
Freescale Semiconductor
Application Note

AN1831
Rev. 3, 11/2005

Table of Contents

Introduction . 1
Page Erase Issue . 2
The Routines. 2

3.1 GETBYTE . 3
3.2 RDVRRNG. 4
3.3 PRGRNGE. 4
3.4 ERARNGE — Page Erase. 5
3.5 ERARNGE — Mass Erase. 6
3.6 DELNUS . 6
Device-Specific Information Related to
On-chip FLASH Routines 8

Variables . 8
The Data Structure . 9
Addresses of Routines . 10
MC68HC908KX8 Trim Routine 10
Typical Routine Calls . 10

9.1 Example for GETBYTE 11
9.2 Examples for RDVRRNG. 11
9.3 Example for Page Erase Operation 12
9.4 Examples for Mass Erase Operation 12
9.5 Examples for PRGRNGE. 13
9.6 Example for DELNUS 14

0 Page Erase Workaround. 14
1 ROM Routines Source Code. 15
2 Workaround Code . 29

Using MC68HC908 On-Chip
FLASH Programming Routines
by Kazue Kikuchi

MCD Applications Engineering
Austin, Texas
1 Introduction
In this application note, the following devices are
supported:

MC68HC908EY16
MC68HC908GR4
MC68HC908GR4A
MC68HC908GR8
MC68HC908GR8A
MC68HC908GT16
MC68HC908JB8
MC68HC908JK1
MC68HRC908JK1
MC68HLC908JK1
MC68HC908JK1E
MC68HRC908JK1E
MC68HLC908JK1E
MC68HC908JK3
MC68HRC908JK3
MC68HLC908JK3
MC68HC908JK3E
MC68HRC908JK3E
MC68HLC908JK3E
MC68HC908JL3

MC68HRC908JL3
MC68HLC908JL3
MC68HC908JL3E
MC68HRC908JL3E
MC68HLC908JL3E
MC68HC908KX2
MC68HC908KX8
MC68HC908QT1
MC68HC908QT2
MC68HC908QT4
MC68HC908QY1
MC68HC908QY2
MC68HC908QY4
MC68HLC908QT1
MC68HLC908QT2
MC68HLC908QT4
MC68HLC908QY1
MC68HLC908QY2
MC68HLC908QY4

1
2
3

4

5
6
7
8
9

1
1
1

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Page Erase Issue
The original purpose of this application note was to describe how to use the on-chip FLASH routines
residing in ROM (read-only memory). In the first version of the note, only a few devices were supported.

This updated application note not only supports the original purpose but also accomplishes the following
purposes:

1. There is a bug on the page erase operation using the on-chip FLASH erase routine described in the
original note. In this note, the bug is described and its workaround is provided. For details, refer to
Section 2, “Page Erase Issue.”

2. More devices that have the on-chip FLASH routines are supported.
3. Information is updated to provide additional useful information to the user.

2 Page Erase Issue
The page erase issue does not apply to all devices supported in this note. The issue applies to the following
devices:

If the user target device is not one of the above, skip this section. The device does not have the page erase
issue.

One of the on-chip FLASH routines, named ERARNGE, supports FLASH erase and was meant to erase
a page size of FLASH or the whole FLASH array.

ERARNGE works properly when the mass erase operation is performed. However, we found that
ERARNGE does not fully erase a selected page when a page erase operation is performed. Furthermore,
it has the potential to erase a vector page unintentionally.

The issue is caused by servicing the computer operating properly (COP) during the tErase delay routine.
The workarounds for this issue are:

1. Write your own page erase routine and keep it in FLASH. Whenever a page erase is desired, copy
the routine to RAM and execute the erase from there. Be sure to omit instructions that service the
COP.

2. Refer to Section 10, “Page Erase Workaround.” In the workaround, ERARNGE located in ROM
is used so that the user does not need to develop his/her own routine. The new page erase routine
is called in a similar manner to the original. However, additional RAM is required to perform this
routine.

3 The Routines
The collection consists of five callable routines, which are described in Table 2. These routines are
explained briefly here, but the parameters and the passing method are addressed in later sections.

MC68HC908GR4 MC68HC908GR4A MC68HC908GR8 MC68HC908GR8A MC68HC908JB8
MC68HC908JK1 MC68HRC908JK1 MC68HLC908JK1 MC68HC908JK1E MC68HRC908JK1E
MC68HLC908JK1E MC68HC908JK3 MC68HRC908JK3 MC68HLC908JK3 MC68HC908JK3E
MC68HRC908JK3E MC68HLC908JK3E MC68HC908JL3 MC68HRC908JL3 MC68HLC908JL3
MC68HC908JL3E MC68HRC908JL3E MC68HLC908JL3E MC68HC908KX2 MC68HC908KX8
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor2

The Routines
3.1 GETBYTE
GETBYTE is a routine that receives a byte on the monitor mode communication port defined for that
particular device, and this received value is passed back to the calling routine in the accumulator. For these
devices, the communication port is either port A0 or port B0. Table 3 shows which communication port
(COMMPORT) is used for each device.

GETBYTE expects the same non-return-to-zero (NRZ) communication protocol and baud rate that is used
in monitor mode. The difference between this routine’s method of receiving a byte and when the monitor
receives a byte is that the monitor echoes back whatever is received. It may be more efficient for a RAM
program to use this routine when receiving data from a host to eliminate the time overhead in sending out
every byte that is received. This is especially true if the host program and RAM routine already have a
built-in error detection scheme, such as a message checksum, and there might not be a need to do an echo
check for each byte sent.

This routine detects a framing error when a STOP bit is not detected. If the carry (C) bit of the condition
code register (CCR) is cleared after returning from this routine, a framing error occurred during the data
receiving process. Therefore, the data in the accumulator is not reliable. The user software is responsible
for handing such errors.

The communication baud rate is defined by the internal operating bus frequency (fop) divided by a constant
value. Table 1 shows the divider value and a typical baud rate for each device.

Table 1. Communication Baud Rate

Divider
Value

Typical Baud Rate

MC68HC908EY16 256 9600bps @ fop=2.4576MHz

MC68HC908GR4/8(A) 256 9600bps @ fop=2.4576MHz

MC68HC908GT16 256 9600bps @ fop=2.4576MHz

MC68HC908JB8 306 9600bps @ fop=3MHz

MC68H(R/L)C908JL1(E)
MC68H(R/L)C908JK1(E)M
C68H(R/L)C908JK3(E)

256 9600bps @ fop=2.4576MHz

MC68HC908KX2/8 256 9600bps @ fop=2.4576MHz

MC68HC908QT1/2/4
MC68HC908QY1/2/4

256 9600bps @ fop=2.4576MHz

MC68HLC908QT1/2/4
MC68HLC908QY1/2/4

256 9600bps @ fop=2.4576MHz when
ECGST bit in OSCSTAT is set

208 4800bps @ fop=1MHz when ECGST bit
in OSCSTAT is cleared
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 3

The Routines
For the MC68HLC908QT/QYxx devices, the divider value depends on the status of the external clock
status (ECGST) bit in the oscillator status (OSCSTAT) register. When this bit is set, the divider value of
256 is selected. And when this bit is cleared, the divider value of 208 is selected.

To use GETBYTE, the COMMPORT pin must have an external pull-up.

Interrupts are not masked (the I bit is not set) and the COP is not serviced in this routine. User software
should ensure that interrupts are blocked during character reception.

3.2 RDVRRNG
RDVRRNG routine serves two purposes:

• Send-Out Option — Used to read a range of FLASH locations and to send the read data through
COMMPORT.

• Verify Option — Used to read a range of FLASH locations and to verify the read data against
DATA array.

3.2.1 Send-Out Option
If the accumulator is initialized with $00 when entering RDVRRNG, then the data read will be sent to the
monitor mode communication port (COMMPORT). Therefore, the communication baud rate is the same
as the baud rate described in Section 3.1, “GETBYTE.” When this option is selected, the COMMPORT
pin must be pulled up and configured as an input and the communication data bit must be initialized to 0.

3.2.2 Verify Option
If the accumulator is initialized with a non-zero value, the read data is verified against the DATA array for
each byte of FLASH, and the DATA array is replaced by the data read from FLASH. The carry (C) bit of
the condition code register (CCR) is set if the data in the specified range is verified successfully against
the data in the DATA array.

Both options calculate a checksum on data read in the range. This checksum, which is the LSB of the sum
of all bytes in the entire data collection, is stored in the accumulator upon return from the function.

To select a range, the beginning and end of the FLASH range to be read are specified as parameters to
FADDR and LADDR. These parameters are explained in more detail later in Section 5, “Variables.”

Interrupts are not masked. COP is serviced in RDVRRNG. However, the COP timeout might still occur in
the send-out option if COP is configured for a short timeout period.

3.3 PRGRNGE
PRGRNGE is used to program a range of FLASH locations with data loaded into the DATA array. As with
RDVRRNG, the start and end location of the range of addresses to be programmed is passed by parameters
called FADDR and LADDR, respectively. A check to see that all bytes in the specified range are erased is
not performed by this routine prior to programming. Nor does this routine do a verification after
programming, so there is no return confirmation that programming was successful. This routine can be
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor4

The Routines
used in conjunction with RDVRRNG to perform a complete program and verification cycle of the specified
range.

PRGRNGE allows any range to be passed to it. That is, the range does not have to be coincident with row
boundaries1. The range specified can be at the beginning of a row, the middle of a row, the end of a row,
or it can be a range overlapping row boundaries. The user must ensure only two things:

• The range specified is first erased

• The data for the specified range must be in the data array in RAM

Because this routine calls the delay routine DELNUS to generate proper delays, parameter CPUSPD must
be set correctly when calling PRGRNGE. Parameters required for this routine are explained in more detail
later in Section 5, “Variables.”

Interrupts are masked (the I bit is set) and COP is serviced in this routine.

NOTE
Regarding the JB8 and JL/JKxx(E), the FLASH block protect register
(FLBPR) dose not consist of FLASH. Since FLASH is always protected
after reset, unprotect the locations to be programmed in the user software
before calling this routine.

3.4 ERARNGE — Page Erase
The page erase operation using the ERARNGE routine supports the following devices:

If the user target device is not in the above list, refer to Section 2, “Page Erase Issue.”

ERARNGE can be called to erase a page of FLASH. This routine does not use the last address (LADDR)
variable. The first address (FADDR) placed in H:X in the two previous routines actually can be any address
within a page to be erased. To select the page erase operation, a control variable in RAM called CTRLBYT
is used. Writing $00 to CTRLBYT selects the page erase operation. To set proper delays, CPUSPD must
be set correctly. CPUSPD and CTRLBYT are explained in more detail later in Section 5, “Variables.”

Interrupts are masked. In the EY16 and GT16 ERARNGE, COP is not serviced. On the other hand in the
QT/QYxx ERARNGE, COP is serviced. Servicing COP does not cause the page erase issue for these
devices.

Regarding the MC68HLC908QT/QYxx devices, only 1 MHz operating frequency (fop) is supported so
that CPUSPD must be set with a value $04.

1. The flexible boundary condition does not apply for the MC68HLC908QT/QYxx devices. When FLASH is programmed using
this routine for these devices, all bytes that will be programmed must be in the same row. Furthermore, only a 1 MHz operating
frequency (fop) is supported so that CPUSPD must be set with a value $04. COP is not serviced.

MC68HC908EY16 MC68HC908GT16 MC68HC908QT1 MC68HC908QT2 MC68HC908QT4
MC68HC908QY1 MC68HC908QY2 MC68HC908QY4 MC68HLC908QT1 MC68HLC908QT2
MC68HLC908QT4 MC68HLC908QY1 MC68HLC908QY2 MC68HLC908QY4
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 5

The Routines
NOTE
Regarding the EY16 and GT16, tErase delay is set with 1ms in the page erase
operation using this routine. Therefore, this setup supports less than 1000
program/erase cycles. On the other hand the QT/QYxx ERARNGE uses
tErase delay 4ms in this routine. This setup supports more than 1000
program/erase cycles.

3.5 ERARNGE — Mass Erase
All devices listed in this note can use ERARNGE to execute the mass erase operation.

ERARNGE can be called to erase the entire FLASH. This routine does not use the last address (LADDR)
variable. The first address (FADDR) placed in H:X can be any address within the FLASH. To select a mass
erase operation, a control variable in RAM called CTRLBYT is used. Writing $40 to CTRLBYT selects
the mass erase operation. To set the proper delay, CPUSPD must be set correctly. CPUSPD and CTRLBYT
are explained in more detail later in Section 5, “Variables.”

Regarding the MC68HLC908QT/QYxx devices, only 1 MHz operating frequency (fop) is supported so
that CPUSPD must be set with a value $04.

interrupts are masked. In the EY16 and GT16 ERARNGE, COP is not serviced. In the QT/QYxx
ERARNGE, COP is serviced.

NOTE
Regarding the JB8 and JL/JKxx(E), the FLASH block protect register
(FLBPR) does not consist of FLASH. Since FLASH is always protected
after reset, unprotect the whole FLASH array in the user software before
calling this routine.

3.6 DELNUS
DELNUS is a delay routine used in support of PRGRNGE and ERARNGE. It can, however, be called
independently in the user software. DELNUS uses two parameters stored in the accumulator (A) and the
X register (X). Neither of these parameters is passed as an absolute value. The total delay (cycles) resulting
from this routine is:

 DELNUS = 3 × (A value) × (X value) + 8 cycles

where a value of A is 4 or greater and a value of X is 1 or greater. In PRGRNGE and ERARNGE,
the CPUSPD value (which is frequency parameter) is loaded into A.

Because this routine is called from a jump table, three additional cycles are included in the above equation.

Interrupts are not masked and COP is not serviced in DELNUS.
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor6

The Routines
Table 2. On-Chip FLASH Routines

GETBYTE RDVRRNG PRGRNGE
Page Erase
ERARNGE1

NOTES:
1 Before using this routine, confirm that this routine supports the user target device (Refer to Section 2, “Page Erase Issue”).

Mass Erase
ERARNGE

DELNUS

Routine
Description

Gets a byte
of data from
COMMPORT

Reads and/or
verifies a range
of locations

Programs a
range of
locations

Erases a page Erases the entire
array

Generates delay
3 × A × X + 8
(cycles)

Hardware
Requirement

Pullup on
COMMPORT pin

Pullup on
COMMPORT pin

N/A N/A N/A N/A

Entry
Conditions

COMMPORT
direction is
configured as
input

H:X contains first
address of range
LADDR contains
last address read
A contains option
selection, A=$00
for send-out
option; A≠$00
for verify option
For send-out
option,
COMMPORT
input and 0 data
bit (DDRx0=0,
PTx0=0)
For verify option,
DATA contains
data against
which to
compare read
data

H:X contains first
address of range
LADDR contains
last address to
be programmed
DATA contains
data to be
programmed
CPUSPD
contains 4 * fop

H:X contains
address within a
page to be
erased
CTRLBYT
contains $00
CPUSPD
contains 4 * fop

H:X contains
address within
an array to be
erased
CTRLBYT
contains $40
CPUSPD
contains 4 * fop

A contains
value between 4
and 255
X contains
value between 1
and 255

Exit Conditions

A is loaded
 with byte
received
C bit indicates
framing error
(error:C=0)

C bit is set if
good compare;
A contains
checksum
DATA contain
read FLASH
data (verify
option)

Preserves
contents of H:X
(address
passed)

I Bit — — — I bit is set I bit is set —

COP

Not Serviced Not Serviced Serviced except
HLC908QT/QY

EY16 and GT16:
Not serviced
QT/QYxx:
Serviced

EY16 and GT16:
Not serviced
QT/QYxx:
Serviced

Not Serviced

Subroutines
Called

— — DELNUS DELNUS DELNUS —

Variables Read
LADDR, DATA LADDR, DATA,

CPUSPD
CTRLBYT,
CPUSPD

CTRLBYT,
CPUSPD

Variables
Modified

DATA

Stack Used 4 bytes 6 bytes 7 bytes 5 bytes 5 bytes 3 bytes
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 7

Device-Specific Information Related to On-chip FLASH Routines
4 Device-Specific Information Related to On-chip
FLASH Routines

Table 3 shows the useful information for each device when the on-chip FLASH routines are used.

In Table 3, RAM indicates the RAM start address. ROWSIZ indicates the size of a FLASH row.
COMMPORT indicates a communication port for the monitor mode. FLBPR indicates FLASH block
protect register address. Put_Byte indicates the address of the routine to send a byte through the
communication port (COMMPORT). The communication baud rate is the same as the baud rate described
in Section 3.1, “GETBYTE.” However, this routine is not officially supported. Therefore, the address
might be changed in the future without any notice. We recommend that users develop their own Put_Byte
routines.

5 Variables
Table 4 shows the variables used in the routines. These variables are either passed in a register or as static
variables in a predefined location in RAM. FADDR is a 2-byte value that represents the first address in the
range on which to be operated. It is passed in the H:X registers when a call is made to one of the routines.
The first address of a range can be any valid FLASH address and does not have to be on a row or page
boundary.

LADDR is the last address in the range and is passed in the first byte of the data structure in RAM. This
data structure is very simple, consisting of the last address, the CPU speed variable, a control byte, and the

Table 3. Device-Specific Information

RAM ROWSIZ COMMPORT FLBPR Put_Byte

MC68HC908EY16 $40 32 PTA0 $FF7E —

MC68HC908GR4/8(A) $40 32 PTA0 $FF7E $FEAA

MC68HC908GT16 $40 32 PTA0 $FF7E —

MC68HC908JB8 $40 64 PTA0 $FE091

NOTES:
1 FLBPR does not consist of FLASH. Unprotect the FLASH before programming or erasing.

$FED6

MC68H(R/L)C908JK1(E)
MC68H(R/L)C908JK3E)
MC68H(R/L)C908JL3(E)

$80 32 PTB0 $FE09(1) $FED0

MC68HC908KX2/8 $40 32 PTA0 $FF7E $FEAA

MC68HC908QT1/2/4
MC68HC908QY1//2/4

$80 32 PTA0 $FFBE $FEA1

MC68HLC908QT1/2/4
MC68HLC908QY1/2/4

$80 32 PTA0 $FFBE $FE9F
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor8

The Data Structure
data array. It is discussed in detail in Section 6, “The Data Structure.” The last address, like the first
address, can be any valid FLASH address and is not restricted to being the last byte of a page or row.

The internal operating bus frequency (fop) of the device on which the FLASH operation is to be performed
is passed in a variable called CPUSPD. It is a 1-byte value which is passed in the data structure and should
be given as the rounded product of four times the actual internal operating (bus) frequency, such that if fop
is 2.4576 MHz, then the value passed should be decimal 10 ($0A). This variable is used to normalize the
length of delays with respect to the operating frequency, and passing a value four times the actual
frequency provides better resolution.

The remaining operating parameter used in these routines is the control byte (CTRLBYT). Value $40 is
set in this byte when calling ERARNGE to perform a mass erase. If ERARNGE is called with the intention
of performing a page erase, then value $00 must be set.

6 The Data Structure
The data structure is a collection of static variables in RAM used in the execution of the three main
routines: PRGRNGE, ERARNGE, and RDVRRNG. The data structure is in the same relative location in
RAM and the content is the same data and order for all of the devices containing these ROM routines. The
structure always starts in the ninth byte of RAM and the order of the variables is as shown in Table 5.

Table 4. Variables Used in Routines

Variable Name Description Size
Location/Passing

 Method

FADDR First address of range
of locations

2 bytes H:X

LADDR Last address of range
of locations

2 bytes Data structure

CPUSPD 4 × fop 1 byte Data structure

CTRLBYT Mass bit (bit 6) 1 byte Data structure

DATA Data array Variable Data structure

Table 5. Data Structure Location and Content

Location Variable Name Size Description

RAM + $08 CTRLBYT 1 byte Control byte setting erase size

RAM + $09 CPUSPD 1 byte CPU speed passed as 4 × fop

RAM + $0A
RAM + $0B

LADDR 2 bytes Last address for read a range
and program a range

RAM + $0C DATA Variable Variable number of bytes of
passed data for programming or
verifying a block
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 9

Addresses of Routines
Note that the data array DATA is variable in length. This is done to support a variable number of locations
on which to perform any of the programming, reading, or verifying actions. Most of the time, these actions
will be performed on a row of data at one time, although that need not be the case. Some of these devices
have a rather small RAM array, and the size of the data array must be limited to the size of RAM minus
the stack needed and the size of any RAM routine being executed. If the RAM routine is kept to a
reasonable size, then there should not be a problem defining the data array to be the size of a row for any
of the devices in this collection.

7 Addresses of Routines
The address to call each of the five routines varies among the devices. Table 6 gives the absolute address
that should be used when calling the routines.

8 MC68HC908KX8 Trim Routine
The MC68HC908KX8 Trim routine was supported in the original note. However, because another
application note, AN2312, describes a more accurate trim method, this section was removed in this
document.

9 Typical Routine Calls
This section provides examples of how the on-chip FLASH routines may be called.

Table 6. Addresses of Routines

GETBYTE RDVRRNG ERARNGE PRGRNGE DELNUS

MC68HC908EY16 $1000 $1003 $1006 $1009 $100C

MC68HC908GR4(A)
MC68C908GR8(A)

$1C99 $1CAD $1DA01

NOTES:
1 This routine is used only for the mass erase operation.

$1CEC $1D96

MC68HC908GT16 $1B50 $1B53 $1B56 $1B59 $1B5C

MC68HC908JB8 $FC00 $FC03 $FC06(1) $FC09 $FC0C

MC68HC908JL1(E)
MC68HC908JK3(E)

$FC00 $FC03 $FC06(1) $FC09 $FC0C

MC68HC908KX2
MC68HC908KX8

$1000 $1003 $1006(1) $1009 $100C

MC68HC908QT1/2/4
MC68HC908QY1/2/4

$2800 $2803 $2806 $2809 $280C

MC68HLC908QT1/2/4
MC68HLC908QY1/2/4

$2800 $2803 $2806 $2809 $280C
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor10

Typical Routine Calls
9.1 Example for GETBYTE
To call GETBYTE to receive a byte of data on the communication port, the only thing that needs to be
done is to ensure that the communication port is configured as an input and has a pullup.

GETBYTE: equ $2800 ;QY4 GETBYTE jump address

 bclr 0,DDRA0 ;Configure port A bit 0 as an input
 jsr GETBYTE ;Call GETBYTE routine
 bcc FrameError ;If C bit is clear, framing error
 ; occurred. Take a proper action

9.2 Examples for RDVRRNG
This example calls the RDVRRNG routine to use the send-out option. In this example, a range of FLASH
from $F000 to $F010 is read and read data is sent out through COMMPORT.

RDVRRNG: equ $2803 ;QY4 RDVRRNG jump address

 bclr 0,PTA ;Initialize data bit to zero PTA0=0
 ldhx #$F010 ;Load last address of range to
 sthx LADDR ; LADDR
 ldhx #$F000 ;Load beginning address of range
 ; to H:X
 clra ;A=0 to select send-out option
 jsr RDVRRNG ;Call RDVRRNG routine

 ; A contains a checksum value

The next example also uses the RDVRRNG. In this example, the verify option is selected. A range of
FLASH from $E800 to $E81F is read and the read data is verified against data in the DATA array in RAM.
When the verify is successful, the C bit in the CCR gets set.

RDVRRNG: equ $2803 ;QY4 RDVRRNG jump address

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value to store in array
Data_load:
 coma
 sta DATA,x ;Fill DATA array, 32 bytes data,
 ; to verify against programmed FLASH
 aix #1 ; data (In this example verifying data
 cphx #$20 ; is $55, $AA, $55, $AA....)
 bne Data_load
 ldhx #$E81F ;Load last address of range to
 sthx LADDR ; LADDR
 ldhx #$E800 ;Load beginning address of range
 ; to H:X
 lda #$55 ;Write non-zero value to A to select
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 11

Typical Routine Calls
 ; the verify option
 jsr RDVRRNG ;Call RDVRRNG routine
 bcc Error ;If bit C is cleared, verify failed
 ; Take a proper action
 ; A contains a checksum value

9.3 Example for Page Erase Operation
Before taking a look at this example, refer to Section 3.4, “ERARNGE — Page Erase,” to confirm that this
operation is supported for the user target device.

This example performs the page erase operation using ERARNGE. The variable CPUSPD is set to a value
which reflects an 8 MHz operating frequency, that is 4fop = 4 × 8 = 32 ($20). CTRLBYT must be loaded
with $00 to select the page erase operation. To erase a page from $EE00 to $EE3F, an address within this
page must be loaded into H:X. Note that the FLASH block protect register must not be protecting the page.

Regarding the HLC908QT/QYxx devices, note that only fop = 1 MHz is supported.

ERARNGE: equ $2806 ;QY4 ERARNGE jump address

 mov #$20,CPUSPD ;fop = 8MHz in this example
 mov #$00,CTRLBYT ;Select Page erase operation
 ldhx #$EE01 ;Load any address within the
 ; page to H:X
 jsr ERARNGE ;Call ERARNGE routine

9.4 Examples for Mass Erase Operation
This example performs the mass erase operation using the ERARNGE routine. CPUSPD is set to a value
which reflects a 6 MHz operating frequency, that is 4fop = 4 × 6 = 24 ($18). CTRLBYT must be loaded
with $40 to select the mass erase operation. Any valid FLASH address is loaded into H:X when doing a
mass erase. Note that the mass erase operation will not be successful if the FLASH block protect register
has any block protected.

Regarding the HLC908QT/QYxx devices, note that only fop = 1 MHz is supported.

ERARNGE: equ $2806 ;QY4 ERARNGE jump address

 mov #$18,CPUSPD ;fop = 6 MHz in this example
 mov #$40,CTRLBYT ;Select Mass erase operation
 ldhx #$F000 ;Load any address within the
 ; page to H:X
 jsr ERARNGE ;Call ERARNGE routine

Regarding the JB8 and JL/JKxx(E) devices, FLBPR does not consist of FLASH. Because FLASH is
always protected after reset, unprotect the entire FLASH array in user software before calling this routine.
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor12

Typical Routine Calls
9.5 Examples for PRGRNGE
The first example shows how to program one full row. The variable CPUSPD is set to a value which reflects
an 2.4576 MHz operating frequency, that is 4fop = 4 × 2.4576 = 10 ($0A). In this example, the target device
is the MC68HC908QY4.

Regarding the HLC908QT/QYxx devices, note that only fop = 1 MHz is supported.

PRGRNGE: equ $2809 ;QY4 PRGRNGE jump address

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value (inverted)
Data_load:
 coma ;Alternate between $55 and $AA
 sta DATA,x ;Fill DATA array, 32 bytes data,
 ; values to program into FLASH
 aix #1 ; (ie. 55, AA, 55, AA....)
 cphx #$20
 bne Data_load

 mov #$0A,CPUSPD ;fop = 2.4576 MHz in this example
 ldhx #$EE1F ;Load last address of the row
 sthx LADDR ; to LADDR
 ldhx #$EE00 ;Load beginning address of the
 ; row to H:X
 jsr PRGRNGE ;Call PRGRNGE routine

The second example shows how to program one full page. The variable CPUSPD is set to a value which
reflects an 3 MHz operating frequency, that is 4fop = 4 × 3 = 12 ($0C). However regarding the
MC68HLC908QT/QY, PRGRNGE can program a range of FLASH locations that is up to 32 bytes and in
the same row. Therefore, these devices can not use this example.

PRGRNGE: equ $2809 ;QY4 PRGRNGE jump address

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value (inverted)
Data_load:
 coma ;Alternate between $55 and $AA
 sta DATA,x ;Fill DATA array, 64 bytes data,
 ; values to program into FLASH
 aix #1 ; (ie. 55, AA, 55, AA....)
 cphx #$40
 bne Data_load

 mov #$0C,CPUSPD ;fop = 3 MHz in this example
 ldhx #$EE3F ;Load last address of the row
 sthx LADDR ; to LADDR
 ldhx #$EE00 ;Load beginning address of the
 ; row to H:X
 jsr PRGRNGE ;Call PRGRNGE routine
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 13

Page Erase Workaround
Regarding the JB8 and JL/JKxx(E) devices, the FLBPR does not consist of FLASH. Therefore, an
additional step is required to unlock the FLASH before calling the routine.

9.6 Example for DELNUS
This example shows how to use DELNUS. In this example a 100 µs delay is generated at fop = 4 MHz
using the DELNUS delay routine. To use this routine accurately, we need to calculate the value of X and
keep track of the delays due to the setup instructions.

First, we need to know how many bus cycles a delay of 100 µs will take. This is simply delay time
multiplied by bus frequency.

Bus cycles = 100 µs × 4 MHz = 400 cycles.

Next, we determine the value for the accumulator using the relationship:

A = CPUSPD = 4 × fop = 4 × 4 =16 ($10)

Then we use the relationship:

DELNUS = 3 × (A value) × (X value) + 8

And the fact that we will use 9 bus cycles to setup the routine (lda, ldx, jsr):

DEL_100 µs = 400 cycles = 9 + DELNUS= 9 + (3 × 16 × X +8)

Solving for X:

X = (400 – 17) ÷ (3 × 16) = 8
A = 16 and X = 8 are initialized before calling DELNUS.

DELNUS:equ $280C ;QY4 DELNUS jump address

DEL_100US:lda #$10 ;[2] A=16

ldx #$08 ;[2] X=8

jsr DELNUS ;[5] Call DELNUS routine

In this example, the total delay time is 9 setup cycles + (3 × 16 × 8 + 8) cycles = 401 cycles (100.25 µs).

10 Page Erase Workaround
This section provides a workaround for the page erase operation which described in Section 2, “Page Erase
Issue.”

To use this workaround, the code in Section 12, “Workaround Code,” is programmed in FLASH. It is
highly recommended that this routine is placed in an area of FLASH protected by the FLASH block protect
register (FLBPR). Before calling this routine, CTRLBYT, CPUSPD, and H:X registers required for the
page erase operation using the ERARNGE must be initialized properly. The code executes the following:

1. Copy a part of ERARNGE (page erase step 1 through step 6) located in ROM to RAM. The code
is copied to address RAM+$0A and a total 72 bytes are copied from there.
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor14

ROM Routines Source Code
2. Change a loop value to support tErase=4ms in the code copied to RAM. This change guarantees
minimum 10k program/erase FLASH endurance. However for the JB8, this change is not
required.

3. Replace instruction "STA $FFFF" with instruction "LDA $FFFF" in the code copied to RAM.
This change avoids writing to $FFFF due to the COP service.

4. Just after the copied routine, add a jump instruction which jumps to page erase step 7 in the
original ERARNGE located in ROM.

5. Call the routine copied in RAM.

The following example shows how to execute the workaround routine.

 mov #$10,CPUSPD ;CLEAR BIT 0 DATA DIRECTION

 mov #$00,CTRLBYT ;Select page operation

 ldhx #$F000

 jsr PageErase ;Call a workaround routine

Regarding the JB8 and JL/JKxx(E) devices, FLBPR does not consist of FLASH. Therefore, an additional
step is required to unlock the FLASH before calling the routine.

NOTE
COP is not supported in this workaround.

11 ROM Routines Source Code
The following five flowcharts provide graphic explanations of the ROM routines source code.
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 15

ROM Routines Source Code
Figure 1. GETBYTE

GETBYTE

ROTATE C BIT
INTO B7 OF Acc

C BIT SET

RETURN

LOAD $80
IN Acc

 PORT A0
 SET

YES

NO

YES

NO

CALL
GET_BIT

CALL
GET_BIT

GBIT

C BIT CLR
YES

CALL
GET_BIT

NO

STOPBIT

?

 ?

 ?

GETBYTE
PURPOSE:

GET A BYTE OF DATA ON PTA0. ATTEMPTS TO RECEIVE
A BYTE FROM THE EXTERNAL CONTROLLER VIA
PORTA0. ONCE CALLED, PROGRAM WILL REMAIN IN
GETBYTE UNTIL A BYTE IS RECEIVED. SIGNAL TO
START RECEIVING A BYTE IS A VALID (LOW) START BIT.

NOTES:
CYCLE PATH FOR EACH BIT RECEPTION MUST BE KEPT
THE SAME TO MAINTAIN A STEADY BAUD RATE.
IF RESULT IS GOOD, THEN Acc = BYTE RECEIVED. PORT
A0 CONFIGURED AS AN INPUT.
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor16

ROM Routines Source Code
Figure 2. RDVRRNG

RDVRRNG

STORE
DESTINATION

IN TEMP1

INIT TEMP2 =
FF AS COMPARE

STATUS

INIT TEMP0 =
FF AS INDEX
INTO DATA

GET FLASH
DATA FROM

FADDR

DEST. =
 SERIAL

 VERIFY
 FLASH DATA
= INPUT DATA

STORE FAILURE
($7E) INTO

TEMP2

WRITE FLASH
DATA INTO

DATA

ACCUMULATE
CHECKSUM

INC FADDR

INC TEMP3 FOR
DATA POINTER

FADDR =
LADDR+1?

NO

NO

CALL
PUT_BYTE

YES

YES

YES

GET PASS/FAIL
FROM TEMP2

GET CHECKSUM

NO

RETURN

RDVRRNG020

RDVRRNG030

RDVRRNG010

 ?

RDVRRNG
PURPOSE:

READ AND/OR VERIFY A RANGE OF FLASH MEMORY
NOTES:

H:X CONTAINS THE FIRST ADDRESS OF THE RANGE;
LADDR CONTAINS THE LAST ADDRESS TO BE READ;
Acc CONTAINS THE DESTINATION OF THE FIRST BYTE OF THE READ DATA (0 = PTA0);
DATA CONTAINS THE DATA TO COMPARE THE READ DATA AGAINST
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 17

ROM Routines Source Code
Figure 3. PRGRNGE

PRGRNGE

SET I BIT
STACK

BUFFPTR = 0

STACK BYTECNT
= BYTES

BETWEEN
STARTADDR
AND END OF

PAGE

DESTADDR =
LADDR+1?

SET PGM BIT
 IN FLCR

RETURN

NO

READ FLBPR

NEXTPAGE

PRGSTP1

PRGSTP2

PRGSTP3

PRGSTP4

PRGSTP5

PRGSTP6

PRGSTP7

PRGSTP8

PRGSTP9

PRGSTP10

PRGSTP11

PRGSTP12

DELAY FOR
TNVS

SET HVEN BIT
IN FLCR

DELAY FOR
TPGS

WRITE TO
FIRST ADDRESS

OF RANGE

FETCH DATA
AT BUFFPTR
INTO DATA

ARRAY

STORE DATA
AT CURRENT

DESTINATION
ADDRESS

DELAY FOR
TPROG

DECREMENT
BYTECNT AND
COP LOOPING

VAR.

INCREMENT
DESTINATION
ADDRESS AND

BUFFPTR

DELAY FOR
TNVH

ADD BYTECNT
TO

DESTINATION
ADDR

CLEAR HVEN BIT
IN FLCR

CLEAR PGM BIT
IN FLCR

BYTECNT = 0

SET BYTECNT
TO PAGESIZ

DEST ADDR
= LADDR?

RECONCILE
STACK POINTER

NO

YES

YES

NO

YES

PRGSTP13

BUMP COP

SET COP
LOOPING

VARIABLE TO 6

COP LOOPING
 VARIABLE

= 0?

NO

CLEAR PGM AND
HVEN IN FLCR

YES

 ?

PRGRNGE
PURPOSE:

 PROGRAMS A RANGE OF ADDRESSES IN FLASH MEMORY.
ALLOWS PROGRAMMING OF A RANGE OF ADDRESSES, WHICH
DOES NOT HAVE TO BE ON PAGE BOUNDARIES, EITHER
BEGINNING OR END. FOR EXAMPLE, PROGRAMMING $F001 TO
$F008 IS VALID. THIS IS TO PREVENT TRYING TO PROGRAM A
NON-FLASH ADDRESS AND GETTING BACK A BAD VERIFICATION.

NOTES:
H:X CONTAINS THE FIRST ADDRESS IN THE RANGE;
CTRLBYT SPECIFIES THE PROGRAMMING MODE;
LADDR CONTAINS THE LAST ADDRESS TO BE READ;
DATACONTAINS THE DATA TO BE PROGRAMMED;
CPUSPD CONTAINS THE CPU SPEED FOR DELAY ACCURACY
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor18

ROM Routines Source Code
Figure 4. DELNUS

DELNUS

SUBTRACT 1
FROM CPUSPD

(Acc)

Acc = 0

DECREMENT X
REGISTER

(DELAY VAR)

RETURN

DECREMENT Acc

YES

NO

NXTX

POP CPU SPEED
FROM STACK

X = 0
NO

PUSH Acc
ONTO STACK

SUBTRACT 2
FROM CPUSPD

(Acc)

YES

 ?

 ?

DELNUS
PURPOSE:

DELAY FOR N × 12 µs FOR fop ≥ 1 MHZ;
NOTES:

D = (DELAY TIME [µs] ÷ 12) IN X, C = (fop [MHz] × 4)
IN Acc CYCLES = 5 + (DELAY ÷ 12) × 3(4fop – 3) + 9 = 5 + DELAY × fop
X CONTAINS THE TIME ÷ 12 OF DELAY (IN µs);
Acc CONTAINS CPUSPD (CPU SPEED × 4);
CPU SPEED MUST BE ≥ 1 MHZ
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 19

ROM Routines Source Code
Figure 5. ERARNGE

ERARNGE

RETURN

STACK ADDRESS
PASSED IN H:X

SET HVEN BIT
IN FLCR

WRITE
CONTENT OF

Acc TO
ADDRESS

SPECIFIED IN
H:X

READ THE
BLOCK PROTECT

REGISTER

CALL
DELNUS
WITH

TERASEQ
IN H:X AND

CPUSPD
IN Acc

CLEAR ERASE
AND MASS BITS

IN FLCR

CALL
DELNUS

WITH
TNVHLQ

IN H:X AND
CPUSPD

IN Acc

CLEAR HVEN BIT
IN FLCR

RESTORE
ADDRESS

PASSED FROM
STACK TO H:X

MASSBIT
SET IN

CTRLBYT?

SET MASS BIT
IN FLCR

SET ERASE BIT
IN FLCR

CALL
DELNUS

WITH
TNVSQ IN
H:X AND

CPUSPD IN
Acc

MASSBIT
SET IN

CTRLBYT?

MASSBIT
SET IN

CTRLBYT?

CALL
DELNUS

WITH
TNVHQ IN
H:X AND
CPUSPD

IN Acc

YES

NO

YES

NO

YES

MASSBIT
SET IN

CTRLBYT?

WRITE TO THE
BLOCK PROTECT

REGISTER

YES

NO

BUMP COP

BUMP COP

LOOP
COUNTER

 = 0?

SET DELAY
LOOP CNTR

FOR 5

DECREMENT
LOOP COUNTER

SET DELAY
LOOP CNTR

FOR 20

NO

NO

YES

ERARNGE
PURPOSE:

ERASE A RANGE OF ADDRESSES IN FLASH MEMORY.
PRESERVES THE CONTENTS OF H:X (ADDRESS PASSED).

NOTES:
H:X CONTAINS AN ADDRESS IN THE RANGE TO BE ERASED;
RANGE SIZE SPECIFIED BY CONTROL BYTE
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor20

ROM Routines Source Code
**
* FILE NAME: MAINPR.ASM
* PURPOSE: To provide FLASH erase, program and verify routines
* to reside in ROM.
* TARGET DEVICE: MC68HC908GR8, MC68HC908KX8, MC68HC908JL3/JK3 and the MC68HC908JB8
*
* MEMORY USAGE - RAM: 4-36 BYTES, DEPENDING ON DATA PASSED
* ROM: 364 BYTES
*
* ASSEMBLER: MCUEZ
* VERSION: 1.0.5
*
* PROGRAM DESCRIPTION:
* This program contains a structure of routines to facilitate FLASH programming.
* These routines, which are individually callable, are intended to reside in ROM
* for the use of a user program, a test/burn-in program, or for development/programming
* tools. This set of routines is included, along with definition files, by the project
* file 9GR8ALLROM.ASM.
*
* AUTHOR: Grant Whitacre
* LOCATION: Austin - Oak Hill, Texas
*
* UPDATE HISTORY:
* REV AUTHOR DATE DESCRIPTION OF CHANGE
* === ============ ======== =====================
* 0.0 G. WHITACRE 10/05/98 Initial release
* 0.1 G. WHITACRE 02/17/99 MODIFIED FOR THE SST FLASH
* 0.2 G. WHITACRE 08/23/99 MODIFIED GETBYTE FOR 9600
* BAUD @ 2.4576 MHZ
*
* GENERAL CODING NOTES:
* Bit names are labeled with <port name><bit number> and are used in the commands that
* operate on individual bits, such as BSET and BCLR. A bit name followed by a dot
* indicates a label that will be used to form a bit mask.
**
**
* INCLUDED FILES
**
* INCLUDE "E:\MMDS\GR8\SSTROM\H908GR8.FRK"
**
* EQUATES
**
* PROGRAMMING TIMES IN us
* FOLLOWING DEFINED IN .FRK FILE
*TPROG EQU 40 ;FLASH Byte Program Time
*TERASE EQU 1000 ;FLASH Page Erase Time
*TMERASE EQU 4000 ;FLASH Mass Erase Time
*TNVS EQU 10 ;FLASH PGM/ERASE to HVEN Setup Time
*TPGS EQU 5 ;FLASH Program Hold Time
*TNVH EQU 5 ;FLASH High-Voltage Hold Time
*TNVHL EQU 100 ;FLASH High-Voltage Hold Time (Mass Erase)
*TRCV EQU 1 ;FLASH Return to Read Time
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 21

ROM Routines Source Code
* TIMES REPRESENT VALUES THAT ARE PASSED TO THE DELAY ROUTINE, WHICH
* DELAYS FOR X 12 µs FOR VALUES PASSED. FOR TERASE AND TMERASE, THE
* ROUTINE IS CALLED 5 AND 20 (12 µs*17*20=4080 µs) TIMES,
* RESPECTIVELY, WITH A BUMP OF THE COP BEFORE EACH CALL
ECALLS EQU 5
MECALLS EQU 20
TPROGQ EQU 3 ;FLASH Program Time
TERASEQ EQU 17 ;FLASH Block Erase Time
TMERASEQ EQU 17 ;FLASH Mass Erase Time
TNVSQ EQU 1 ;FLASH PGM/ERASE to HVEN Setup Time
TPGSQ EQU 1 ;FLASH Program Hold Time
TNVHQ EQU 1 ;FLASH High-Voltage Hold Time
TNVHLQ EQU 8 ;FLASH High-Voltage Hold Time (Mass Erase)
TRCVQ EQU 1 ;FLASH Return to Read Time

**
* ROUTINES
**
**
* NAME: GETBYTE
* PURPOSE: Get a byte of data on PTA0
* Entry Conditions: Port A0 configured as an input.
* Exit Conditions: Acc=byte received.
* If break received or result bad then send break and
* jump back to start.
* Port A0 configured as an input.
* SUBROUTINES CALLED: GET_BIT
* VARIABLES READ:
* VARIABLES MODIFIED:
* STACK USED: 4
* SIZE: 20 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
* Attempts to receive a byte from the external controller via PortA0.
* Once called, program will remain in GETBYTE until a byte is received
* Signal to start receiving a byte is a valid (low) start bit.
* NOTE: Cycle path for each bit reception must be kept the same to maintain
* a steady baud rate.
*BITTIMING=9+(17+10*23)=256CYCLES@2.4576MHZ=104µs=9600BAUD
**
GETBYTE:

BRSET0 ,PTA,GETBYTE ;Waiting for start edge.
JSR GET_BIT ;try to receive a full start bit.
BCS GETBYTE ;Success?
LDA #$80 ;initialize receiver.

GBIT: ;got start bit, now get byte.
JSR GET_BIT ;5
RORA ;1 bit into Acc
BCC GBIT ;3 get next bit

* ;baud calculation
STOPBIT:

JSR GET_BIT ;look for stop bit
RTS

**
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor22

ROM Routines Source Code
**
* NAME: RDVRRNG
* PURPOSE: Read and/or Verify a range of FLASH memory
* ENTRY CONDITIONS: H:X contains the first address of the range;
* LADDR contain the last address to be read;
* Acc contains a Boolean to see if read data
* goes to PTA0 (0=PTA0, else Data Array)
* DATA contains the data to compare the read data against
* EXIT CONDITIONS: C bit is set if good compare; Acc contains checksum;
* DATA contains read FLASH data
* SUBROUTINES CALLED:
* VARIABLES READ: LADDR, DATA ARRAY
* VARIABLES MODIFIED: DATA ARRAY
* STACK USED: 6
* SIZE: 63 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM; ALTHOUGH THIS ROUTINE SERVICES THE COP,
* THERE COULD STILL BE A COP TIME OUT UNDER CERTAIN CONDITIONS. THESE CONDITIONS
* ARE: 1) IN USER MODE, 2) COP ENABLED, 3) USING THE SHORT COP TIMEOUT, 4) NOT USING
* THE PLL SUCH THAT fOP = CGMXCLK/4
**
RDVRRNG:

PSHA ;(A)SAVE DESTINATION FLAG ON STACK AS 4,SP
CLRA ;LOCAL VARIABLE FOR CHECKSUM STARTS AT 00
PSHA ;(B)SAVE ON STACK AS 3,SP

;LOCAL VARIABL FOR INDEX INTO DATA STARTS AT 00
PSHA ;(C)SAVE ON STACK AS 2,SP
COMA ;LOCAL VARIABLE FOR VERIFY STATUS (FF = GOOD)
PSHA ;(D)SAVE ON STACK AS 1,SP

RDVRRNG010:
STA $FFFF ;BUMP THE COP
LDA ,X ;LOAD CONTENT OF FLASH ADDRESS INTO ACC.
TST 4,SP ;CHECK DESTINATION FLAG
BEQ RDVRRNG020 ;SKIP COMPARE IF DESTINATION IS PTA0
PSHX ;(E)STORE FADDR FOR LATER
PSHH ;(F)
LDX 4,SP ;GET INDEX INTO DATA FROM STACK
CLRH
CMP DATA,X ;COMPARE ADDR NOW IN X SO COMPARE CONTENT
BEQ RDVRRNG015 ;IF EQUAL THEN KEEP GOING...
STA DATA,X ;WRITE FLASH DATA THAT IS DIFFERENT TO RAM
LDX #$7E ;FAILED VERIFICATION SO CLEAR VERIFY STATUS
STX 3,SP ;MUST KEEP DATA IN ACC FOR CHECKSUM BELOW

RDVRRNG015:
PULH ;(F')GET FADDR BACK
PULX ;(E')
BRA RDVRRNG030

RDVRRNG020: ;NOT COMPARING, JUST DUMPING
JSR PUT_BYTE ;WRITE DATA TO PORT A0...

;PUT_BYTE SAVES A, X, AND H
RDVRRNG030:

ADD 3,SP ;ADD VALUE OF CURRENT BYTE TO CHECKSUM
STA 3,SP ;MAINTAIN AS RUNNING SUM
INC 2,SP ;INCREMENT INDEX INTO DATA
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 23

ROM Routines Source Code
CPHX LADDR ;COMPARE SOURCE ADDR TO THE LAST ADDRESS
BHS NOMO ;IF NOT YET DONE, LOOP FOR ANOTHER
AIX #1 ;INCREMENT SOURCE ADDRESS
BRA RDVRRNG010

NOMO PULA ;(D')GET PASS/FAIL INFO INTO
TAP ; CARRY BIT
PULA ;(C')TRASH INDEX INTO DATA
PULA ;(B')RETURN CHECKSUM IN ACC.
AIS #1 ;(A')TRASH DESTINATION FLAG
RTS

**
**
* NAME: PRGRNGE
* PURPOSE: Programs a range of addresses in FLASH memory
* ENTRY CONDITIONS: H:X contains THE FIRST address in the range;
* CTRLBYT contains the Control Byte that specifies
* the programming mode; LADDR contains the last address
* to be read; DATA contains the data to be programmed
* EXIT CONDITIONS: Next address in H:X
* SUBROUTINES CALLED: DELNUS
* VARIABLES READ: CONTROL BYTE, CPUSPD, LADDR, DATA ARRAY
* VARIABLES MODIFIED:
* SIZE: 170 BYTES
* STACK SIZE (INCLUDING CALL): 7 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
* Allows passing of a range of addresses to PRGRNGE, which does not have
* to be on row boundaries, either beginning or end. I.e., passing $F001 to
* $F008 is valid. This is to prevent trying to program a non-FLASH address.
**
PRGRNGE:

SEI ;MASK INTERRUPTS SO THAT DELAYS ARE NOT
; AFFECTED

CLRA ;STORES INDEX INTO DATA ARRAY
PSHA ;(A) INDEX INTO DATA IS ON STACK
PSHX ;(B)SAVE FADDR SO THAT IT IS NOT DESTROYED
PSHH ;(C)
TXA ;GET (FADDR MODULUS ROWSIZE)
LDX #ROWSIZ
CLRH ;HIGH BYTE CAN BE IGNORED BECAUSE ROWSIZE

; IS ALWAYS A POWER OF TWO AND 256 OR LESS.
; IT MUST BE IGNORED SO THAT RESULT OF DIVIDE
; WILL FIT IN ONE BYTE.

DIV ;DIVIDE LEAVES REMAINDER (MODULUS) IN H
PSHH ;(D)PUSH REMAINDER IN H ONTO STACK
TXA ;MOVE ROWSIZE TO ACC
SUB 1,SP ;SUBTRACT REMAINDER TO GET #BYTES TO PROGRAM
PULH ;(D')PULL REMAINDER FROM STACK AND THROW AWAY
PULH ;(C')GET FADDR BACK FROM STACK
PULX ;(B')
PSHA ;(B)STORE #BYTES TO END OF ROW ON STACK
PSHA ;(C) RESERVE A STACK LOC. FOR COP LOOPING VAR.

;3,SP = COP LOOPING VARIABLE
;4,SP = #BYTES TO END OF ROW
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor24

ROM Routines Source Code
;5,SP = INDEX INTO DATA ARRAY
PRGSTP1:

STA $FFFF ;BUMP COP
LDA #$06 ;SET LOOPING VARIABLE TO ALLOW FOR COP BUMP;
STA 1,SP ;NEED TO TURN OFF PGM AND HVEN OCCASIONALLY TO

; BUMP COP
 LDA #PGM. ;SET PGM BIT
 ORA FLCR
 AND #$F9 ;($FF-MERASE.-ERASE.)

;MAKE SURE ERASE BITS ARE OFF
STA FLCR ;WRITE THIS TO THE FLASH CONTROL REG.

PRGSTP2 LDA FLBPR ;READ FROM BLOCK PROT. REG.

PRGSTP3:
IFEQ TESTMOD
LDA ,X
ENDIF
IFNE TESTMOD
STA ,X ;WRITE TO ANY FLASH ADDRESS WITHIN THE ROW
ENDIF

;TO BE PROGRAMMED WITH ANY DATA
PSHH ;(D)
PSHX ;(E)

PRGSTP4 LDX #TNVSQ ;DELAY FOR TNVS
LDA CPUSPD
BSR DELNUS

PRGSTP5 LDHX #FLCR ;SET THE HVEN BIT IN FLCR
LDA ,X
ORA #HVEN.
STA ,X

PRGSTP6 LDX #TPGSQ ;DELAY FOR TIME TPGS
LDA CPUSPD
BSR DELNUS

PULX ;(E')
PULH ;(D'

**
* NEED TO PROGRAM 6 BYTES, TURN OFF PGM AND/OR HVEN, BUMP COP, PROGRAM ANOTHER
* 6 BYTES, THEN REPEAT PROCESS UNTIL FINISHED WITH RANGE
**
PRGSTP7PSHH ;(D)

PSHX ;(E)
;1,SP = ADDR(LSB)
;2,SP = ADDR(MSB)
;3,SP = COP LOOPING VARIABLE
;4,SP = #BYTES TO END OF ROW
;5,SP = INDEX INTO DATA ARRAY

CLRH ;GET 0:BUFFPTR INTO H:X
LDX 5,SP ;GET THE INDEX INTO DATA ARRAY
LDA DATA,X ;LOAD BYTE TO PROG FROM DATA+BUFFPTR
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 25

ROM Routines Source Code
PULX ;(E') POP LO BYTE OF ADDR BACK INTO X
PULH ;(D')

 IFEQ TESTMOD
LDA ,X

 ENDIF
 IFNE TESTMOD

STA ,X ;STORE DATA TO ADDR SPEC.BY H-X
 ENDIF

PSHH ;(D)
PSHX ;(E)

PRGSTP8 LDX #TPROGQ ;DELAY FOR TPROG
LDA CPUSPD
BSR DELNUS
PULX ;(E')
PULH ;(D')

PRGSTP9:
AIX #$01 ;INCREMENT THE DESTINATION ADDRESS
INC 3,SP ;INCREMENT THE POINTER INTO DATA
DEC 2,SP ;DECREMENT THE BYTE COUNTER
DEC 1,SP ;DECREMENT COP LOOPING VARIABLE
CPHX LADDR ;CHECK FOR END OF RANGE
BHI PRGSTP10 ;EXIT LOOP IF PAST END OF RANGE
TST 2,SP ;CHECK FOR END OF ROW
BEQ PRGSTP10 ;EXIT LOOP IF DONE WITH ROW
TST 1,SP
BNE PRGSTP7 ;COP VAR = 0?
BSR CLR_P_H ;
TAX
BRA PRGSTP1 ;

PRGSTP10:
BSR CLR_P_H ;CALL RTN TO CLEAR PGM AND HVEN

NEXTROW: ;DONE WITH ROW, GET READY TO EXIT
;1,SP = COP LOOPING VARIABLE
;2,SP = #BYTES TO END OF ROW
;3,SP = INDEX INTO DATA ARRAY

ADD 2,SP ;ADD BYTES PROGRAMMED TO LOW BYTE
TAX
PSHH ;(D) CORRECT HIGH BYTE FOR CARRY, IF ANY
PULA ;(D')
ADC #0
PSHA ;(D)
PULH ;(D')

LDA #ROWSIZ ;
STA 2,SP ;#BYTES TO END OF ROW IS ROWSIZE
AIX #-1 ;DECREMENT CURRENT ADDRESS BY 1 TO COMP.

; TO LAST ADDR
CPHX LADDR ;COMPARE FADDR TO LADDR
AIX #1
BLO PRGSTP1 ;PROGRAM ANOTHER ROW IF LESS OR EQUAL
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor26

ROM Routines Source Code
PRGSTP13: ;NEXT 3 INST. TAKE > 1 µs.
PULA ;(C')REMOVE COP LOOP VARIABLE
PULA ;(B')REMOVE #BYTES TO END OF ROW
PULA ;(A')REMOVE INDEX INTO DATA ADDRESS

DONEPRG RTS

* FOLLOWING LOCAL SUB-ROUTINE CLEARS PGM, DELAYS, THEN CLEARS HVEN.
CLR_P_H PSHH ;(D)

PSHX ;(E)
LDHX #FLCR ;CLEAR PGM BIT
LDA ,X
EOR #PGM.
STA ,X

PRGSTP11:
LDX #TNVHQ ;DELAY FOR TNVH
LDA CPUSPD
BSR DELNUS

PRGSTP12:
LDHX #FLCR ;CLEAR THE HVEN BIT
LDA ,X
EOR #HVEN.
STA ,X
PULA ;(E')
PULH ;(D')
RTS

**
**
* NAME: DELNUS
* PURPOSE: Delay N ms
* ENTRY CONDITIONS: X CONTAINS THE TIME/12 OF DELAY (IN ms).
* A CONTAINS THE CPU SPEED X 4 (2 BITS OF PRECISION)
* EXIT CONDITIONS:
* SUBROUTINES CALLED:
* VARIABLES READ:
* VARIABLES MODIFIED:
* SIZE: 10 BYTES
* STACK USED (INCLUDING CALL): 3 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
* Delay Routine for fOP >= 1 MHz, Delay >= 12 ms
* (delay time[µs]/12) in H:X, (fOP[MHz]*4) in Acc
* If fOP > 1 then
* CYCLES = 5+Delay/12[3(4fOP-3)+9] = 5+DELAY*fOP
* If fOP = 1 then CYCLES = 5+12(DELAY/12) = 5+DELAY
* where delay in µs and fOP in MHz
**
DELNUS: DECA ;1 CYCLE
NXTX PSHA ;2

DECA ;1
DECA ;1
DBNZA * ;3
PULA ;2
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 27

ROM Routines Source Code
DBNZX NXTX ;3
RTS ;4

**
**
* NAME: ERARNGE
* PURPOSE: Erase a range of addresses in FLASH memory
* ENTRY CONDITIONS: H-X contains an address in the range to be erased; range size
* specified by Control Byte
* If b6 = 1 then mass erase, otherwise erase
* 1 page (64 bytes for the GR8).
* EXIT CONDITIONS: Preserves the contents of H:X (address passed)
* SUBROUTINES CALLED: DELNUS
* VARIABLES READ: CTRLBYT, CPUSPD
* VARIABLES MODIFIED:
* STACK USED: 5
* SIZE: 99 BYTES
* DESCRIPTION: Does not check for a blank range before (to see if erase
* is necessary) or after (to see if successful erase)
**
ERARNGE:

SEI
PSHH ;KEEP ADDRESS PASSED
PSHX

CLRA ;SET ERASE BIT, AND
ORA #ERASE.
BRCLR MASSBIT,CTRLBYT,AMBS
ORA #MASS. ;MASS BIT IF NECESSARY

AMBS: STA FLCR
ERABLK LDA FLBPR ;READ THE BLOCK PROTECT REGISTER
 IFEQ TESTMOD ;WRITE TO ANY ADDRESS IN ERASE RANGE

LDA FLBPR
LDA ,X

 ENDIF
 IFNE TESTMOD

BRCLR MASSBIT,CTRLBYT,NOBLWR
STA FLBPR

NOBLWR STA ,X
 ENDIF

LDX #TNVSQ ;DELAY FOR TNVS
LDA CPUSPD
BSR DELNUS

LDHX #FLCR ;SET THE HVEN BIT IN FLCR
LDA ,X
ORA #HVEN.
STA ,X

BRCLR MASSBIT,CTRLBYT,RWERASE
LDA #MECALLS ;DELAY LOOPS FOR TMERASE
BRA ERADEL ; OR

RWERASE LDA #ECALLS ;DELAY LOOPS FOR TERASE
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor28

Workaround Code
ERADEL PSHA ;STACK INCREMENT COUNTER
BUMPCOP STA $FFFF ;BUMP COP

LDX #TERASEQ ;SAME FOR TERASEQ AND TMERASEQ
LDA CPUSPD
BSR DELNUS
DEC 1,SP
BNE BUMPCOP
PULA ;PULL INCREMENT CNTR OFF STACK
STA $FFFF ;BUMP COP WHEN DONE DELAYING
LDHX #FLCR ;CLEAR THE ERASE BIT

LDA ,X
EOR #ERASE.
AND #($FF-MASS.) ;CLEAR MASS BIT
STA ,X

BRCLR MASSBIT,CTRLBYT,PGSTUP
LDHX #TNVHLQ ;DELAY FOR TNVHL
BRA STUPDEL ; OR

PGSTUP LDHX #TNVHQ ;DELAY FOR TNVH
STUPDEL LDA CPUSPD
 BSR DELNUS

LDHX #FLCR ;CLEAR THE HVEN BIT
LDA ,X
EOR #HVEN.
STA ,X

XERARNG PULX ;RESTORE ADDRESS PASSED
PULH ;THESE 3 INST. DELAY FOR
RTS ;AT LEAST 1 µs (TRCV)

**

12 Workaround Code
;***
;* NAME: PageErase
;* Assembler: P&E Microcomputer Systems Casm08
;* PURPOSE:
;* This routine is used for erasing a page size of FLASH.
;* In this routine, a part of ERARNGE routine located in ROM is
;* copied into RAM and then execute the routine out of RAM.
;* To work a page erase operation properly, set proper values at
;* Setup 1 - 4.
;* ENTRY CONDITIONS:
;* H:X contains an FLASH address whithin a page to be erased
;* Bit 6 in CTRLBYT is cleared
;* CPUSPD contains an integer of 4 x bus frequency [MHz]
;* COP must be disabled
;* EXIT CONDITIONS:
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 29

Workaround Code
;* I bit is set
;* The contents of H:X (address passed) is preserved
;* SUBROUTINES CALLED: DELNUS
;* VARIABLES READ: CTRLBYT, CPUSPD
;* STACK USED: 10 bytes (including the call to this routine)
;* SIZE OF THIS CODE:
;* 908GR4/8, 908KX2/8, 908JK1(E), 908JL/JK3(E) - 33 bytes
;* 908JB8 - 29 bytes
;* Note:
;* a. Locations from RamStart+$0A to RamStart+$54 is used in this
;* routine, where RamStart is a start address of RAM.
;* b. Since the COP is not supported, it must be disabled.
;***
;***
;* Setup 1: Device Selection
;* Distinguish between HC908JB8 and other parts
;***
$SETNOT JB8 ;This example does not select JB8
;* $SET JB8 ;Use this setup if a part is JB8

;***
;* Setup 2: FLASH start address (locFLASH)
;* Specify a start address where this routine is placed in FLASH.
;* We highly recommend that this routine is protected by FLBPR.
;***
locFLASH: equ $FDC0

;***
;* Setup 3: RAM start address (RamStart)
;* For 908GR4/8, 908KX2/8, 908JB8
;* RamStart: equ $0040
;* For 908JK1(E), 908JL/JK3(E)
;* RamStart equ $0080
;***
RamStart: equ $0040 ;This example for the HC908GR8

;***
;* Setup 4: DELNUS start address (DELNUS)
;* For 908GR4/8
;* DELNUS: equ $1D96
;* For 908KX2/8
;* DELNUS: equ $12C3
;* For 908JK1(E), 908JL/JK3(E), 908JB8
;* DELNUS: equ $FD21
;***
DELNUS: equ $1D96 ;This example for the HC908GR8

;***
DATSTRC: equ RamStart+8 ;data array starts from RamStart
CodeSize: equ $48 ;72 byte code to be copied to RAM

;* Variable locations used in this routine.
 org DATSTRC
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor30

Workaround Code
CTRLBYT: rmb 1 ;control byte for erase size
CPUSPD: rmb 1 ;CPU speed
codeRAM: rmb CodeSize ;a part of the ERARNGE is copied to
 ; this location.
CodeJmp: rmb 3 ;jump to ROM routine

ramERARNGE: equ codeRAM+$A ;ERARNGE start address in RAM
locECALLS: equ codeRAM+$37 ;location where ECALLS is initialized
locCOP: equ codeRAM+$39 ;location where COP is serviced
jmpAddr: equ DELNUS+$4B ;jump location to a part of the ERARNGE
ECALLS: equ $14 ;support 4ms Terase
exLDA: equ $C6 ;extended LDA instruction
exJMP: equ $CC ;extended JMP instruction

 org locFLASH
PageErase:
 pshx ;save H and X values to stack
 pshh
 ldhx #CodeSize ;initialize pointer
Code2RAM:
 lda DELNUS-1,x ;copy DELNUS and a part of ERARNGE
 sta codeRAM-1,x ; into RAM
 dbnzx Code2RAM ;decrement pointer and loop back
 ; until done
$IFNOT JB8 ;if JB8 is selected in Setup 1, two
 ; instructions below are not included
 lda #ECALLS ;change 1ms to 4ms for Terase
 sta locECALLS
$ENDIF
 lda #exLDA ;change "sta $FFFF" to "lda $FFFF"
 sta locCOP ; in ERARNGE
 mov #exJMP,CodeJmp
 ;add "jmp ROM_step7" just after copied
 ldhx #jmpAddr ; code
 sthx CodeJmp+1
 pulh ;set a location within a page to be
 pulx ; erased at H:X
 jsr ramERARNGE ;execute a page erase operation from RAM
 rts
Using MC68HC908 On-Chip FLASH Programming Routines, Rev. 3

Freescale Semiconductor 31

AN1831
Rev. 3, 11/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

	1 Introduction
	2 Page Erase Issue
	3 The Routines
	3.1 GETBYTE
	3.2 RDVRRNG
	3.2.1 Send-Out Option
	3.2.2 Verify Option

	3.3 PRGRNGE
	3.4 ERARNGE - Page Erase
	3.5 ERARNGE - Mass Erase
	3.6 DELNUS

	4 Device-Specific Information Related to On-chip FLASH Routines
	5 Variables
	6 The Data Structure
	7 Addresses of Routines
	8 MC68HC908KX8 Trim Routine
	9 Typical Routine Calls
	9.1 Example for GETBYTE
	9.2 Examples for RDVRRNG
	9.3 Example for Page Erase Operation
	9.4 Examples for Mass Erase Operation
	9.5 Examples for PRGRNGE
	9.6 Example for DELNUS

	10 Page Erase Workaround
	11 ROM Routines Source Code
	12 Workaround Code
	Using MC68HC908 On-Chip FLASH Programming Routines

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

