tone requires a separate sample and thus its own memory storage. The more tone frequencies required, the more storage needed to hold the samples. In addition, the sample lengths for different frequencies will not be consistent, since each stored sample must continue until the signal repeats. This method would be tedious to maintain, use large amounts of memory to store relatively few tones, and would be limited to only those tones which were stored previously.

Another reconstruction method would be to generate a single sample and vary the reconstruction sample rate. This would produce a signal with a variable frequency with only one stored cycle, but it would yield a variable and non-linear Fstep (Fstep is the smallest, non-zero increment of frequency).

As an example, consider an 8-MHz master clock and a 256-byte sine sample. The 8-MHz master clock is applied to a programmable 16-bit divider which is used to set the sample rate. To obtain reconstructed tones from near-DC to 3 kHz, the divider would range from 65535 (8E6 / 65535 / 256 = 0.477 Hz) to 10 (8E6 / 10 / 256 = 3.125 kHz).

At the low end of the frequency range, the Fstep would be:

Fstep = Fdiv2 – Fdiv1 = (8E6 / 65534 / 256) – (8E6 / 65535 / 256) = 0.47685 – 0.47684 = 0.00001 Hz

While at the high end:

Fstep = Fdiv2 – Fdiv1 = (8E6 / 10 / 256) – (8E6/11 / 256) = 3125 – 2841 = 284 Hz

This illustrates that the example would exhibit an Fstep variation of several orders of magnitude across the signal passband. Not only would this complicate real-time frequency calculations on the target system, but the Fstep granularity at the higher frequencies would severely limit the utility of the system. (Typically, Fstep should be at least 0.5 Hz across the passband for most applications.)

Filtering this system would also pose some problems. A reconstruction filter (for instance, a low-pass filter with a cutoff frequency, Fc, just below the Nyquist rate of Fs / 2) is used to remove the PWM (pulse width modulation) sample frequency and higher order harmonics. If the sample rate is varied, the user must undertake the difficult and expensive task of designing a tunable filter that can track the sample rate so that the reconstructed signal can have a flat response in the passband. This would require additional hardware, MCU resources, and firmware support which would increase the cost of both development and production.

Direct Look-Up The direct-look-up synthesis algorithm described here uses a combination of the aforementioned schemes to produce precision waveforms across a specific frequency band. A look-up table holds a replica of the waveshape which is to be generated. (Typically, this is a mathematically generated sine table with N entries.) At every sample point, the algorithm uses the value of a phase accumulator to extract

data from the table which is sent to the D/A. The phase accumulator is a software register used to keep a "running total" of the current phase valve of the synthesized signal. The algorithm also updates the phase accumulator to be used at the next sample point by adding a "delta phase" value, or Delta.

NOTE: Look-up table accesses are modulo-N, such that any access beyond the end of the table will wrap-around to the beginning.

To obtain finer Fstep granularity, Delta and the phase accumulator are represented as fractional quantities with the integer portion being used as the index into the sine table.

The frequency of the resulting tone can be deduced by setting Delta = 1. At every sample point, the integer portion of the phase accumulator is incremented by exactly 1. Since this corresponds to the index into the sine table, the D/A output simply will follow the sine table. Since the table holds one cycle, the frequency of the output will be 1/tgen, where tgen is the time required for one full cycle.

With N table entries sent at 1/Fs per entry:

tgen = N * 1 / Fs.

If Delta is doubled, the table will be cycled in half the samples, which results in:

tgen = N / (2Fs)

Thus, tgen is inversely proportional to the value of Delta. Since F = 1/t, the frequency of the generated signal is given by this equation:

(1) Fgen = (Fs * Delta) / N

As noted, Delta is a fractional quantity valid in this range:

0 <= Delta < N / 2

For microcontroller applications, Delta is most easily represented as a 2-byte quantity (referred to here as Dreg) with the upper byte holding the integer portion and the lower byte holding the fractional portion (thus, the

radix lies between bits 7 and 8). The decimal value of Delta would be represented as:

(2) Delta = Dreg[15:0] / mod(fractional)

Since the fractional portion is represented here as an 8-bit value, mod(fractional) = 256 which yields:

(3) Delta = Dreg[15:0] / 256

and

Dreg[15:0] = 256 * Delta

The 16-bit Dreg value is thus added to the 16-bit phase accumulator at each sample period to generate the table index and running phase reference. The table index is extracted from the phase accumulator by masking the integer portion with N - 1 (valid for $N = 2^{A}x$, where x is a positive integer). For an 8-byte table, the mask would be \$07 (the lower three bits) and for a 256-byte table the mask would be \$FF (all eight bits of the integer portion of Delta). This provides a simple and efficient method of implementing the numerical values used to represent Delta.

Example:

Given: N = 8, Fs = 8 kHz, and Fgen = 800 Hz

From equation 1, solve for Delta,

```
Delta = (N * Fgen) / Fs
= (8 * 800) / 8000
= 0.8
```

The integer and fractional parts (high byte/low byte) are represented as:

```
Integer = 0
Fractional = 0.8 * 256 = 204.8 (round to the nearest integer) = $CD
Dreg = $00CD
```


The pointer mask, as noted, would be Accum[10:8] = [111], which is used as an offset into the 8-byte sine table.

Table 1. Example of a 4-Bit, Unsigned Sine Table
(D/A = 8 + int(sin(2*pi*x / 16) * 15)

Offset, x	D/A	Degrees
0	8	0
1	13	45
2	15	90
3	13	135
4	8	180
5	2	225
6	0	270
7	2	315

Table 2. Example of Phase Accumulator History
(Each Line = 1 Sample Period)

Accum [15:0]	Accum [10:8]	D/A Value from Table
\$0000	\$00	\$08
\$00CD	\$00	\$08
\$019A	\$01	\$0D
\$0267	\$02	\$0F
\$0334	\$03	\$0D
\$0401	\$04	\$08
\$04CE	\$04	\$08
:	:	:
:	:	:

Application Note Tone Synthesizer Basics

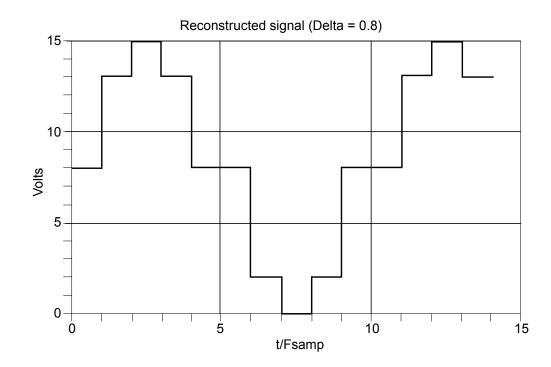


Figure 1. Delta = 0.8 (800 Hz) Example Using 8-Byte Table

Figure 1 illustrates a full cycle of the reconstructed signal, with each horizontal division representing one sample period $(1 / Fs = 1 / 8000 = 125 \mu s)$. From this, the period of the waveform can be calculated by counting the number of sample periods for a full cycle and multiplying by the sample period (in this case, 10 samples = 1.25 ms = 1 / 800 Hz).

As is apparent from the plot of **Figure 1**, a table length of 8 results in a coarse reconstruction; a longer sine table gives more resolution and reduces harmonic distortion. Since the integer portion of Delta is eight bits, a 256-byte table is easily indexed while not reserving an excessive amount of memory. Linear interpolation can be used to increase accuracy with a shorter table, but this is generally not feasible on most MCUs due to processor bandwidth limitations. (However, the HC12 can support this method as is described later in this application note.)

An interesting result of this reconstruction method is that the relationship between Delta and Fs is linear, with each unit change in Delta resulting in the same change in Fgen across the entire pass-band. This value was

AN1771

referred to earlier as Fstep and represents the smallest possible change in Fgen.

Fstep can be found from equations 1 and 3 by:

Fstep = F1 - F2

Choose F1 and F2:

F1 = (Fs * Dreg / 256) / N F2 = (Fs * (Dreg - 1) / 256) / N Fstep = ((Fs * Dreg / 256) / N) - (Fs * (Dreg - 1) / 256) / N = Fs / (256 * N) * (Dreg - (Dreg - 1)) (4) Fstep = Fs / (256 * N)

Thus, for any value of Dreg, the Fstep is always equal to Fs / (256 * N). One result worth consideration is that for a given sample rate, the only remaining variable to determine Fstep is the table length.

From the previous example, Fs = 8000 Hz and N = 8, which gives Fstep = 3.906 Hz. Increasing the table size to N = 256 results in Fstep = 0.122 Hz. Fstep specifies the maximum gross frequency error for any given tone frequency allowing system accuracy within \pm Fstep/2 of any desired frequency.

After signal purity considerations, Fstep typically is the next most important design parameter as it determines how accurately generic tone frequencies can be generated. Generally, a designer is faced with the need to generate tones over a specific frequency range with some degree of accuracy. Typically, this is specified in terms of %error (plus or minus) of the desired frequency, but also may be expressed as +/– Δ F(Hz). (Of course, specifying the error in this manner is trivial because Fstep < 2 Δ F is all that is required for the design to meet the specification.)

For systems that express error in terms of percent, use this equation to determine the maximum allowed Fstep:

(5) Fstep(max) = (Fmin * %error) / 2

Where Fmin is the minimum desired frequency to be generated

Of course, this equation represents the design minimum, and usually it is desirable to choose as small an Fstep as is practical. Actual Fstep should be at least 50 percent of Fstep (max) from equation (5) to allow for round-off errors and normal variations in system clock frequency.

Dual Tone (Chord) Applications such as DTMF and call progress signaling require dual tone synthesis which is simply the generation of two mixed tones of unrelated frequencies. The term "chord" is sometimes used to describe this technique, even though the two tones are not necessarily related by harmonics. In direct look-up synthesis, dual tone generation is a straightforward extension of the single tone case described earlier. Two separate tones can be generated by maintaining two separate Dreg and phase accumulator registers. For each sample period, the system adds Dreg1 to accumulator1 and Dreg2 to accumulator2. The index extracted from each accumulator is used to separately extract D/A values from the same look-up table. Before sending to the D/A, however, these two values are added in software, with the resulting D/A output representing the algebraic sum of the two unrelated tones.

When mixing two signals on the same D/A channel in this manner, it is important to avoid overflow. Overflow occurs when a value is calculated that exceeds the D/A maximum range. If the two signals are of the same amplitude, the range of instantaneous amplitude can vary from a minimum of 0 to a maximum of 2A, where A is the maximum amplitude of the individual signals. Thus, the maximum allowed value is D/A(max) = 2A, or A = D/A(max) / 2.

This can most easily be accomplished by "pre-dividing" the sine table values by 2 so that when any two values are summed, the result won't overflow the D/A.

While pre-division minimizes the real-time effort required by the firmware, it also increases the round-off error (because the D/A LSB

(least significant bit) of the original sine table values are lost). A better method is to use the original table and perform the division in real time (post-division). While this adds some overhead to the system, it reduces round-off error which results in improved dynamic range.

With an 8-bit D/A implementation on an 8-bit MCU, the most efficient way to implement post-division is to simply add the byte values and perform an ROR instruction on the result (divide by 2). When the two 8-bit values are added, the carry becomes the ninth bit. The effect of the ROR instruction is to divide this 9-bit value by two with the 8-bit result being the desired D/A value. While the LSB of the final D/A result is lost, it should be noted that this represents only one round-off error instead of the two errors introduced by the pre-division method.

Look-Up Table Requirements

The length of the look-up table is a primary design variable and is determined by available memory and desired Fstep resolution. D/A dynamic range also contributes to the length of the table as some systems can accommodate 10-, 12-, or 16-bit D/A sub-systems. This mandates more memory to hold the longer D/A values in the look-up table.

Another factor in determining table length derives from the nature of the accumulator/pointer system employed. To reduce firmware overhead, the look-up table length should be an exponential multiple of 2 (given earlier as $N = 2^{x}$). This simplifies the modulo bit mask to extract the D/A pointers which can save several execution cycles in code that is typically very time sensitive. Optimally, an 8-bit mask is chosen because this requires no extra cycles to extract the pointer which results in a code-optimal table length of 2^8 or 256 bytes. While this may result in an Fstep which is much smaller than required for some applications and increase the table memory required, the reduction in execution cycles can overshadow memory availability concerns in systems where ancillary firmware load is high.

D/A Methods

	Two of the most popular D/A methods are direct conversion and pulse width modulation (PWM, also referred to as pulse length modulation, PLM). While direct D/A is the easier to implement (in terms of firmware support) and can result in less distortion and noise than PWM methods, typically, it is more expensive and therefore not as desirable in cost- sensitive systems.
	For this reason, the bulk of the following discussion focuses on PWM methods for some of the 8- and 16-bit Freescale microcontrollers. In general, buffered PWM is preferred over non-buffered because the signal-to-noise ratio of the output can be adversely affected by even slight timing variations in the PWM signal.
Filtering	The sample frequency should be as high as possible (relative to the reconstructed signal) to relax the filtering requirements. The lower the sample frequency, the sharper the filtering required to effectively eliminate the stop-band frequency components. Some of the PWM methods described here are limited to carrier frequencies of around 8 kHz or less (due to timer and/or MCU clock speed limits), which can require very sharp filtering to sufficiently remove the PWM carrier and signal aliases from the D/A output for some applications.
	Sample rate and filter order are the prime cost factors in a synthesis system. As the sample rate is increased, more D/A performance is required which typically increases costs by forcing the designer to exercise one or more of these choices:
	Use a higher frequency crystal
	Use a PWM module only available on a more expensive MCU
	Use an external D/A
	The filter costs also are related to sample rate, but are inversely proportional, which has the effect of countering the cost issues. Thus, it usually is possible for the designer to reach a cost compromise which allows the system performance specifications to be met.

To approach the issue of filtering, the user first must consider the spectral content of the signal that is to be filtered. Sampling theory dictates that when a continuous time signal is sampled at a regular rate (for example, a sine table), the spectrum of the reconstructed signal will be comprised of the spectrum of the original signal plus the original spectrum translated to harmonics of the sample frequency as illustrated in **Figure 2**. To recover the original signal, minus the translated spectra, a reconstruction filter is needed as indicated in the figure.

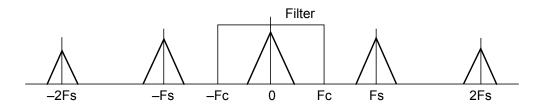


Figure 2. Reconstructed Signal Spectra and Filter Response (Fc = ± Fs/2)

The ideal filter described in **Figure 2** would pass all signals below Fc, and reject all signals above Fc. Unfortunately, it is impossible to construct an ideal filter, which forces the designer to consider real filter performance when designing a synthesis system. The impact of this can be seen in **Figure 3** which shows a synthesized signal, Fgen (Fgen < Fs / 2), inside a real filter passband. The real filter has a cutoff frequency (Fc) that is less than the Nyquist rate, Fs/2. The stop-band aliases Fa = Fs \pm Fgen and sample clock are also shown. The intersection of the filter curve with that of the stop-band alias determines the degree of attenuation of the alias component.

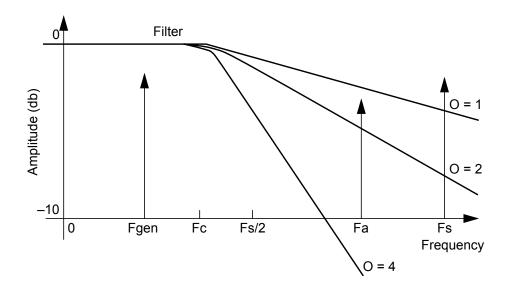


Figure 3. Example Signal and Real Filter Response O = Order of Filter (1st, 2nd, and 4th Shown)

Filters for signal reconstruction have three important design rules:

- 1. The passband response should be reasonably flat.
- 2. The filter cutoff must be somewhat less than the Nyquist rate, but greater than Fgen(max).
- 3. The required filter order is determined by the separation between Fgen(max) and Fs Fgen(max).

The flat passband requirement is dictated by the application. Most applications require that signal amplitudes only vary by a small amount across the passband. Typically, Butterworth response is preferred as it has essentially no amplitude ripple in its passband. If the cutoff frequency is chosen too far inside the desired passband (for example, to increase the stop-band attenuation), amplitude distortion (known as twist) can also result which can disrupt the function of tone receivers or detectors (particularly important for dual tone systems).

Once the cutoff frequency is chosen so as to minimize the pass-band distortion, the filter order (for example, the slope of the stop-band attenuation) can be determined by the amount of stop-band alias attenuation required and the system parameters. Better than 40db

attenuation in the stop-band is generally a safe figure, although more or less attenuation may be appropriate for a particular system design.

Each order of filtering results in an attenuation slope of approximately 6db/octave in the filter stop-band. Given filter cutoff, Fc, and a target frequency, F, the following equation relates Fc and F in terms of octaves:

where x = number of octaves of separation.

To solve for x, the log function is used:

(8) $x = \log (F / Fc) / \log(2)$

For a given filter order, O, and cut-off frequency, Fc, the attenuation at a particular frequency, A(F), can be calculated from this formula:

(9) A(F) = (O * 6db / octave) * x octaves = (6 db * O) * (log (F / Fc) / log(2))

Which can be quickly re-arranged to solve for O:

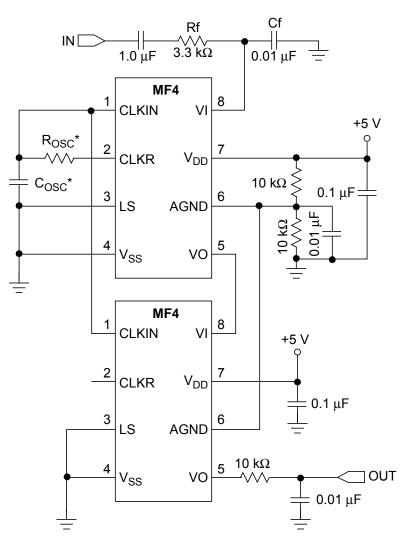
(10) O = A(F) * log(2) / (6 db * log (F / Fc))

O is a unitless quantity and is rounded to the nearest integer.

If the user assumes that the alias and Fs components are approximately equal to the amplitude of the fundamental signal (This is generally true \pm a few db for PWM and DAC systems.), A(F) can be taken as the absolute desired attenuation floor and equation 10 can be used to determine the required filter order based on the fundamental stop-band alias, Fs–Fgen(max) (which is typically the most important component to eliminate).

Simple RC stages can be used for applications where order is calculated at 2 or less. However, higher order filters usually require an active design (such as switched capacitor or op-amp based filters) to reduce the passband attenuation inherent in passive RC filters.

For most of the firmware examples presented here, these parameters were used:


Application Note D/A Methods

Fs = 7.812 kHz Fgmax = 2.6 khz Fc = 3 kHz A(Fmas) = 40 db from equation 10, O = A(Fmax) * log(2) / (6 db * log((Fs - Fgmax) / Fc) = 40 db * log(2) / (6 db * log [(7812 - 2600) / 3000)] = 8.36

Thus, an eighth order filter would ensure that the stop-band aliases would be better than 40 db below the fundamental. The most effective filter method for higher order designs is a switched capacitor filter such as the MF-4. These devices allow relatively high filter orders with few parts.

The schematic of **Figure 4** shows an eighth order filter with RC input and output filters (needed to remove high frequency noise) for a total filter order of 10, or about 60db/octave. This is the reconstruction filter used with the all of the following examples.

* R_{OSC} and C_{OSC} set Fc

Figure 4. Example Filter Based on the MF-4 Switched Capacitor Building Clock

One of the results of equation 10 (with respect to the primary stop-band alias, Fs - Fgen) is that the filter order can be reduced by increasing Fs.

If Fs from the previous example is increased to 31.2 kHz:

Fs = 31.2 kHz Fgmax = 2.6 kHz Fc = 3 kHz A(Fmax) = 40 db O = A(Fmax) * log(2) / (6 db * log ((Fs-Fgmax) / Fc) = 40 db * log(2) / (6 db * log((31200 - 2600) / 3000)) = 2.05

Thus, by simply increasing the sample rate by a factor of 4, the two MF-4s in the example filter can be eliminated. This greatly reduces the filter cost.

Sine Table

Each of the following examples uses a unique sine table. While some effort was made to keep the examples consistent, subtle variations from one MCU implementation to the next can impact the data contained in the sine table. Most of this variation is due to PWM latencies in some of the implementations. The D/A code used also can have a drastic impact on the composition of the sine table (a codec versus a linear D/A, for example).

In general, all of the examples presented here follow the same basic format: The sine table varies between a min and max binary value with a mid-point (or 0) reference that lies at:

D/A(0) = min + ((max - min) / 2)

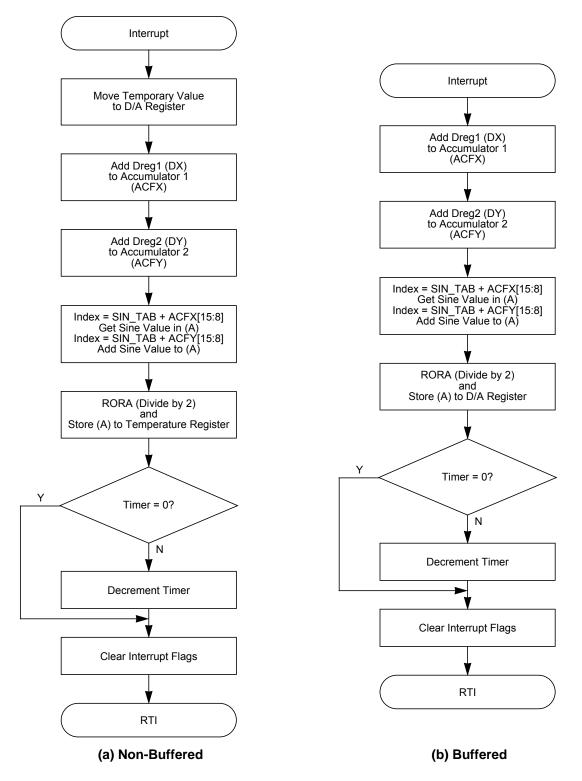
Thus, all of the tones generated will have a DC offset. Since min and max typically are close to 0 and 255, respectively, the 0 reference will generally be close to D/A (255) / 2.

Since buffered PWM and direct D/A systems generally don't exhibit latency problems, the examples here use a sine table that varies from 1 to 255 (or 0 to 254 for the HC12 PWM) with the 0 reference at 128.

However, unbuffered PWM systems can have min/max values that are not so straightforward and require a different sine table. The C program in **Sine Table Generator C Program** illustrates a simple method of generating a generic sine table given minimum, maximum, and number of entries and formats it for assembly as an include file.

Tone GeneratorEach of the D/A examples to follow are shaped by the subtleties of the
particular MCUs chosen for this application note. However, the central
tone generator algorithm is substantially similar in all cases. Some
MCUs require more memory and/or execution time to code and execute,
but they all perform the same tasks in the same fashion to generate the
sine wave signal. Figure 5 illustrates the flowchart for this algorithm
which is the basis for all of the following examples.

The flow chart has two basic variations. **Figure 5A** is for non-buffered systems and uses a temporary holding register for the D/A value. The previously calculated D/A is loaded from the temporary register at the start of the interrupt and immediately transferred to the PWM duty cycle register.


In **Figure 5B**, for buffered systems, this value can be stored as soon as it is calculated.

HC05 Family Two different PWM modules are available in the HC05 Family. The HC05B16, HC05B32, and HC05X32 variants have a simple PLM module that can provide an 8-bit PWM output at one of two rates, fast and slow.

At maximum MCU clock rates, the fast mode allows only a 1.95-kHz PWM rate, which limits the utility of tone synthesis since the maximum allowed tone frequency would be only Fs / 2 = 975 Hz. Still, this might prove useful in several applications, especially in the generation of CTCSS tones. (The highest CTCSS tone is approximately 250 Hz.)

Another HC05 variant, the MC4, has a more flexible PWM module which can generate buffered PWM at rates of up to about 24 kHz and is buffered.

AN1771

HC05 PLMSince the PLM system is not buffered, a crude yet effective technique is
used to provide a synchronous interrupt to service the tone generator
algorithm. The PWM output is simply connected to one of the input
captures which is then configured for falling edge operation. This
configuration is effective, but care must be taken to ensure that the PWM
avoid 0 percent and 100 percent duty cycles. The PLM does not allow a
100 percent duty cycle, but 0 percent is achievable and must be avoided.
If 0 percent is generated by the PLM, the output is a steady logic 0, which
effectively disables the tone interrupt. The easiest method to address
this situation is to code the sine table so that the min value is at least 1.

NOTE: It should be noted that, due to interrupt latency, the full 8-bit dynamic range of the PLM is not available.

The amount of degradation is determined by the interrupt latency, and the amount of time it takes for the interrupt routine to write a new D/A value to the PWM duty cycle register. Because of this requirement, the flowchart of **Figure 5A** is used for this example. Since the PLM rate is so low, the MCU latency does not significantly impact the sine table min value. The interrupt latency is 10 cycles, plus a maximum instruction latency of 11 cycles, plus seven cycles of transfer latency equals 28 cycles of latency. However, at a 1.95-kHz PLM rate, it takes four MCU cycles for every PLM counter tick, so the minimum PLM duty cycle is latency / 4 = 7.

HC05MC4 PWM The MC4 implementation is similar to that of the PLM version in that an input capture is used to source the tone generator interrupt service routine. The MC4 PWM setup is somewhat more complicated in that it offers several features that are targeted at motor applications. For this application, however, we simply want a buffered PWM at a single port pin, which is easily configured as shown in MC4 PWM. Since the PWM is buffered, the D2A temp register that was used in the PLM version can be eliminated and the new D/A value can be written directly to the duty cycle register (PWMAD).

AN1771

HC08 Buffered PWM	The HC08 PWM module offers a buffered mode by linking two PWM duty cycle registers. Application firmware must track which register was last written to maintain the buffered operation, but this is easily
	accomplished with a simple counter which is incremented each time a duty cycle register is written. Bit 0 of this counter is used to select which duty cycle register is to be written during any particular interrupt cycle. Since the HC08 PWM uses timer overflow to operate its PWM, it serves as the obvious choice to source the interrupt which drives the tone generator service routine.

HC11 Synchronous PWM

While there are HC11 variants with PWM modules, this example uses two output compares to generate the PWM signal and is thus applicable to all HC11 variants. It is synchronous because the update operation is integrated into the OC interrupt which forces the update to be synchronized with the start of the PWM cycle. However, since the operation is not buffered, dynamic range is affected by response latency (**Figure 5A** applies).

On the HC11, only one output compare, OC1, can affect any of the OC port pins. All other output compares are tied to a dedicated pin so that the selection of the second OC is tied to a port pin selection and vice versa. For this example, OC1 generates the main interrupt and sets the PWM port pin (PA6) while OC2 clears the port pin.

As illustrated in **Figure 6**, the OC1 interrupt routine sets both the OC2 and OC1 time-outs and updates the D/A value to be used for the next cycle.

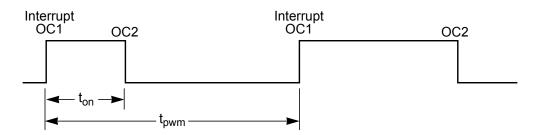


Figure 6. OC1 and OC2 PWM Timings

As indicated in HC11 PWM Listing, the OC1 interrupt requires 29 MCU cycles to stack the registers and update the OC2 timer, which dictates the minimum pulse width. Proper use of the WAI instruction (which prestacks the registers on the HC11) can save up to 11 cycles. (WAI takes 14 cycles: 11 cycles to stack registers, plus 3 cycles to fetch the interrupt vector.) Since the vector fetch comes after the interrupt, it gets counted as latency in this example, which reduces the minimum pulse width to 29 - 11 = 18 cycles. The only restriction on the high end of duty cycle is that the OC2 time-out be less than (for instance, occur prior to) the OC1 time-out value.

NOTE: The interrupt latency does not account for the instruction that is executing at the time of the interrupt.

For applications where WAI can not be used or guaranteed, the wide variation in instruction cycles can make the latency calculation a difficult task. Worst case instruction latency would add an additional 41 cycles (IDIV and FDIV) but this can be an excessive step as these instructions are not encountered often in real applications. If the IDIV and FDIV instructions are not used, the figure can be reduced to 10 cycles which will cover all of the remaining instructions while only adding a moderate degree of overhead to the PWM duty cycle.

The following equations determine the critical design constants:

TSAMP = PWM cycle time (cycles) = (XTAL / 4) / Fsamp = E / Fsamp TMIN = minimum pulse width (cycles) = Tint_resp + Tinstr + Toc2_update + 1 = 14 + 10 + 15 + 1 = 40 (no WAI) = 3 + 0 + 15 + 1 = 19 (guaranteed WAI) TMAX = maximum pulse width (cycles) = TSAMP - 1 RANGE = # discrete steps from min to max = TMAX - TMIN DUTY = duty cycle (%) = D2A / TSAMP

For this example, a 9.83-MHz crystal was used which gives the following values. The 8-MHz case is also shown.

9.83-MHz Crystal	8-MHz Crystal
TSAMP = (9.8304E6/4) /	TSAMP = (8E6/4) /
7.812 kHz = 314cycles	7.812 kHz = 256 cycles
TMIN = 40 cycles (worst case)	TMIN = 40 cycles (worst case)
TMAX = 313 cycles	TMAX = 255 cycles
RANGE = 313 - 40	RANGE = 255 - 40
= 273	= 215

While this example limits the maximum "on" time to eight bits, or 255 timer cycles, the above calculations indicate that greater than eight bits of dynamic range are possible for E > 2.32 MHz (for Fsamp as shown). If maximum dynamic range is of importance and the MCU oscillator design will allow higher crystal frequencies to be selected, the excess RANGE value can be used to absorb the latency figure. This is done by adding the latency into the updated TOC2 value at the end of the OC1 interrupt routine. This method would add nine cycles to the length of the interrupt routine, but would allow a full 8-bit D/A implementation. In this case, the sine table could be calculated to swing from 1 to 255.

HC12 BufferedFor this example (see HC12 PWM Listing), the HC12 PWM is operated
in 8-bit buffered mode. The original design used an output compare
interrupt to update the PWM where the OC period was an integer
multiple of the PWM period. However, this design exhibited noise
problems at high values of PWDT0 and the system was re-worked to
follow the HC05 PLM case where the PWM drives an input capture.
(PP0 is connected to TC7 as a falling edge triggered interrupt.) For the
HC12 PWM module, the duty cycle ranges from 1 / 256 to 256 / 256 for
values of PWDT0 that range from 0 to 255. Since the input capture
system cannot tolerate duty cycles of 0 percent or 100 percent, these
values must be eliminated from the sine table, thus the HC12 PWM sine
table should range from 0 to 254 for proper operation.

One difference worthy of note in the HC12 allows the reduction in the length of the sine table. In systems where memory must be conserved,

the addition of the linear interpolate instruction, TBL, can greatly reduce the size of the 256-byte sine table of the previous examples without seriously impacting signal quality. A reduction in N by a factor of 4 or 8 (64- or 32-byte sine length) can be achieved by using the fractional portion of the phase accumulators to supply the interpolation operator used by the TBL instruction. This is a direct extension of the indexing principal defined for the phase accumulators. If the integer portion of the accumulator determines the position in the sine table, the fractional portion determines the fractional phase distance to the next entry.

To keep the system parameters the same as the 256-byte case (same Fstep, Fsamp, Fgen, etc.), the decimal radix for Dreg and the phase accumulators are moved up rather than reducing the range of the integer portion. Since the interpolate operation has the effect of "filling in" the "missing" table entries, the position of the radix is chosen to yield an effective table length of 256 (which simply allows the same Dreg values to be used).

This is accomplished by moving the radix in proportion to the factor of reduction in table length. If the table is divided by a factor of 2^x, then the radix is moved up "x" bits. The example in **Interpolated Table Lookup** uses a 32-byte table, which is a factor of 2³ reduction, thus moving the radix to lie between bits 10 and 11. Shift instructions are used to byte align the radix when extracting the table index and interpolate values.

Direct D/A

A direct D/A interface is a worthwhile alternative to PWM methods in those situations where PWM is not suitable and the additional cost is justified. (See **HC12 DAC Listing**.) Signal-to-noise improvements can be achieved over most PWM methods, and system clock frequencies can be reduced in some cases to reduce power consumption. There are several well documented methods that can be employed for direct D/A; for this reason, the discussion here focuses on the importance of timing in writing the D/A value to the D/A sub-system.

As mentioned earlier regarding PWM systems, buffered operation is preferred over non-buffered due to the way in which changes in the duty

cycle (for instance, new D/A values) are synchronized to the sample clock. This is also important in direct D/A sub-systems because a statistical variation of even a single CPU clock cycle can result in significant noise in the output. For interrupt-driven systems, instruction latencies introduced in the interrupt dispatch can easily account for several CPU cycles of variation in the timing of the D/A update. A simple mechanism for precisely controlling the D/A update is needed.

The simplest approach is to use the WAI (or WAIT, depending on the processor source form) instruction to ensure that the CPU has been configured in anticipation of the coming interrupt. Once the wait instruction is complete, the subsequent interrupt response latency will be consistent for each iteration of the interrupt.

This approach has two basic difficulties:

- The designer must make sure that a wait instruction is executed prior to each and every interrupt. While this is relatively straightforward for simple systems, it may not be feasible to maintain for more complicated systems, especially if interrupt recursion is used.
- 2. Other interrupt sources may disrupt the D/A update process which dictates, in general, that other interrupts must be disabled during tone generation.

Another approach requires the addition of a latch and the use of an output compare signal to latch the new value into the D/A after the interrupt firmware has written the D/A update. The output compare will then be synchronized to the CPU clock with no excessive firmware maintenance issues. As long as the tone generator interrupt can be adequately serviced, the D/A latch can be precisely synchronized to the CPU clock. The external latch approach also allows I/O (input/output) expansion to reclaim the bits used to drive the D/A for other I/O functions.

This method is illustrated in **Figure 7**. The DAC0832 is designed to interface to a processor bus and features a built-in double-buffered latch. One interface signal (~WR) latches the initial write, while another interface signal (~XFER) transfers the latched data to the D/A.

An output compare signal drives the ~XFER signal which assures that the data is always presented to the D/A at the exact sample point relative to the previous sample period.

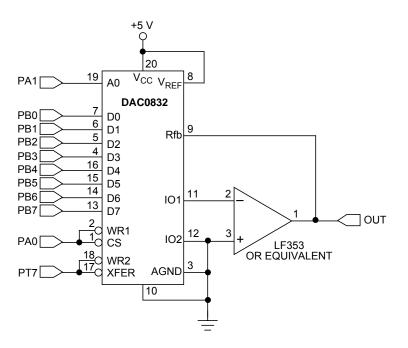


Figure 7. DAC MCU Connections

The output compare also serves as the tone generator interrupt source as it occurs at the sample rate. Once the interrupt is processed, the code clears the XFER signal and updates the phase accumulators. The updated values are then used to calculate the new D/A value which is then written to the D/A port which arms the D/A transfer mechanism. When the next output compare is issued, the D/A will transfer the value previously written and repeat the procedure.

Semiconductor, Inc.

reescale

DTMF and Call-Progress Tones

TELCO and wireless applications are two areas which make wide use of DTMF and call-progress signaling. Both DTMF and call-progress signaling systems make use of dual tones to signify a unique system state.

Tone Definitions Table 4 lists the tone formats for the various signaling states.

State	High	Low Tone	Fs = 7.8	312 kHz
Description	Tone	(Hz)	High Tone Dreg (Decimal)	Low Tone Dreg (Decimal
Dial tone	440 ±5%	$350\ \pm 0.5\%$	3691	2936
Busy *	$620\ \pm5\%$	480 ±0.5%	5201	4026
Ringback *	480 ±5%	440 ±0.5%	4026	3691
Note: All DTM	Fs ±0.5%			
DTMF "1"	1209 ±5%	697 ±5%	10142	5847
DTMF "2"	1336	697	11207	5847
DTMF "3"	1477	697	12316	5847
DTMF "4"	1209	770	10142	6459
DTMF "5"	1336	770	11207	6459
DTMF "6"	1477	770	12316	6459
DTMF "7"	1209	852	10142	7147
DTMF "8"	1336	852	11207	7147
DTMF "9"	1477	852	12316	7147
DTMF "0"	1336	941	11207	7894
DTMF "*"	1209	941	10142	7894
DTMF "#"	1477	941	12316	7894
DTMF "A"	1633	697	13698 5847	
DTMF "B"	1633	770	13698	6459
DTMF "C"	1633	852	13698	7147
DTMF "D"	1633	941	13698	7894

Table 4. TDMF and Call Progress Frequency List

* Busy tone cycles on/off at 0.5 s/0.5s, ringback tone cycles on/off at 2 s / 4 s.

To calculate the absolute frequency tolerance one must take the lowest frequency in the table, 350 Hz, and apply equation 6:

Fstep(max) = Fmin * %error = 350 * 0.005 = 1.75 Hz

All of the examples presented here meet this Fstep specification with no difficulty (although the HC05 PWM example would not be able to generate the DTMF tones due to its limitation on Fs).

	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	А
770 Hz	4	5	6	В
752 Hz	7	8	9	С
941 Hz	*	0	#	D
Figure 8. Standard DTMF Keypad Layout				

Figure 8. Standard DTMF Keypad Layout and Frequency Matrix

Due to the legacy of the original Bell Telephone DTMF keypad layout, it is still common to depict the DTMF row/column format as shown in **Figure 8**. This layout is helpful in that the intersecting rows and columns correspond to the frequencies of each signal. A binary "2 of 8" code is often used to represent DTMF digits as the row and column frequencies can be easily extracted. In the 2 of 8 code, four bits are used to represent the 16 DTMF signals. The upper two bits specify the row frequency,

while the lower two bits specify the column frequency as illustrated in **Table 3**.

2 of 8	ASCII
0000	1
0001	2
0010	3
0011	A
0100	4
0101	5
0110	6
0111	В
1000	7
1001	8
1010	9
1011	С
1100	*
1101	0
1110	#
1111	D

Table 5. ASCII to 2 of 8 Conversion Matrix

Sample TELCO Routines

TELCO Subroutines shows the HC11/HC12 routines that are used to demonstrate the DTMF and call-progress tones. The main subroutine is DTMFstr which takes an EOL (\$0D) terminated ASCII string and converts it to the DTMF equivalents for each tone using ASCdtmf. The constants "toneon" and "toneoff" specify the on and off timings for the DTMF signals and are shown at their typical values in this listing (40 ms on/off).

ASCdtmf converts the ASCII character in (A) to a 2 of 8 code using the ordered ASC_T look-up table. The 2 of 8 code is then used to access the DTMFlo and DTMFhi look-up tables to extract the desired Dreg values which are copied to the DX and DY registers. Lastly, the ASCdtmf uses the tontimer to time the on and off portions of the tone before exiting.

Since most of the MCU execution time is spent waiting for tontimer to count down to 0, these loops can contain a JSR to a system polling subroutine to perform non-critical real-time system functions. As long as the polling routine takes less than (1 / Fs) – Tinterrupt, the system throughput will not be impacted inversely.

The call-progress tones are generated by CPsub. The tone generated is determined by the contents of the (A) register upon entry into the routine. (A) = "D" generates a dial tone, (A) = "B" generates a busy tone, while (A) = "R" generates a ringback tone. All of the call progress tones continue until an SCI character is detected. In a real-world application, an I/O signal and/or timer combination likely would be used to terminate these tones.

Conclusion

The techniques described herein demonstrate the feasibility of implementing a sine-wave-based tone generation system on a variety of Freescale microcontroller families. By using interrupts to synchronize the tone generation algorithm, the system may be integrated easily in to any system without having to re-calibrate machine cycles in timing loops. The interrupt nature of the system also allows for real-time I/O service for application specific functions. This allows a wide variety of tone signaling protocols to be supported easily with a minimum of code and data overhead.

Listings

HC05 PLM

Setup:

		100				
		188		c pwm (PLMA)	7 . /1	
		189	; NOT	S: MOR must a	select /l	clock prescale
0.4.0.1	5600	190				
0401	B60C	191	LDA	MISC		
0403	A4F5	192	AND	#\$FF^(SFA	SM)	; set pwm period = fast
0405	B70C	193	STA	MISC		; = 1.92 kHz @ X = 8 Mhz
0407	A680	194	LDA	#\$80		; preset @50% duty
0409	B70A	195	STA	PLMA		
		196				
		197	; init	t ICl		
		198				
040B	B612	199	LDA	TCR		
040D	AA82	200	ORA	#ICIE IED0	31	
040F	В712	201	STA	TCR		
		202				
0411	9A	203	CLI			
Tabaaaa						
Interr	upt ser	vice.				
		269	; ic:	ii traps PLM	edges to	synch the PWM update
		270	; fsa	amp rate is d	determined	by PLM period
		271	; nev	w SIN_TAB po:	inters are	calculated for next
		272	; sar	mple period.	D2A is <	8 bits due to
		273	; res	sponse latend	cy of IC i	nterrupt.
		274				
0430	B65A	275	icii	LDA D2.	A	
0432	B70A	276	STA	PLMA		; update PLM
0434	B613	277	LDA	TSR		; clear interrupt flags
0436	B615	278	LDA	TIC1L		
0438	B61D	279	LDA	TIC2L		
043A	B651	280	LDA	DX+1		; do accum for tone 1
043C	BB57	281	ADD	ACFX+1		
043E	в757	282	STA	ACFX+1		
0440	B650	283	LDA	DX		
0442	в956	284	ADC	ACFX		
0444	в756	285	STA	ACFX		
0446	B653	286	LDA	DY+1		; do accum for tone 2
0448	BB59	287	ADD	ACFY+1		
044A	в759	288	STA	ACFY+1		
044C	B652	289	LDA	DY		
044E	B958	290	ADC	ACFY		

AN1771

	^	0.0.1					
0450	B758	291	STA	ACFY			
0452	BE56	292	LDX	ACFX		;	lookup tone 1
0454	D60474		LDA	SIN_TA	В,Х		
0457	BE58	294	LDX	ACFY		;	lookup tone 2
0459	DB0474		ADD	SIN_TA	В,Х		
045C	46	296	RORA				div by 2 to get 8 bits
045D	B75A	297	STA	D2A			store for next update
045F	B654	298	LDA	tontim	er		update duration count
0461	2604	299	BNE	loop4		;	done,
0463	B655	300	LDA	tontim	er+1		
0465	270C	301	BEQ	icix		;	done,
0467	B655	302	loop4	LDA	tontimer+1	;	tontimer
0469	A001	303	SUB	#\$01			
046B	B755	304	STA	tontime	er+1		
046D	B654	305	LDA	tontime	er		
046F	A200	306	SBC	#\$00			
0471	B754	307	STA	tontime	er		
0473	80	308	icix	RTI			
MC4 P	WM						
Setup:							
		28	; init	nwm			
		29	/ 11110	Pwiii			
0101	A641	30	LDA	#CSA1+	POLA	;	enable pwml
0103	в714	31	STA	CTLA			±
0105	A690	32	LDA	#9*10		;	set 7.8 kHz pwm rate
0107	B716	33	STA	RATE			
0109	A680	34	LDA	#\$80		;	preset D/A @ zero
010B	В710	35	STA	PWMAD			
		36 37	; init	та			
		38	, IIII	ICI			
010D	A682	39	LDA	#ICIE2	IEDG2	;	ic2 on, rising edge
0111	B717	40	STA	TCR	1	-	
Intern	rupt ser	vice:					
		110	· iali	i trang	DIM odgog to	C T TT	nch the PWM update
		111		_	-	_	PWM period new
		112					lated for next
		113		ple peri			
		114	-	-			
0132	B618	115	iclii	LDA	TSR	;	clear int flags
0134	B61C	116	LDA	TIC1L			
0136	B61A	117	LDA	TIC2L			
0138	B651	118	LDA	DX+1		;	do accum for tone 1
013A	BB57	119	ADD	ACFX+1			
013C	B757	120	STA	ACFX+1			
013E 0140	B650 B956	121 122	LDA ADC	DX ACFX			
0110		± 2 2	1100	1101 11			

0142	в756	123	STA	ACFX	
0144	B653	124	LDA	DY+1	; do accum for tone 2
0146	BB59	125	ADD	ACFY+1	
0148	в759	126	STA	ACFY+1	
014A	B652	127	LDA	DY	
014C	B958	128	ADC	ACFY	
014E	B758	129	STA	ACFY	
0150	BE56	130	LDX	ACFX	; lookup tone 1
0152	D60172	131	LDA	SIN_TAB,X	
0155	BE58	132	LDX	ACFY	; lookup tone 2
0157	DB0172	133	ADD	SIN_TAB,X	
015A	46	134	RORA		; div by 2 to get 8 bits
015B	в710	135	STA	PWMAD	; store to d/a
015D	B654	136	LDA	tontimer	; update duration count
015F	2604	137	BNE	loop4	; done,
0161	B655	138	LDA	tontimer+1	
0163	270C	139	BEQ	icix	; done
0165	B655	140	loop4	LDA tontime:	+1 ; tontimer
0167	A001	141	SUB	#\$01	
0169	B755	142	STA	tontimer+1	
016B	B654	143	LDA	tontimer	
016D	A200	144	SBC	#\$00	
016F	В754	145	STA	tontimer	
0171	80	146	icix	RTI	

HC08 PWM Listing

		ng			
Setup:					
		489	; init	mwa	
		490	, 11120	F	
6E07	B620	491	LDA	TSC	; stop timer
					/ SCOP CIMEI
6E09	AA30	492	ORA	#TSTOP TRST	
6E0B	В720	493	STA	TSC	
6E0D	4500FF	494	LDHX	#pwper	; set pwm period
6E10	3524	495	STHX	TMOD	
6E12	450080	496	LDHX	#\$0080	; init duty cycle
6E15	3527	497	STHX	TCH0	
6E17	A601	498	LDA	#1	; init tracking register
6E19	B75A	499	STA	track	
6E1B	A62A	500	LDA	#MS0B TOV0 ELS0B	
6E1D	B726	501	STA	TSC0	; init ch1 = buffered
6E1F	B620	502	LDA	TSC	; stop timer
6E21	A4DF	503	AND	#\$FF^TSTOP	
6E23	AA40	504	ORA	#TOIE	
6E25	В720	505	STA	TSC	
6E27	9A	506	CLI		
Interru	upt serv	ice:			
	-	562	; tov:	i sets the fsamp rat	te and calculates new
		563		_TAB pointers for no	
		564		B bits only!	ene bampie perioa. Din
		565	, 19 (Dies only.	
6E44	D600		torri		· aloom int flog
	B620	566	tovi	LDA TSC	; clear int flag
6E46	A47F	567	AND	#\$FF^TOF	
6E48	В720	568	STA	TSC	
6E4A	B651	569	LDA	DX+1	; do accum for tone 1
6E4C	BB57	570	ADD	ACFX+1	
6E4E	B757	571	STA	ACFX+1	
6E50	B650	572	LDA	DX	
6E52	B956	573	ADC	ACFX	
6E54	в756	574	STA	ACFX	
6E56	B653	575	LDA	DY+1	; do accum for tone 2
6E58	BB59	576	ADD	ACFY+1	
6E5A	B759	577	STA	ACFY+1	
6E5C	B652	578	LDA	DY	
6E5E	B958	579	ADC	ACFY	
6E60	B758	580	STA	ACFY	
6E62	8C	581	CLRH		
6E63	BE56	582	LDX	ACFX	; lookup tone 1
6E65	D66E84	583	LDA	SIN_TAB,X	
6E68	8C	584	CLRH		
6E69	BE58	585	LDX	ACFY	; lookup tone 2
6E6B	DB6E84		ADD	SIN_TAB,X	
6E6E	46	587	RORA	Sin_ins/ii	; div by 2 to get 8 bits
6E6F	450028		LDHX	#TCH0L	; test which pwm to write
6E72	015A03	589	BRCLR	0,track,loop3	; is ch0,
6E75	45002B		LDHX	#TCH1L	; switch to chl
6E78	F7	591	loop3	STA ,X	; set for next cycle
6E79	3C5A	592	INC	track	; update tracking reg
6E7B	5554	593	LDHX	tontimer	; update duration count
6E7D	2704	594	BEQ	loop4	; done,
6E7F	AFFF	595	AIÑ	#-1t	; x
6E81	3554	596	STHX	tontimer	
6E83	80	597	loop4	RTI	
0000	00	571	TOODI	1(1 L	

HC11 PWM Listing

-	
Cotino	•
SELUD	•

443		; TON enak	oles ocl tone ge	nerator
444				
445	8064	8640TONLDAA	#OC1M6	; ocl sets PA6
446	8066	B7100C STAA	OC1M	
447	8069	8640 LDAA	#OC1D6	
448	806B	B7100D STAA	OC1D	
449	806E	B61020 LDAA	TCTL1	; oc2 clears PA6
450	8071	843F ANDA	#~(OM2 OL2)	
451	8073	8A80 ORAA	#OM2	
452	8075	B71020 STAA	TCTL1	
453	8078	FC100E LDD	TCNT	; init ocl rate
454	807B	C30133 ADDD	#TSAMP	
455	807E	FD1016 STD	TOC1	
456	8081	961E LDAA	TMIN	; init d2a
457	8083	9708 STAA	D2A	
458	8085	FC100E LDD	TCNT	; preset OC2 near bottom
459	8088	D31E ADDD	TMIN	
460	808A	D31E ADDD	TMIN	
461	808C	FD1018 STD	TOC2	
462	808F	86C0 LDAA	#OC1F OC2F	; pre-clear oc flags
463	8091	B71023 STAA	TFLG1	
464	8094	B61022 LDAA	TMSK1	; enable ocl interrupt
465	8097	8A80 ORAA	#OC1F	
466	8099	B71022 STAA	TMSK1	
467	809C	39	RTS	
468		i		
469		i		
470		; TOFF dis	sables ocl tone	generator
471				
472	809D	B61022 TOFF	LDAA TMSK1	; disable oc1 interrupt
473	80A0	847F ANDA	#~OC1F	
474	80A2	B71022 STAA	TMSK1	
475	80A5	7F100C CLR	OC1M	; disconnect timer pins
476	80A8	B61020 LDAA	TCTL1	-
477	80AB	843F ANDA	#~(OM2 OL2)	
478	80AD	B71020 STAA	TCTL1	
479	80B0	39 RTS		

AN1771

Interrupt service:

482		: (осітт р	andles ocl interrupts	by setting frame
483		;		and calculating new SI	
484		;	-	ample period. D2A is	
485		;		assume DIR addressing	
486		;		& EXT addressing for a	
487		,	1000,		
488					;~14 for interrupt
489	80B1	DC08	OC1I	LDD D2A	;~4 get pwm from last d/a
490	80B3	F31016		TOC1	;~6
491	80B6	FD1018		TOC2	;~5
492					; ~~= ~14 + ~15 = ~29
493					
494	80B9	FC1016	LDD	TOC1	;~5 set pwm rate
495	80BC	C30133	ADDD	#TSAMP	;~4
496	80BF	FD1016	STD	TOC1	;~5
497	80C2	DC00	LDD	DX	;~4 do accum for tone 1
498	80C4	D304	ADDD	ACFX	;~5
499	80C6	DD04	STD	ACFX	;~4
500	80C8	DC02	LDD	DY	;~4 do accum for tone 2
501	80CA	D306	ADDD	ACFY	;~5
502	80CC	DD06	STD	ACFY	;~4
503	80CE	CE80F3	LDX	#SIN_TAB	;~3 lookup tone 1
504	80D1	D604	LDAB	ACFX	;~3
505	80D3	3A	ABX		;~3
506	80D4	A600	LDAA	0,X	;~4
507	80D6	CE80F3	LDX	#SIN_TAB	;~3 lookup tone 2
508	80D9	D606	LDAB	ACFY	;~3
509	80DB	3A	ABX		;~3
510	80DC	AB00	ADDA	0,X	;~4 add to 1st tone
511	80DE	46	RORA		;~2 div by 2 to get 8 bits
512					
513			IF	BIT8	; slower method (8 bit d/a)
514	80DF	16	TAB		;~2
515	80E0	4F	CLRA		;~2
516	80E1	C3001E	ADDD	#TMIN	;~4 add TMIN to d/a
517	80E4	DD08	STD	D2A	;~4 save for next sample
518					
519			ELSE		; quick method(< 8 bit d/a)
520			ENDIF		
521					
522	80E6	DE0A	LDX	tontimer	;~5 update tone duration
523	80E8	2703	BEQ	:03	;~3 done,
524	80EA	09	DEX		;~3
525	80EB	df0A	STX	tontimer	;~5
526	80ED	86C0:0		#OC1F OC2F	;~2
527	80EF	B71023		TFLG1	;~4
528	80F2	3B	RTI		;~12
529					; ~~ = 134 (BIT8 = false)
530					; ~~ = 143 (BIT8 = true)

HC12 PWM Listing

Setup:					
1034					; timer inits
1035					
1036	0820	8600	LDAA	#0	; TC7 = IC
1037	0822	5A80	STAA	TIOS	
1038	0824	8680	LDAA	#EDG7B	; falling edge
1039	0826	5A8A	STAA	TCTL3	
1040	0828	8680	LDAA	#TEN	; enable timer
1041	082A	5A86	STAA	TSCR	
1042	082C	8608	LDAA	#TCRE	
1043	082E	5A8D	STAA	TMSK2	
1044	0830	8680	LDAA	#C7I	
1045	0832	5A8C	STAA	TMSK1	
1046	0834	CC0871		#tc7ii	; init the interrupt vector
1047	0837	7C0B20	STD	tc7vec	
1048					
1049					; init pwm channel 0
1050					
1051	083A 86		LDAA	#0	; 32 kHz sample rate ;PCKA1
1052	083C	5A40	STAA	PWCLK	; separate PWMs, /1 prescale
1053	083E	790041		PWPOL	; clock A for PWMO
1054	0841	790054		PWCTL	;non-center,PWM runs in wait
1055	0844	86FF	LDAA	#255	
1056	0846	5A4C	STAA	PWPER0	; set pulse period
1057					i = (chA period) * (255 + 1)
1058					i = 1/E * 256
1059					$i = 32 \ \mu S \ (31.25 \ \text{kHz}) @ E = 8 \ \text{MHz}$
1060	0040	0 < 0 1			; this is exactly 4x Fsamp
1061	0848	8601	LDAA	#PWENO	; enable PWM0
1062	084A	5A42	STAA	PWEN	
1063	084C	CC0000		#0 #680	
1064	084F	8680		#\$80	· init d/a maniatan
1065 1066	0851	5A50	STAA	PWDTY0	; init d/a register
	0052	10.55	OT T		
1067	0853	10EF	CLI		

Normal Table Lookup

Interrupt service:

1113			; to	7ii sets the fsamp ra	ate	and calculates new
1114			; 5	SIN_TAB pointers for 1	next	sample period.
1115						
1116					;~9	for interrupt
1117	0871	8680 ta	c7iiLDAA	#C7F	;~1	
1118	0873	5A8E	STAA	TFLG1	;~3	
1119	0875	FC0800	LDD	DX	;~3	do accum for tone 1
1120	0878	F30806	ADDD	ACFX	;~3	
1121	087B	7C0806	STD	ACFX	;~2	
1122	087E	FC0802	LDD	DY	;~3	do accum for tone 2
1123	0881	F30808	ADDD	ACFY	;~3	
1124	0884	7C0808	STD	ACFY	;~2	
1125	0887	CE0D00	LDX	#SIN_TAB	;~2	lookup tone 1
1126	088A	F60806	LDAB	ACFX	;~3	
1127	088D	1AE5	ABX		;~2	
1128	088F	A600	LDAA	0,X	;~3	
1129	0891	CE0D00	LDX	#SIN_TAB	;~2	lookup tone 2
1130	0894	F60808	LDAB	ACFY	;~3	
1131	0897	1AE5	ABX		;~2	
1132	0899	AB00	ADDA	0,X	;~3	add to 1st tone
1133	089B	46	RORA		;~1	div by 2 to get 8 bits
1134	089C	5A50	STAA	PWDTY0	;~3	save to d/a
1135	089E	FE0804	LDX	tontimer	;~3	update tone duration?
1136	08A1	2704	BEQ	L3		no, done,
1137	08A3	09	DEX		;~1	decrement tone timer
1138	08A4	7E0804	STX	tontimer	;~2	
1139	08A7	0B L3	RTI		;~8	
1140					;	~~ = 70
Interpol	lated Ta	able Loc	okup			
Interru	pt serv	ice:				
1340			: + ~	7ii sets the fsamp ra	ate	and calculates new
1341				IN_TAB pointers for ne		
1341				TT_IND POINCEID IOI III	LAL	pampic period.
1342					:~0	for interrupt
1343	0D4E	8680 +7	c7ii LDAA	₩C7₽	;~1	TOT THEETTUPE
1344	0D4E 0D50	5A8E	STAA	TFLG1	;~1	
1040	0050	JAOE	AAIG	тъпет	,~3	

5A8E STAA TFLG1 ;~3 FC0800 LDD ;~3 do accum for tone 1 $\,$ DX ;~3 F30806 ADDD ACFX 7C0806 STD ACFX ;~2 FC0802 LDD DY ;~3 do accum for tone 2 F30808 ADDD ACFY ;~3 7C0808 STD ACFY ;~2

1346

1347

1348

1349

1350

1351

0D52

0D55

0D58

0D5B

0D5E

0D61

1352					
1353			; inte	erpolate lookup goes l	here
1354					
1355			; INC	LUDE "LOOKUP.ASM"	<i>i</i> ~20
1356				LUDE "INTERP.ASM"	<i>i</i> ~45
1357				erpolate table lookup	
1358				ds 25 MCU cycles over	
1359				es 32 byte sine table	
1360					
1361	0D64	FC0806	LDD	ACFX	;~3 move radix (tone 1)
1362	0D67	49	LSRD		<i>i~</i> 1
1363	0D68	49	LSRD		<i>i</i> ~1
1364	0D69	49	LSRD		<i>i~1</i>
1365	0D6A	B781	EXG	A,B	$i \sim 1$ calculate table address
1366	0D6C	CE0D9B		#SIN_TAB	;~2
1367	0D6F	1AE5	ABX	<u>"0</u>	<i>i</i> ~2
1368	0D71	B781	EXG	A,B	$i \sim 1$ B = fractional phase
1369	0D73	183D00		0,X	;~8 interpolate
1370	0D76	7A080A		temp	i~2
1371	0D79	FC0808		ACFY	;~3 move radix (tone 2)
1372	0D7C	49	LSRD		<i>i~</i> 1
1373	0D7D	49	LSRD		<i>i</i> ~1
1374	0D7E	49	LSRD		<i>i~</i> 1
1375	0D7F	B781	EXG	А,В	;~1 calculate table address
1376	0D81	CE0D9B	LDX	#SIN_TAB	;~2
1377	0D84	1AE5	ABX		;~2
1378	0D86	В781	EXG	A,B	;~1 B = fractional phase
1379	0D88	183D00	TBL	0,X	;~8 interpolate
1380	0D8B	BB080A	ADDA	temp	;~3 add to 1st tone
1381				-	; ~~ = 45
1382					
1383			; end o	f lookup, (A) = PWM v	alue
1384				-	
1385	0D8E	46	RORA		;~1 div by 2 to get 8 bits
1386	0D8F	5A50	STAA	PWDTY0	;~3 save to d/a
1387	0D91	FE0804	LDX	tontimer	;~3 update tone duration?
1388	0D94	2704	BEQ	L8	;~3 no, done,
1389	0D96	09	DEX		;~1 decrement tone timer
1390	0D97	7E0804	STX	tontimer	;~2
1391	0D9A	0B L8	RTI		;~8
1392			; ~~ =	70 (~95 for interpol	ate version)
1393			;		

HC12 DAC Listing

Setup:						
1038					;	timer inits
1039						
1040	0820	8680	LDAA	#IOS7		
1041	0822	5A80	STAA	TIOS		
1042	0824	8680	LDAA	#TEN		
1043	0826	5A86	STAA	TSCR		
1044	0828	8608	LDAA	#TCRE		
1045	082A	5A8D	STAA	TMSK2		
1046	082C	8680	LDAA	#OM7		
1047	082E	5A88	STAA	TCTL1		
1048						
1049	0830	8680	LDAA	#C7I		
1050	0832	5A8C	STAA	TMSK1		
1051	0834	CC0400	LDD	#1024	;	7.8125 kHz fsamp
1052	0837	5C9E	STD	TC7		
1053	0839	CC0870	LDD	#tc7ii		
1054	083C	7C0B20	STD	tc7vec		
1055						
1056					;	init DAC port I/O
1057						
1058	083F	86FF	LDAA	#\$FF		
1059	0841	5AAF	STAA	DDRT		
1060	0843	86FF	LDAA	#\$FF		
1061	0845	5A03	STAA	DDRB		
1062	0847	86FF	LDAA	#\$FF		
1063	0849	5A02	STAA	DDRA		
1064	084B	8606	LDAA	#\$06		
1065	084D	5A00	STAA	PORTA		
1066	084F	8680	LDAA	#DACXFR		
1067	0851	5AAE	STAA	PORTT		
1068						
1069	0853 1	10EF	CLI			

Freescale Semiconductor, Inc.

Interrupt service:

1113			; tc7i:	i sets the fsamp :	rate	and calculates new
1114			; SIN_7	TAB pointers for a	next	sample period.
1115			; D2A :	is 8 bits only!		
1116						
1117	086C	8680 to	c7iiLDAA	#C7F		
1118	086E	5A8E	STAA	TFLG1		
1119	0870	86C0	LDAA	#OM7+OL7		; reset XFER pin to "1"
1120	0872	5A88	STAA	TCTL1		
1121	0874	8680	LDAA	#FOC7		
1122	0876	5A81	STAA	CFORC		
1123	0878	A7	NOP			
1124	0879	8680	LDAA	#OM7		
1125	087B	5A88	STAA	TCTL1		
1126	087D	FC0800	LDD	DX		; do accum for tone 1
1127	0880	F30806	ADDD	ACFX		
1128	0883	7C0806	STD	ACFX		
1129	0886	FC0802	LDD	DY		; do accum for tone 2
1130	0889	F30808	ADDD	ACFY		
1131	088C	7C0808	STD	ACFY		
1132	088F	CE0D00	LDX	#SIN_TAB		; lookup tone 1
1133	0892	F60806	LDAB	ACFX		
1134	0895	1AE5	ABX			
1135	0897	A600	LDAA	0,X		
1136	0899	CEODOO	LDX	#SIN_TAB		; lookup tone 2
1137	089C	F60808	LDAB	ACFY		
1138	089F	1AE5	ABX			
1139	08A1	AB00	ADDA	0,X		
1140	08A3	46	RORA			; div by 2 to get 8 bits
1141	08A4	5A01	STAA	PORTB		; write data to port
1142	08A6	84FD	ANDA	#\$FD		; strobe write
1143	08A8	5A00	STAA	PORTA		
1144	08AA	A7	NOP			
1145	08AB	A7	NOP			
1146	08AC	8A02	ORAA	#DACS		
1147	08AE	5A00	STAA	PORTA		
1148	08B0	FE0804	LDX	tontimer		; update tone duration
1149	08B3	2704	BEQ	L3		; done,
1150	08B5	09	DEX			
1151	08B6	7E0804	STX	tontimer		
1152	08B9	0B L3	RTI			

TELCO Subroutines

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048	0F42 04B0 0258 000D 0B78 0E6B 0FBA 3D09 7A12 0032 0FBA	halfsecEQU toneon EQU toneoffEQU EOL EQU dialow EQU dialhi EQU ringcount EQU ringlowEQU ringhi EQU ringoffEQU busycount EQU busylowEQU	1200 ; 600 ; \$0D ; 2936 ; 3691 ; 50 ; 3691 ; 4026 ; 15625 ; 31250 ; 50 ;	<pre>= time * Fsamp = time * Fsamp = time * Fsamp end of line dial low tone dial high tone max # ring cycles ring low tone ring high tone ring ton = 2 s ring toff = 4 s max # busy cycles busy low tone</pre>
	1451			busy high tone
1049		busyhi EQU		
1050	0F42	busyon EQU busyoffEQU		busy ton = 0.5 s
1051 1052	0F42		3906 ;	busy toff = 0.5 s
1052		;		
1055		1		
1051	0823	doapp		
1056	0025	dodpp		
1057		; The following	g demonstration code se	ends the test str
1058			TMF signals. Tone on/of	
1059		; 40ms/40ms.		
1060				
1060 1061	0823	TESTDTMF		
1061	0823 0823	TESTDTMF CC0000 LDD	#0	
	0823 0823 0826	TESTDTMF CC0000 LDD 7C0806 STD	#0 ACFX ;	clear phase accumulator
1061 1062	0823	CC0000 LDD	ACFX ;	clear phase accumulator clear phase accumulator
1061 1062 1063	0823 0826	CC0000 LDD 7C0806 STD	ACFX ; ACFY ;	
1061 1062 1063 1064	0823 0826 0829	CC0000 LDD 7C0806 STD 7C0808 STD	ACFX ; ACFY ; tontimer ;	clear phase accumulator
1061 1062 1063 1064 1065	0823 0826 0829 082C	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD	ACFX ; ACFY ; tontimer ; DX ;	clear phase accumulator clear tone timer
1061 1062 1063 1064 1065 1066	0823 0826 0829 082C 082F	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD	ACFX ; ACFY ; tontimer ; DX ;	clear phase accumulator clear tone timer init tone 1 (off)
1061 1062 1063 1064 1065 1066 1067	0823 0826 0829 082C 082F	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD	ACFX ; ACFY ; tontimer ; DX ; DY ;	clear phase accumulator clear tone timer init tone 1 (off)
1061 1062 1063 1064 1065 1066 1067 1068	0823 0826 0829 082C 082F	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD	ACFX ; ACFY ; tontimer ; DX ; DY ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off)
1061 1062 1063 1064 1065 1066 1067 1068 1069	0823 0826 0829 082C 082F	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD	ACFX ; ACFY ; tontimer ; DX ; DY ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070	0823 0826 0829 082C 082F 0832	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD	ACFX ; ACFY ; tontimer ; DX ; DY ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071	0823 0826 0829 082C 082F 0832	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D'	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072	0823 0826 0829 082C 082F 0832	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD	ACFX ; ACFY ; tontimer ; DX ; DY ; ' ' ' CPsub	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073	0823 0826 0829 082C 082F 0832	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD	ACFX ; ACFY ; tontimer ; DX ; DY ; ' ' ' CPsub	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074	0823 0826 0829 082C 082F 0832	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' CPsub ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075	0823 0826 0829 082C 082F 0832 0835 0835	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD 8644 LDAA 1608E9 JSR	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' CPsub ; #test_str ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone send some DTMFs
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078	0823 0826 0829 082C 082F 0832 0835 0835 0837	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD 8644 LDAA 1608E9 JSR	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' ; CPsub ; #test_str ; DTMFstr ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone send some DTMFs get test string send it
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079	0823 0826 0829 082C 082F 0832 0835 0835 0837	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD 8644 LDAA 1608E9 JSR	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' ; CPsub ; #test_str ; DTMFstr ;	<pre>clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone send some DTMFs get test string</pre>
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080	0823 0826 0829 082C 082F 0832 0835 0835 0837	CC00000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD 8644 LDAA 1608E9 JSR CE085C LDX 072B BSR	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' ; CPsub ; #test_str ; DTMFstr ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone send some DTMFs get test string send it
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081	0823 0826 0829 082C 0832 0835 0835 0837 083A 083D	CC0000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0802 STD 7C0802 STD 8644 LDAA 1608E9 JSR CE085C LDX 072B BSR	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' CPsub ; #test_str ; DTMFstr ; #'R'	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone send some DTMFs get test string send it
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080	0823 0826 0829 082C 082F 0832 0835 0835 0837	CC00000 LDD 7C0806 STD 7C0808 STD 7C0804 STD 7C0800 STD 7C0802 STD 8644 LDAA 1608E9 JSR CE085C LDX 072B BSR	ACFX ; ACFY ; tontimer ; DX ; DY ; #'D' ; CPsub ; #test_str ; DTMFstr ;	clear phase accumulator clear tone timer init tone 1 (off) init tone 2 (off) send a dial tone send some DTMFs get test string send it

1084				;	send busy
1085					
1086	0844	8642 LDA	A #'B'		
1087	0846	1608E9 JSH	CPsub		
1088					
1089	0849	CC0000 LDI	0#0		
1090	084C	7C0800 STI	D DX		
1091	084F	7C0802 STI	D DY		
1092	0852	86C0 LDA	A #\$C0		
1093	0854	7A0806 STA	A ACFX		
1094	0857	7A0808 STA	A ACFY		
1095	085A	20FE L1BRA	L1	;	stop execution
1096					
1097					
1098	085C 3920	C35353537tes	t_str FCB	"	9,5557579,,,,",EOL
1099					
1100		;	DTMFstr send	ls the string po	inted at (X) as
1101		;	DTMF digits	until EOL is de	tected.
1102		;	USES: A,B,X,	Y	
1103					
1104	086A	A600 DTMFs	tr LDAA	0,X ;	get string character
1105	086C	08 IN2	Σ		
1106	086D	810D CM	PA #EOL	i	end of string?
1107	086F	2704 BEÇ	<u>)</u> L2	;	yes,
1108	0871	0703 BSI		;	send the tone
1109	0873	24F5 BC0	DTMFstr	;	no interrupt,
1110	0875	3D L2 RTS	3		
1111		;			
1112		;			
1113		; ASCdtmf	converts th	e ASCII in (A)	to DTMF frequencies in DX
1114					racters result in a 0.5
1115		; sec pau	se. DTMF ch	aracters are: {	$D-9$, { $A-D$ }, { $*$ }, and { $\#$ }
1116		; USES: A			
1117					
1118	0876	C7 ASCdtmf	CLRB		
1119	0877	CD08C9 LD	ASC_T	;	init table index
1120	087A	A140 L3CM	PA 0,Y	;	in table?
1121	087C	270B BEÇ			yes,
1122	087E	02 INY			-
1123	087F	52 INC			
1124	0880	C10F CM		IF ;	end of table?
1125	0882	23F6 BLS		;	no,
1126	0884	CC0F42 LDI			delay 1/2 sec
1127	0887	2034 BRA			4
1128					
1129	0889	37 gotASC	PSHB	;	save for later
1130	088A	C403 ANI			mask hi tone
1131	088C	58 LSI			construct index (*2)
1132	088D	CD08E1 LD			
1133	0890	19ED ABY			
1134	0892	ED40 LDY		;	get hi tone
					-

1135	0894	7D0800	STY	DX		
1136	0897	33	PULB			
1137	0898	C40C	ANDB	#\$0C		; mask low tone
1138	089A	54	LSRB			; = hinyb * 2
1139	089B	CD08D9	LDY	#DTMFlo		
1140	089E	19ED	ABY			
1141	0880	ED40	LDY	0,Ү		; get low tone
1142	08A2	7D0802	STY	DY		
1143	08A5	CC04B0	LDD	#toneon		; set on time
1144	08A8	7C0804	STD	tontimer		
1145	08AB	3E L4	WAI			
1146	08AC	FC0804	LDD	tontimer		
1147	08AF	26FA	BNE	L4		; not done yet,
1148	08B1	CC0000	LDD	#0		; tones off
1149	08B4	7C0800	STD	DX		
1150	08B7	7C0802	STD	DY		
1151	08BA	CC0258	LDD	#toneoff		; set off time
1152	08BD	7C0804	waitone	STD	tontimer	
1153	08C0	3E L5	WAI			
1154	08C1	FC0804	LDD	tontimer		
1155	08C4	26FA	BNE	L5		; not done yet,
1156	08C6	10FE	CLC			
1157	08C8	3D	RTS			
1158						
1159						; Table of ASCII DTMF digits
1160						
1161 0	8C9 3132	23341343	5 ASC_T	FCB		"123A456B789C*0#D"
1162	000F		maxDTMF	EQU		15
1163						
1164						each DTMF character.
1165					alculated fi	
1166			; D =	(Fgen * 6	5536) / Fsar	np = Fgen * 8.3886
1167						
1168	08D9	16D5 D.			845	; 697 Hz
1169	08DB	193B		6459		; 770 Hz
1170	08DD	1BEB		7147		; 852 Hz
1171	08DF	1ED6	FDB	7894		; 941 Hz
1172						
1173	08E1	279E	DTMFhi		0142	; 1209 Hz
1174	08E3	2BC7		11207		; 1336 Hz
1175	08E5	3066		12390		; 1477 Hz
1176				13699		
1177	08E7	3583		13077		; 1633 Hz
	0887	3583	;	13099		; 1633 Hz
1179	08E7	3583	; ;	19099		; 1633 Hz
1179 1180	0867	3583	; ; ;		_	
1179 1180 1181	08E7	3583	; ; ; ; CPsub	uses (A)		; 1633 Hz one of the following call
1179 1180 1181 1182	0887	3583	; ; ; ; CPsub ; progr	uses (A) ess tone j	pairs:	
1179 1180 1181 1182 1183	0867	3583	; ; ; CPsub ; progr ; (A) S	uses (A) ess tone j ignal sta	pairs: te	
1179 1180 1181 1182 1183 1184	0867	3583	; ; ; ; CPsub ; progr ; (A) S ; "D" d	uses (A) ess tone j ignal sta ial tone	pairs: te (8 sec max)	one of the following call
1179 1180 1181 1182 1183 1184 1185	0867	3583	; ; ; CPsub ; progr ; (A) S ; "D" d ; "R" r	uses (A) ess tone j ignal sta ial tone ing back	pairs: te (8 sec max) tone (100 ri	one of the following call ings)
1179 1180 1181 1182 1183 1184	0867	3583	; ; ; CPsub ; progr ; (A) S ; "D" d ; "R" r	uses (A) ess tone j ignal sta ial tone ing back	pairs: te (8 sec max)	one of the following call ings)

1187 1188			; USES:	А,В,Ү			
1189	08E9	D6C4 (Psub	LDAB	SC0SR1		preclear sci
1190	08EB	D6C4 C	rsub	LDAB	SCODRL	,	preciear sci
1191	08ED	8144		CMPA	#'D'		dial tone?
1191	08EF	262E		BNE	# D nodial		no,
1193	08F1	CC0B78		LDD	#dialow		set tones
1194	08F1 08F4	7C0800		STD	#diaiow DX	,	set tones
1194	08F7	CC0E6B		LDD	#dialhi		
1195	08F7 08FA	7C0802		STD	#diaini DY		
1190	08FD	CCFFFF		LDD	#\$FFFF		set maximum duration
1197	0900	7C0804		STD	tontimer	,	set maximum duration
1198	0903	3E wai	+	WAI	CONCIMEN		
1200	0903	96C4	LLAII	LDAA	SC0SR1		
1200	0904	8520		BITA	#RDRF		
1201					#RDRF		product COT datagt flag
	0908	1401		SEC	1-11-11		preset SCI detect flag
1203	090A	2607		BNE	killall	,	got an SCI chr,
1204	090C	FC0804		LDD	tontimer		les en la madre l
1205	090F	26F2		BNE	waitall		keep a' goin'
1206	0911	10FE		CLC	22055T	i	clear SCI detect flag
1207	0913		tillall		SCODRL		
1208	0915	CC0000		#0		;	turn off tones
1209	0918	7C0800		DX			
1210	091B	7C0802		DY			
1211	091E	3D	RTS				
1212							
1213	091F		odial CM			;	ring-back tone?
1214	0921	262D	BNE	noring			no,
1215	0923	8632	LDAA	#ringc	ount	;	set ring counter
1216	0925	7A080B		count			
1217	0928	CC0E6B	ringlp	LDD	#ringlow	;	set tones
1218	092B	7C0800		DX			
1219	092E	CCOFBA		#ringh	i		
1220	0931	7C0802		DY			
1221	0934	CC3D09		#ringo		;	set ring on time
1222	0937	7C0804		tontim			
1223	093A	07C7	BSR	waital	1		wait
1224	093C	2511	BCS	CPexit			got an SCI, quit
1225	093E	CC7A12	LDD	#ringo		;	set ring off time
1226	0941	7C0804	STD	tontim			
1227	0944	07BD	BSR	waital	1	;	wait again
1228	0946	2507	BCS	CPexit		;	got an SCI, quit
1229	0948	73080B	DEC	count		;	done 'em all yet?
1230	094B	26DB	BNE	ringlp		;	no,
1231	094D	10FE	CLC			;	no SCI detected
1232	094F 31	O CPexit	RTS				
1233							
1234	0950	10FE r	noring	CLC		;	preclear SCI detect
1235	0952	8142	CMPA	#'B'		;	busy tone?
1236	0954	26F9	BNE	CPexit		;	no,
1237	0956	8632	LDAA	#busyc	ount	;	set ring counter

AN1771

For More Information On This Product, Go to: www.freescale.com

0958	7A080B	STAA	count		
095B C	COFBA bu	sylp LDD) #busylow	;	set tones
095E	7C0800	STD	DX		
0961	CC1451	LDD	#busyhi		
0964	7C0802	STD	DY		
0967	CC0F42	LDD	#busyon	;	set ring on time
096A	7C0804	STD	tontimer		
096D	0794	BSR	waitall	;	wait
096F	25DE	BCS	CPexit	;	got an SCI, quit
0971	CC0F42	LDD	#busyoff	;	set ring off time
0974	7C0804	STD	tontimer		
0977	078A	BSR	waitall	;	wait again
0979	25D4	BCS	CPexit	;	got an SCI, quit
097B	73080B	DEC	count	;	done 'em all yet?
097E	26DB	BNE	busylp	;	no,
0980	10FE	CLC		;	no SCI detected
0982	3D	RTS			
	095E 0961 0964 0967 096A 096F 0971 0974 0977 0979 097B 097E 097E	095B CC0FBA bu 095E 7C0800 0961 CC1451 0964 7C0802 0967 CC0F42 096A 7C0804 096D 0794 096F 25DE 0971 CC0F42 0974 7C0804 0977 078A 0979 25D4 0978 73080B 0978 26DB 0980 10FE	095B CC0FBA busylp LDD 095E 7C0800 STD 0961 CC1451 LDD 0964 7C0802 STD 0967 CC0F42 LDD 0968 7C0804 STD 0969 0794 BSR 0967 25DE BCS 0971 CC0F42 LDD 0974 7C0804 STD 0977 078A BSR 0979 25D4 BCS 0978 73080B DEC 0972 26DB BNE 0980 10FE CLC	095B CC0FBA busylp LDD #busylow 095E 7C0800 STD DX 0961 CC1451 LDD #busyhi 0964 7C0802 STD DY 0967 CC0F42 LDD #busyon 096A 7C0804 STD tontimer 096D 0794 BSR waitall 096F 25DE BCS CPexit 0971 CC0F42 LDD #busyoff 0974 7C0804 STD tontimer 0977 078A BSR waitall 0979 25D4 BCS CPexit 097B 73080B DEC count 097E 26DB BNE busylp 0980 10FE CLC	095B CC0FBA busylp LDD #busylow ; 095E 7C0800 STD DX DX 0961 CC1451 LDD #busyhi 0964 7C0802 STD DY 0967 CC0F42 LDD #busyon ; ; 0960 0794 BSR waitall ; ; 096F 25DE BCS CPexit ; ; 0971 CC0F42 LDD #busyoff ; ; 0974 7C0804 STD tontimer ; 0975 078A BSR waitall ; ; 0979 25D4 BCS CPexit ; ; 0978 73080B DEC count ; ; 0978 100FE CLC ; ;

Sine Table Generator C Program

#include <stdio.h>
#include <math.h>

```
// This program constructs a sine table as specified by the user.
// min, max, and size are provided at run time with the output
// going to the display and a file named "SINE.ASM."
11
// Table entries are defined by the following:
// sin,x = int(MIDP + (swing * SIN (360 * x / 256)))
11
// where x = table offset
FILE *fi;
float max = 255;
float min = 1;
float size = 256;
const float pie = 3.141592654;
float x, y, MIDP, SWING, t;
void main(void)
{
```



```
printf("Sine table compiler, v1.00\n");
printf("Sending output to \"SINE.ASM\"...\n");
if ( (fi = fopen("SINE.ASM", "w")) != NULL)
       {
       // get table parameters
       printf("Enter table size (256 max): ");
       scanf("%f", &size);
       printf("Enter table min value (0-255): ");
       scanf("%f", &min);
       printf("Enter table max value (0-255): ");
       scanf("%f", &max);
       SWING = (\max - \min) / 2;
       MIDP = min + SWING;
       // put descriptor header in .asm file
       printf("; sine lookup table\n");
       fprintf(fi, "; sine lookup table\n");
       printf("; size = %5.0f, min = %5.0f, max = %5.0f \n", size, min, max);
       fprintf(fi,";size = %5.0f,min = %5.0f,max = %5.0f \n",size,min, max);
       printf("; MID = %f SWING = %f\n",MIDP,SWING);
       fprintf(fi, "; MID = %f
                                SWING = %f\n",MIDP,SWING);
       fprintf("SIN_TAB\n");// place table lable
       // put table data as assembly source.
       x = 0;
       while (x <= size)
         {
         y = MIDP + (SWING * (sin (2 * pie * x / size)));
         printf("\tFCB\t");// display source
         printf("%5.0f",y);
         printf("\n");
         fprintf(fi, "\tFCB\t");// write source file
         fprintf(fi, "%5.0f",y);// for casm0x use "%5.0ft"
         fprintf(fi, "\n");
         x++;
         }
       fclose(fi);
       printf("Done.\n");
       }
else
       printf("File error.\n");
       ł
}
```


How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

