Freescale Semiconductor Order this document
by AN1803/D

AN1803

C Coding for the Keypad Module of the MMC2001

By Glenn Jackson
Austin, Texas

Introduction

This application note assists the microcontroller developer to quickly set
up the functionality of the keypad module on the MMC2001. The
MMC2001 is the first publicly available general-purpose M«COREL]
offering in the M*CORE product line.

An overview of keypad design issues is explained and the software
modular structure is described. Suggestions concerning future
enhancements to the current software are made and detailed software
for keypad decoding is listed and described.

The order of topics in this application note is:

+ Keypad design issues

« Software structure

+ Steps to decode the keypad

« Additional enhancements to this keypad structure

* Program listings

M<CORE is a trademark of Freescale Semiconductor,

freescale

semiconductor
© Freescale Semiconductor, Inc., 2004. All rights reserved.

For More Information On This Product,
Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

wr
PRt

Freescale Semiconductor, Inc.

Application Note

Keypad Design
Issues Overview

Debounce

Unique Keypad
Outputs

Keypad operations produce several issues. These include:
« Debounce — Capturing the key depress in real time

» Unique keypad outputs — Differing configurations, matching
various columns and rows

* C pseudo-code — Rising above assembler code for register bit
control with C type variables

» Polling versus interrupt methods

These topics cover concerns which may not be immediately apparent for
anyone who has not dealt previously with keypad issues.

The attempt to press a key on a physical keypad and have this press
detected can fail as a result of several sources. These sources include:

* The high speed of sampling in the part, relative to real time
» Contacts which prove to be intermittent

« The ability of the hardware to detect an attempt at a key press
versus a random spike in the circuitry

These are the various causes of what are called debounce problems.
The keypad port of the MMC2001 handles this problem in hardware by
requiring that a key press detection occur in four consecutive timing
cycles.

When the hardware is successful in detecting a key press, the
information is held until cleared by software. This eliminates all noises
(glitches, spikes, etc.) of less than 16 ms in duration. The existing
hardware simplifies the software writing task of detecting debounce.

Keypads use a cross-connection of columns and rows to identify which
key was pressed. These columns and rows may already be hard-wired
to an output cable. This would produce a unique encoding for the output
lines of the cable. The example in this application note uses a 4 x 4 (four
columns by four rows) matrix of keys with an eight-line output cable.
Figure 1 shows the output of the cable which is decoded in Table 1.

AN1803

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Application Note

Introduction

Wire:12345678 Column: 3 2 1 0

N ECRC RS o |[][2][3][C]

2 « |([4][5][6][D]

@ —|[7][8][9] [E]

W=\ o |A0lBI[F]
Wires 1234 —> Columns 0123 Keypad

Wires 5678 —> Rows 0123

Figure 1. Keypad Output Cable

Table 1. Correlation of Keys to Wires and Columns/Rows

Wires 4 x 4 Keypad
Key 1-4 5-8 Column Row
0 3 5 2 0
1 4 8 3 3
2 3 8 2 3
3 2 8 1 3
4 4 7 3 2
5 3 7 2 2
6 2 7 1 2
7 4 6 3 1
8 3 6 2 1
9 2 6 1 1
A 4 5 3 0
B 2 5 1 0
C 1 8 0 3
D 1 7 0 2
E 1 6 0 1
F 1 5 0 0

AN1803

For More Information On This Product,
Go to: www.freescale.com

wr
PRt

Freescale Semiconductor, Inc.

Application Note

C Pseudo-Code
Register Variable
Names

Polling vs. Interrupt
Methods

Manipulation of the registers in the keypad block involves an assembler
level assignment. The KEY.H file defines variables which represent the
registers and their respective bits. These variables can be treated as C
character (char) or integer (int) variables in the KEY.C portion of the
program. This makes the KEY.C program look like standard C.

The address of the registers of the keypad port start at location
$10003000. The individual bytes were assigned specific names for ease
of access when coding in C. These names are described in Table 2.

Table 2. Register Addresses and Name Designations

Address Name (Upper Byte) Name (Lower Byte)
$10003000 KPCR KPRE*
$10003002 KPSR KPKR*
$10003004 KDDR KRDD*
$10003006 KPDR**

*Names not found in the reference manual. These are used for C code access.

**KPDR register is set up for specific bit designations. Columns 0-3 are assigned to bits
KPDR 8-11, respectively. Rows 0-3 are assigned to bits KPDR 0-3, respectively.

The program KEY.C runs in a continuous loop until cancelled. This loop
waits for a key stroke, acts on the key stroke, and returns to wait for the
next key. This method, called polling, is used when the entire program is
run from the keys.

An interrupt method has the processor servicing activities beyond the
control of the keypad program. When a key is pressed, an interrupt is
called, and the key stroke is processed. After the interrupt, the processor
is released to return to its own service routines.

AN1803

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Software Structure

Software Structure

The main C program (KEY.C) has several supporting files. The file
KEY.H defines the variables which help the main program address the
registers and bits of the keypad module on the MMC2001. The file
KEY.LNK sets the address locations for the program into memory.

KEY.C The KEY.C program is written as a stand alone example of keypad
programming. This program will yield a single “keynum?” value which can
be used in any other software application.

KEY.H The addresses in the KEY.H program can be adjusted to different
locations of the MMC2001 address map. The “#pragma” block defines a
function which is in the superset of ANSII C. This function is first defined
in the “#pragma” section block. The function is activated in the
“#pragma use_section” block. IOASECT and IOBSECT are the names
of the two defined functions for the keypad registers.

A structure of the name REGISTER is defined. REGISTER sets the bit
name for each bit in a 16-bit register. The register address of KPDR is
set and the structure of REGISTER is applied to the register KPDR at its
register address location. The column and row bits are specifically
assigned here. After this assignment, the row value is connected to its
register value by using the address KPDR.rowx (where x is 0...3) in the
main KEY.C program.

The same holds true for the columns.

KEY.LNK The KEY.LNK program sets the starting points in memory and memory
size for the ROM (read-only memory), RAM (random-access memory),
and stack pointer. Uninitialized data space is assigned along with
compiler memory allocations and identifiers.

AN1803

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Steps for Decoding the Keypad

A combination of hardware and software procedures is performed to
convert the mechanical key press operation to the software data value.

The polling process used in this application note involves a main loop

which:

» Sets the registers

« Waits for a key to be pressed

« Scans the columns and rows for the active key

* Decodes the results of the scan

» Clears the registers for another entry

* Converts the decoded data to a software function

* Repeats the loop for another key stroke

Set Up Registers
for Keypad Input

This code module sets the registers for receiving a keypad input.

voi d set_registers(void)

{
KPCR = 0x00;
KPRE = O0xOF;

KPDR. LCD E = 0

KPDR. LCD_RW
KPDR. LCD_R

n

KPDR. bi t 12 = 0;

KPDR. col 3
KPDR. col 2
KPDR. col 1
KPDR. col 0
KPDR. bi t 7
KPDR. bi t 6
KPDR. bi t 5
KPDR. bi t 4
KPDR. r ow3
KPDR. r ow?2
KPDR. r owl
KPDR. r ow0

OxFF;
0x70;
OxOF;
0x01;
OxFD;

LRLRLLReeLeRee

KDDR
KRDD
KPKR
KPSR
KPSR

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Col um 3-0 Open-Drain */
Row 3-0 Active in Scan */
Wite 0's to Data Register */

KPDR[15] <- 0's */
KPDR[14] <- 0's */
KPDR[13] <- 0's */
KPDR[12] <- 0's */
KPDR[11] <- 0's */
KPDR[10] <- 0's */
KPDR[9] <- 0's */
KPDR[8] <- 0's */
KPDR[7] <- 0's */
KPDR[6] <- 0's */
KPDR[5] <- 0's */
KPDR[4] <- 0's */
KPDR[3] <- 0's */
KPDR[2] <- 0's */
KPDR[1] <- 0's */
KPDR[0] <- 0's */

Cols are outputs, Rows are inputs */
Rows are inputs, Qut for LCD controls */
Clear KPKD bit, wite "1" */

Set the KDIE bit */

Clear the KRIE bit */

AN1803

For More Information On This Product,
Go to: www.freescale.com

Have the Program
Wait for Keypad
Input

AN1803

Freescale Semiconductor, Inc.

Application Note
Steps for Decoding the Keypad

The specific bit manipulations are described as:

+ The KPCR sets the column bits as totem-pole driven. The column
bits may be reset to open-drain if desired. The term “open-drain”
is defined as having the p-channel pullup disabled.

+ The KPRE register enables the four rows zero to three [0:3] into
active scan.

« Each bit of the KPDR register is initialized to zero [0].

+ The KDDR register is written to set the columns to output
configuration.

+ The KRDD register (lower byte of KDDR) sets the row data bits as
inputs.

» The status bits (KDSC, KRSS, KPKR, and KPKD) are cleared and
the enable bit (KDIE) is set. A logic 1 is written to the status bits to
clear their active states. By setting the interrupt enable bit (KDIE),
the software is provided with a mechanism to detect a key
depress.

The wait module aligns the hardware and the software. After the
registers have been set up to receive a key press, this program waits for
a key press before proceeding. This is accomplished by entering a while
loop which checks for any changes in the KPKR register. With the KDIE
bit set along with a key press, the KPKR byte register changes to reflect
the new state in the KPKD bit. This causes an exit from the while loop
and returns control to the main calling program. The software needs a
delay for alignment with the hardware. Otherwise, the software would
run ahead of the hardware and would fail to wait for a key press. The
count of 60,000 cycles was found to be sufficient and a shorter delay
cycle might work just as well.

This method of waiting for a change in the KPKR register also provides
a programming hook for a future interrupt version of this program. The
line that feeds the KPKD bit is driven to the interrupt block for the
MMC2001. Therefore, a future interrupt handling module would be
located here in the program and would tap off of the same signal line.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note

Scan Columns
and Rows
for Active Key

Both the delay and wai t _key submodules are included in Program
Listings.

[* <<<K<KKLKKKKKSSSSSSS>>> Ff
voi d del ay(voi d)

int time_pass;
for(tine_pass=0; tine_pass<60000; tinme_pass++)

conti nue; }

[* <<<<<LKKLKLKKDSSSOSS>S>S>
void wait_key()

int first; /* Initial value of KPKR */
del ay(); /* delay to align hardware with software */
first = KPKR /* Original value of KPKR */

/| * Check for consistent KPKR val ue */
whil e(first == KPKR)

conti nue;

return;
} /* end wait_key */

The modules for column and row scan perform the function of converting
the hardware data to software data. To scan for an active key, the
columns are first prepared as outputs, charged to a high state, and then
set to open drain. Next, the columns are tested consecutively along with
the associated four rows for each column. A successful test will have the
column set to zero [0] and then a read of each of the four rows produces
a low row value. Saving the low values for the specific column and row
completes the functionality of these modules.

The setting of the column values may appear redundant from the
previous register setup. However, these are essential local functions
which make the scan modules independent of other software in the
program.

The acti ve_r owvariable in the scan_key module serves a control
and data function. While act i ve_r owis equal to zero [0], the active row
has not been found. This will continue the scan into the remaining
columns. When an active row has been found, act i ve_r owwill be set
to a value of one through four [1—4]. The final acti ve_r ow value will
be translated back to a row value, zero through three [0-3], for a return
value.

AN1803

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Steps for Decoding the Keypad

Prepare Registers Since the key data is retained in memory, the registers will immediately

for Next Key Input be reset for another key press. The column values are set to zero [0] to
permit a clearing of the status bits. Next, status bits KPKD and KPKR are
cleared and finally the interrupt enable bit, KDIE, is reset.

If an interrupt method is incorporated into this program, then this reset is
required to stop an interrupt request to the core. Therefore, the module
reg_set is good housekeeping for the polling method but is also
intended to provide an essential hook for a future interrupt version.

Decode Key Input This part of the program converts the input hardware data into a usable
software variable.

The top line, which is commented out, is a combination of the three tasks
in one line.

1. First, the column data is entered at the address location of the
variable key. The column data is cast as a character which will be
stored in four bits of data.

2. Second, the stored column data (in character format) is shifted left
by one character (4 bits).

3. Third, the row data is input as a character into the lower four bits
of the “key” variable.

NOTE: The row data is OR-functioned into the “key” variable.

char key;

/* key = (((char)(kcol))<<4)|((char)(krow)); */

key = (char)kcol; /* Enter Columm Data into 'key' */

key = (key<<4); J* Shift Colum data to left character of "key' */

key = key | ((char) krow); /* Add Row data to right character of 'key' */
The column and row data are translated into the single keypad data. This
is done with a case statement. The two input values are translated into
a single case input value (" key’). This gives a bitwise translation from
the input bits of the keypad port to the case statement. The case
statement creates the output result of keynum
This method is an example of how to represent the hardware bits ina C
software format.

AN1803

For More Information On This Product,
Go to: www.freescale.com

wr
PRt

Freescale Semiconductor, Inc.

Application Note

Main Program
Loop

The main program provides a loop to repeat any number of key inputs.
This module is a sequence of module calls which are repeated.
Generally, global variables have been used which are modified by the
module calls. The set _regi st er s call prepares the registers for key
input. The wai t _key call will delay the program until a key is pressed.
The scan_key call scans each column and four associated rows to
determine the data value for the active column and row. The

key decode call inputs the values of the active column and active row
into a decryption routine. This routine yields a software value that is now
independent of the hardware. The software value of the key is now
available for any software application. The main loop is returned to the
top to wait for the next key.

The mai n module could be used as the interrupt-handling module in an
interrupt format. A key press would call for an interrupt which would call
this routine when acknowledged.

Program Enhancements

Other Functions

Interrupt Key
Format

A basic C level programming example for the keypad port of the
MMC2001 is presented here, leaving room for several enhancements
and alterations.

With the interrupt format, the MeCORE processor is permitted to run any
process independent of the keypad. When a key is pressed, an interrupt
is sent to the interrupt block and is handled according to the priority of all
outstanding interrupts. After the key stroke is handled, control returns to
the processor.

Two hooks exist in the current program for conversion to interrupt the
format. They are:

» First, the polling method used here is set to alert off of the same
signal that would be sent to the interrupt block. This is found in the
wai t section of the program and could be replaced by an interrupt
call module.

AN1803

10

For More Information On This Product,
Go to: www.freescale.com

Dual Key
Detection

Different Keypad
Size

AN1803

Freescale Semiconductor, Inc.

Application Note
Program Enhancements

« Second, the mai n module could be converted into the top interrupt
handling module for receiving a key stroke input.

The circuitry of the key port module on the MMC2001 is designed to
detect two simultaneous key presses. The variable ar 1 (which is a local
variable in the get _r owsubmodule) is designed to be used as a test
which checks for a second active row (ar 2). The global variables would
also have to be expanded to handle a second active column and a
second active row. Of course, the same key decode submodule could be
called a second time with the second variables passed to it. The final
meaning of a double key stroke is up to the interpretation of the calling
application.

The key port module of the MMC2001 is designed to handle keypads up
to 8 x 8 in size, a maximum of eight columns and a maximum of eight
rows. Additional columns would be added and checked at zero value in
the scan_key module. Additional rows would be added and tested for
a zero value in the get _r owmodule. In this manner, an adjustment of
any combination of columns and rows can be implemented.

11

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

Program Listings

KEY.C Listing The KEY.C listing provides the main keypad program. This part
represents transportable C code. The other listings introduce specific
hardware and compiler structures.

/* This programis for the M CORE MMC2001 keypad entry.
* Program Name: key.c

* Witten by denn Jackson

* Date: 9/14/98

* Description:

* Part 1: Set up the registers for the Keypad input
* Part 2: Enter delay / wait for keypad input

* Part 3: Prepare registers for next key input

* Part 4: Scan colums and rows for active key

* Part 5: Decode the key input

* Part 6: Main Loop: Cycle fromPart 1 to Part 5
*/

/**/
/* | nCl ude Sectl on **/

#i ncl ude "key. h"
/* [bcl are the functl OnS OI’ SUbI’OUtI nes **/

/* Define the addresses */
int act_col;

int act_row,

i nt key_col;

i nt key_row,

char keynum

/* Part 1: Set up registers */

/**/

/* Modul es for PART 1: Set up Registers */

/**/

[* <<<<K<KKKKLKKISDSSOSS>>> K
voi d set _registers(void)

{

KPCR = 0x00; /* Columm 3-0 Open-Drain */
KPRE = OxOF; /* Row 3-0 Active in Scan */
/* Wite 0's to Data Register */

KPDR. LCD E = 0; /* KPDR[15] <- 0's */
KPDR. LCD RW= 0; /* KPDR[14] <- 0's */
KPDR LCD RS = 0; /* KPDR[13] <- 0's */
KPDR. bit12 = 0; /* KPDR[12] <- 0's */
KPDR. col 3 = 0; /* KPDR[11] <- 0's */
KPDR. col 2 = 0; /* KPDR[10] <- 0's */
KPDR. col 1 = O; /* KPDR[9] <- 0's */
KPDR. col 0 = O; /* KPDR[8] <- 0's */
KPDR. bit7 = 0; /* KPDR[7] <- 0's */
KPDR. bit6 = 0; /* KPDR[6] <- 0's */
KPDR. bit5 = 0; /* KPDR[5] <- 0's */
KPDR. bit4 = 0; /* KPDR[4] <- 0's */
AN1803
12

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Program Listings

KPDR. row3 = 0; /* KPDR[3] <- 0's */

KPDR. row2 = 0; /* KPDR[2] <- 0's */

KPDR. rowl = 0; /* KPDR[1] <- 0's */

KPDR. row0 = O0; /* KPDR[O] <- 0's */

KDDR = OxFF; /* Cols are outputs, Rows are inputs */
KRDD = 0x70; /* Rows are inputs, Qut for LCD controls */
KPKR = 0xOF; /* Clear KPKD bit, wite "1" */
KPSR = 0x01; /* Set the KDIE bit */
KPSR = OxFD; /* Clear the KRIE bit */
}

/**/

/* Modul es for PART 2: Wait for Key */

/**/

[* <<KKLKKKKKKSSSSSSS>S> K
voi d del ay(voi d)

int tinme_pass;
for(tine_pass=0; tine_pass<60000; tinme_pass++)

conti nue;

}

[* <<<K<KKKKKKLKSSEOO>>SS>>F
void wait_key()

{

int first; /* Initial value of KPKR */
del ay(); /* delay to align hardware with software *|
first = KPKR /* Oiginal value of KPKR */
/* Check for consistent KPKR val ue */

whil e(first == KPKR)

conti nue;

return;

} /* end wait_key */
/**/
/* Modul es for PART 3: Regi st er Preset */

/**/

void reg_set ()

/* Return colums to 0 */

KPDR. col 3 = 0; /* KPDR[4] <- 0's */

KPDR col2 = 0; /* KPDR[5] <- 0's */

KPDR coll = 0; /* KPDR[6] <- 0's */

KPDR col0 = 0; /* KPDR[7] <- 0's */

KPKR = OxOF; /* Clear KPKD & KPKR */

KPSR = 0x01, /* Re-enable KD E, key press */

} /* end reg_set */

/**/

/* Mbdul es for PART 4: Row Scan */

/**/

[* <<<<KKKKKKKKISSOOSSOSS>>> K
int get_ row(void) /* Return active row status */
/* Check rows 0 to 3 */

AN1803

13

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

int aril; /* Active row in get_row nodule */
arl = 0;
i f (KPDR row0==0)

{

arl = 1;
return(arl);

i f (KPDI%. r owl==0)

arl = 2;
return(arl);

i f (KPD%. r ow2==0)

arl = 3;
return(arl);

if KPD%&. r owd==0)

arl = 4,
return(arl);

return(arl);
} /* End of get_row */

[* <<KKKLKKKKKSSSSSSSS>> K

[* Scan for active key */
voi d scan_key(int *acol, int *arow)
/* int acol;
int arow */

{
extern char KPCR;
int active_row,

acol 9; / "9" is unique here (for debug) */
arow = 8; / "8" is unique here (for debug) */
active_row = 0;

/* Disable keypad interrupts */
KPSR = 0x00; /* disable KR E, KDIE */

/* Wite 1's to Colum data */
/* Set up for scan */
KPDR col0 = 1; /* KPDR[8] <- 1's */

KPDR. col1 = 1; /* KPDRI9] <- 1's */

KPDR col 2 = 1; /* KPDR[10] <- 1's */
KPDR col 3 = 1; /* KPDR[11] <- 1's */
KDDR = OxFF; Colums to CQutputs */

= }*
KPCR = 0x00; /* Colums to totem pole outputs, to charge 1 */
KPCR = /* Colums [3:0] to Open Drain */

/* Col um-Row Scan */

/* * %k k% k% % GET w_UNN * %k k% k% % */
/* Walk a zero in colums O to 3 */

/* Zero Colum 0 Only */

KPDR. col 0 = 0; /* KPDR[8] <- 0's */
KPDR col 1 = 1; /* KPDR[9] <- 1's */

AN1803
14

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Program Listings

KPDR. col 2
KPDR. col 3

1; /* KPDR[10] <- 1's */
1; * KPDR[11] <- 1's */

active_row = get_row();
if (active_row > 0)

0;
active_row - 1; /* '-1' for alignment */

*acol
*ar ow

}
/* End Columm O check */
if (active_row==0) /* No previous colum */

/* Zero Colum 1 Only */

KPDR.col0 = 1; /* KPDR[8] <- 1's */
KPDR.coll = 0; /* KPDRI9] <- 0's */
KPDR. col 2 = 1; /* KPDR[10] <- 1's */
KPDR. col 3 = 1; /* KPDR[11] <- 1's */

active row = get_row();
if (active_row > 0)

1;
active row - 1; /* '-1' for alignnent */

*acol
*ar ow

} /* End columm 1 check */
if (active_row==0) /* No previous colum */

{
[* Zero Colum 2 Only */

KPDR col 0 = 1; /* KPDR[8] <- 1's */
KPDR col 1 = 1; /* KPDR[9] <- 1's */
KPDR. col 2 = 0; /* KPDR[10] <- O's */
KPDR col 3 = 1; /* KPDR[11] <- 1's */

active row = get_row();
if (active_row > 0)

2;
active_row - 1; /* '-1' for alignnent */

*acol
*ar ow

} /* End columm 2 check */
if (active_row==0) /* No previous colum */

{

/* Zero Columm 3 y */

KPDR. col0 = 1; /* KPDR[8] <- 1's */
KPDR. coll = 1; /* KPDR[9] <- 1's */
KPDR col2 = 1; /* KPDR[10] <- 1's */
KPDR col 3 = 0; /* KPDR[11] <- 0's */

active_row = get_row();

if (active_row > 0)

{

3,

active_row - 1; /* '-1' for alignment */

*acol
*ar ow

* default return if no-key */

}

} /* End colum 3 check */
/

} /* End of Scan_Key */

AN1803

15

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

/**/

/* Modul es for PART 5: Col utm Row Decode */
/**/
[* <<KKLKLKKKKKSSSSSSS>>> K

char key_decode (int kcol, int krow)

/* *kcol -- Active keyed col um */

/* *krow -- Active keyed row */

extern char keynumy /* Returns the decoded keystroke */
char key;
/* key = (((char)(kcol))<<4)|((char)(krow)),; */

key = (char)kcol; [/* Enter Columm Data into 'key' */
key = (key<<4); /* Shift Colum data to left character of 'key' */
key = key | ((char)krow); /* Add Row data to right character of 'key' */

switch (key)

{ [/* This decode is for a specific 0-F keypad */
/[* YMW -- Your nilage may vary. */

case 0x00: keynum='F";

br eak;
case 0x01: keynum='E';
br eak;
case 0x02: keynum='D;
br eak;
case 0x03: keynum='C;
br eak;
case 0x10: keynum = 'B';
br eak;
case 0x11: keynum= '9';
br eak;
case 0x12: keynum = '6";
br eak;
case 0x13: keynum='3';
br eak;
case 0x20: keynum = '0'";
br eak;
case 0x21: keynum= '8";
br eak;
case 0x22: keynum = '5";
br eak;
case 0x23: keynum = '2';
br eak;
case 0x30: keynum="'A";
br eak;
case 0x31l: keynum="'T7";
br eak;
case 0x32: keynum = '4';
br eak;
case 0x33: keynum= '1";
br eak;

defaul t: keynum = "*";

} /* End of Switch */
return(keynum ;

} /* End of key_decode */

/* **/

/* End of nodul es */

/* **/

AN1803

16

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Program Listings

[* <<<K<KKLKKKKKSSSSSSS>>> Ff
voi d mai n(voi d)
{

int condition;

extern char KPCR;

for(condition=0; condition< 200;)

{ /* Start the Run-Loop */

set _registers(); /* set registers to accept key input */
wai t _key(); /* wait for key input */
scan_key(&act _col, &act_row); /* get col, row */
reg_set(); /* Set up registers for next key stroke */
/* decode colum and row to produce keynum */

key _decode(act_col, act_row);

/* Return to register set up and wait for */

/* next key input. */

} /* End of Run-Loop */

} /* End of MAIN */

Key. h listing
The key. h listing provides exact nmenory designations for the variables used in key.c.
/* Program Nanme: key.h */

Dat a assigned for control |ines */

use MMC2001 GPI O Keypad colum[7-5] for PORTB Data */
use MMC2001 GPI Q' INT for PORTA Data */

Di ab's way of setting ports */

* X X X

~ Y~~~

#pragma section | OASECT far-absol ute RWaddress=0x10003000
#pragna use_section | OASECT KPCR, KPRE, KPSR, KPKR, KDDR, KRDD
/* the order of definition goes mcrenentally from 3000 by byt es*/

char KPCR; /* Top byte of KPCR -- Columm Qutput */
char KPRE; /* Low byte of KPCR -- Row Enable */

char KPSR; /* Top byte of KPSR -- Interrupt enables */
char KPKR; /* Low byte of KPSR -- Keypress control */
char KDDR; /* Top byte of KDDR -- Columm 1/0 */

char KRDD; /* Low byte of KDDR -- Row I/O */

/* char KPDR; KPDR i s defined by bits bel ow */

#pragna section | OBSECT far-absol ute RWaddress=0x10007002
#pragm use_section | OBSECT EMPTA, DDRA, EMPTAD, PORTA
/* the order of definition goes increnentally fromO02 */

char EMPTA;

char DDRA;

char EMPTAD;

char PORTA; /* Configure to be the Data register */

typedef struct

unsi gned short LCD E :1
unsi gned short LCD RW: 1;
unsi gned short LCD RS :1;
unsi gned short bitl1l2 :1;
unsi gned short col3 :1;
unsi gned short col2 :1
unsi gned short coll :1
unsi gned short col 0 : 1;
unsi gned short bit7 :1
unsi gned short bit6 :1

AN1803

17

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Application Note

unsi gned short bit5 :
unsi gned short bit4 :
unsi gned short row3 :
unsi gned short row2 :
unsi gned short rowl :
unsi gned short row0 :
} REG STER;

PRRRRRE

#def i ne KPDR _DEF (unsigned | ong) 0x10003006 /* Set PORTB data GPI QI NT */
#define KPDR (*(vol atil e REA STER*) (KPDR_DEF+0))

KEY.LNK Listing The KEY.LNK listing is specific to the Diab Data C compiler. KEY.LNK
allocates memory for the program RAM, ROM, and stack. Program
control variables also are defined and set into memory in KEY.LNK.

/* Program File Name: key.lnk */

VEMORY

{
rom org = 0x30000000, |en = 0x1000
ram org = 0x30001000, |en = 0x5900
stack: org = 0x30006900, | en = 0x1000

}

SECTI ONS

/* The first group contains code and constant data */

GROUP :
/* First take all code fromall objects and libraries */
.text (TEXT) :
*(.text) *(.rodata) *(.init) *(.fini) *(.eini)
= (.+15) & ~15;

}

/* Next take all small CONST data */
.sdata2 (TEXT) : {}

} > ram

/* The second group will allocate space for the initialized data

* (.data/.sdata) and the uninitialized data (.bss/.shss) in the "ranm section
*/

GROUP : {

. dat a (DATA) :

/* .sdata contains snall address data */

. sdat a (DATA) o {}

/[* This will allocate the .bss synmbols */
. sbss (BSS) A{}

.bss (BSS) A}

.debug : {}

. debug_sfnanes : {}

.debug_srcinfo : {}

.line {}

AN1803

18

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Application Note
Program Listings

/* Any space left over will be used as a heap */
} >ram
}
/* Definitions of identifiers used by key.c, key.h and the different
* crt0.s files. Their purpose is to control initialization and nmenory
* allocation.
* HEAP _START : Used by sbrk.c. Start of nenory used by malloc() etc.
* HEAP END : Used by sbrk.c. End of heap nenory
-* HEAP END : Used by sbrk.c. End of heap nenory
* SPINT . Used by crt0O.s. Initial address of stack pointer
* SP END : Used by sbrk.c. Only used when stack probing
* DATA ROM : Used by init.c. Address of initialized data in ROM
* DATA RAM : Used by init.c. Address of initialized data in RAM
* DATA END : Used by init.c. End of allocated initialized data
* BSS START : Used by init.c. Start of uninitialized data
* _ BSS_END : Used by init.c. End of data to be cleared
K o e e o o e o e - */
__HEAP_START = ADDR(.line) + SIZEO-(.line);
__SP INT = ADDR(st ack) +SI ZEOF(st ack) ;
__HEAP_END = ADDR(ram +Sl ZEOF(ram ;
__SP_END = ADDR(st ack);
__DATA ROM = ADDR(. sdat a2) +S| ZEOF(. sdat a2) ;
__DATA RAM = ADDR(. dat a);
__DATA END = ADDR(. sdat a) +SI ZEOF(. sdat a) ;
__BSS_START = ADDR(. sbss);
__BSS END = ADDR(. bss) +SI ZEO(. bss) ;
/* Sonme targets use an extra underscore in front of identifiers
K o o o o e - */
__ HEAP_START = __ HEAP_START;
___HEAP_END = _ HEAP_END;
___SPINT = SPINT;
___SP _END = __ SP_END;
___DATA ROM = __ DATA ROM
___ DATA RAM = __ DATA RAM
___ DATA END = _ DATA END;
____BSS _START = _ BSS_START;
___BSS END = _ BSS END;
AN1803
19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Application No

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescale"

semiconductor

AN1803/D

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Keypad Design Issues Overview
	Debounce
	Unique Keypad Outputs
	C Pseudo-Code Register Variable Names
	Polling vs. Interrupt Methods

	Software Structure
	KEY.C
	KEY.H
	KEY.LNK

	Steps for Decoding the Keypad
	Set Up Registers for Keypad Input
	Have the Program Wait for Keypad Input
	Scan Columns and Rows for Active Key
	Prepare Registers for Next Key Input
	Decode Key Input
	Main Program Loop

	Program Enhancements
	Other Functions
	Interrupt Key Format
	Dual Key Detection
	Different Keypad Size

	Program Listings
	KEY.C Listing
	KEY.LNK Listing

