

Order this document by
 AN1855/D
Revision 0

Application Note

‘Download’ and ‘Checksum’ Programs for Use with
the DSP5636x Family

AN1855

2000 Motorola, Inc.All Rights Reserved.

This application note is designed to help customers use the DSP5636x Family of digital signal processors in
their digital audio applications. In particular, customers who use them to decode home theatre digital surround
sound signals, such as Dolby Digital (AC3) and Digital Theatre Sound (DTS).

The example in this document uses a DSP56362 and an external EPROM to store the coefficients that are
required for DTS decoding. In many applications, the EPROM is not fully utilized because the coefficients do
not use all of the EPROM space. The remaining space can be used to store excess program information, such
as Post Programming Phases (PPPs), which could not fit into the host controller’s memory. The program can
be adapted for other applications with minor additions, such as the start address of the EPROM.

When data is being transferred from one memory array to another, it is important to verify that the data was
stored correctly in the EPROM and that is was transferred correctly to the other memory array. The user can
perform these tasks with the checksum program, which can be used in the same applications as the bootloader.

The DSP5636x Family has an embedded Software Architecture (SA) that is designed specifically for digital
audio applications. This means that the listed programs must be intialized and used differently than other
DSP56300 devices, although the code could be adapted for these applications.

DOWNLOAD OVERVIEW

The Download program downloads a program from external memory (in this case, a DTS EPROM) to the DSP’s
internal memory (either P, X or Y RAM). How the data is stored in the external EPROM is crucial to successful
operation because it determines where the data is stored in the internal RAM. In this program, the only ‘variable’
information that has to be given to the DSP is the start address of the EPROM data. All other information is
stored within the data block itself.

The DTS EPROM in audio applications is usually 8-bits (byte) wide, as opposed to the DSP56362’s 24-bit wide
architecture. The program handles this by converting three successive bytes in the EPROM to one complete
24-bit word in the DSP.

The first four words (12 bytes) in the particular EPROM block of data determines the start address where the
data is to be stored, the length of the program/data and the type of DSP RAM that the data will be copied to (i.e.
P, X or Y). The user can do this by comparing the first three 24 bit words (consisting of three successive bytes)
with the value $FFFFFF. If it is not equal to this value, then it represents the start address of the data. The
position of this non-$FFFFFF word determines whether it is to be stored in P, X or Y RAM. The fourth word (or
10th, 11th and 12th bytes) determine the length of code that is to follow. This operation is illustrated in the
following examples.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
ForwardLine

rxzb30
copywithline

2

EXAMPLE 1

START ADDRESS = $000400
IN P MEMORY AS FIRST WORD OF DATA

SECOND WORD (TO BE STORED
AT P $000401) IS $665544

FIRST WORD (TO BE STORED
AT P $000400) IS $332211

NOT TO BE STORED IN X MEMORY AS
THIS WORD IS $FFFFFF

NOT TO BE STORED IN Y MEMORY AS
THIS WORD IS $FFFFFF

LENGTH OF DATA BLOCK
IS $00003B WORDS

EXTERNAL EPROM VALUES IN HEX

ADDRESS DATA

300 00

301 04

302 00

303 FF

304 FF

305 FF

306 FF

307 FF

308 FF

309 3B

30A 00

30B 00

30C 11

30D 22

30E 33

30F 44

310 55

311 66

312 77

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

EXAMPLE 2

NOT TO BE STORED IN P MEMORY AS
THIS WORD IS $FFFFFF

SECOND WORD (TO BE STORED
AT P $000A01) IS $665544

FIRST WORD (TO BE STORED
AT P $000A00) IS $332211

START ADDRESS = $000A00
IN X MEMORY AS FIRST WORD OF DATA

NOT TO BE STORED IN Y MEMORY AS
THIS WORD IS $FFFFFF

LENGTH OF DATA BLOCK
IS $00003B WORDS

EXTERNAL EPROM VALUES IN HEX

ADDRESS DATA

300 FF

301 FF

302 FF

303 00

304 0A

305 00

306 FF

307 FF

308 FF

309 3B

30A 00

30B 00

30C 11

30D 22

30E 33

30F 44

310 55

311 66

312 77

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

EXAMPLE 3

Note:

The program can be run as many times as necessary to load all the ‘blocks’ stored in the external
EPROM.

NOT TO BE STORED IN P MEMORY AS
THIS WORD IS $FFFFFF

SECOND WORD (TO BE STORED
AT P $000B01) IS $665544

FIRST WORD (TO BE STORED
AT P $000B00) IS $332211

NOT TO BE STORED IN X MEMORY AS
THIS WORD IS $FFFFFF

START ADDRESS = $000B00
IN Y MEMORY AS FIRST WORD OF DATA

LENGTH OF DATA BLOCK
IS $00003B WORDS (OR $3B x 3 BYTES)

EXTERNAL EPROM VALUES IN HEX

ADDRESS DATA

300 FF

301 FF

302 FF

303 FF

304 FF

305 FF

306 00

307 0B

308 00

309 3B

30A 00

30B 00

30C 11

30D 22

30E 33

30F 44

310 55

311 66

312 77

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

CHECKSUM OVERVIEW

The Checksum program takes a value (in Y memory) that defines the start of data and a value (in Y memory)
that defines the end of data, adds up all of the data between and including these values, and stores the result
in Y memory. This program is good for checking the integrity of the external EPROM used for DTS coefficients
(and any further data stored in it) and the connections between the EPROM and DSP. It can also be used to
check data after it has been downloaded to the DSP.

Note:

An ‘AND’ operation is required when checking an 8-bit wide EPROM to mask off the 16 MSBs of the
24-bit word that the DSP expects.

SOFTWARE ARCHITECTURE (SA) CONSIDERATIONS

Since this program is designed to work within the DSP56362 device (although it may be adapted for other
Freescale DSPs), the user must account for the onboard ROM and SA. Specifically, the Download and
Checksum programs must be run before the High Level eXecutive (HLX) is envoked. The user can do this by
loading the ‘cld’ file in the intialization routine and running it before the HLX is run. This routine would be carried
out by the host controller, which could be a microcontroller (e.g. Freescale HC08 or HC11) or a PC. This is
shown in the following DSP56362 Evaluation Board initialization routine. Communication between the board
and the host PC is via the P&E Microcomputer Systems PPI cable.

rem EVB Version
rem InitAV4 routine

rem set PLL
CMD $C50001 $FFFFFD $0F0009

rem set IPRP
CMD $C50001 $FFFFFE $000187

rem set AAR0, AAR1, AAR2
CMD $C50003 $FFFFF7 $040639 $080539 $0C063D

rem set BCR
CMD $C50001 $FFFFFB $0005E1

rem test Mu
CMD $C00048 $FF27B6
CMD $C00049 $400000

rem load 'Checksum' cld
LOADC:\Checksum.cld

rem run Checksum routine
rem Pstart = $200
CMD $C00048 $000200
CMD $C00049 $400000

Note:

The host controller could now use the result stored in Y memory to check EPROM validity.

rem load 'Download' cld
LOADC C:\Download.cld

rem run Download routine
rem Pstart = $200

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

CMD $C00048 $000200
CMD $C00049 $400000

Note:

The host controller could perform another Checksum to verify that the data has been downloaded
successfully or it could perform another Download for another block of data.

rem Init Mu
CMD $C00048 $ff2459
CMD $C00049 $400000

rem Run Mu
CMD $C00048 $FF2475
CMD $C00049 $800000

CODE LISTINGS

Download

;OPERATION
;Will download a program from external memory to internal
;memory. The first byte represents the start address of the
;data.
;
;The actual 'bodies of code' will be loaded into either P, X, or Y
;depending on which of the three first words does NOT have $FFFFFF.
;The value it does have will be the starting address in the relevant
;memory space. The length of code is located in the 4th word of the ;block

;***
TITLE 'Download';Name of Program

;***
SECTION y_memory; Y memory start

org y: ;Defined in Control File

GLOBALBlockStartAddress; Declare variables globally

BlockStartAddress dc $0A0000; Declare where the block starts
;(external EPROM)

ENDSEC ;End of Y memory
;***

SECTION p_memory; P memory start
org p:

Start: ;Start of program

;Stage 1 - determine which type of memory it is

move #$FFFFFF,a ;If number is $FFFFFF,
;there is none of that type
;Any other number signifies the
;start address of that type of data

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

move y:BlockStartAddress,r0 ;Set up pointer to block
jsr MakeWord ;Get value from EPROM
cmp x0,a
jne Pdata ;Pdata found

;--
jsr MakeWord ;Get value from EPROM
cmp x0,a
jne Xdata ;Xdata found

;--
jsr MakeWord ;Get value from EPROM
cmp x0,a
jne Ydata ;Ydata found

;--
jmp End ;Error as all had #$FFFFFF

;**

Pdata: ;Pdata with start address already in x0

move x0,r1 ;use r1 as pointer to Pram

move #6,n0
move y:(r0)+n0,x0 ;Need to increment r0 6 times to get to

;body length

jsr MakeWord ;Get value from EPROM

do b1,EndofP ;Repeat for whole 'body length'

jsr MakeWord ;Get value from EPROM

move b1,p:(r1)+ ;Store 24-bit value into P memory
nop ;Need this or do loop doesn't work

EndofP:
jmp End ;Finished downloading P

;**

Xdata: ;Xdata with start address already in x0

move x0,r1 ;use r1 as pointer to Xram

move #3,n0
move y:(r0)+n0,x0 ;Need to increment r0 3 times to get to

;body length

jsr MakeWord ;Get value from EPROM

do b1,EndofX ;Repeat for whole 'body length'

jsr MakeWord ;Get value from EPROM

move b1,x:(r1)+ ;Store 24-bit value into X memory
nop ;Need this or do loop doesn't work

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

EndofX:
jmp End ;Finished downloading X

;**

Ydata: ;Ydata with start address already in x0

move x0,r1 ;use r1 as pointer to Yram

jsr MakeWord ;Get value from EPROM

do b1,EndofY

jsr MakeWord ;Get value from EPROM

move b1,y:(r1)+ ;Store 24-bit value into Y memory
nop ;Need this or do loop doesn't work

EndofY:
jmp End ;Finished downloading Y

;**
;***

; Subroutine which takes 3 8-bit values
; from y:(r0),y(r0+1),y(r0+2) and makes
; up a 24-bit value in b1
; Format is LSB-MSB-USB

MakeWord:

do #3,EndofWord ;3bytes in every word
move y:(r0)+,b2 ;Move byte into b2 first
asr #8,b,b ;Then shift right 8 and repeat

EndofWord: ;Result stored in b1

move b1,x0 ;Store in x0 for comparison with $FFFFFF

rts ;Return from subroutine
;**
;************************************

End:
clr a ;Signal OK status
rts ;Exit

;************************************
ENDSEC ;End of P memory

;--

Checksum

;OPERATION
;Will perform a checksum on an external memory area (EPROM)
;to check data integrity, result is stored in y:$302
;Result should be $802FD8 for an external DTS EPROM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

;***
TITLE 'Checksum'; Name of Program

;***

SECTION y_memory

org y: ;Declare start address in control file

GLOBALStartOfCode,EndOfCode,Checksum

StartOfCode dc $080000 ;Declare where the start of code/data
;to be checked is

EndOfCode dc $090000 ;Declare where the last word of code/data
;is (+1)

Checksum dc 0 ;This is where the checksum will be stored

ENDSEC
;***

SECTION p_memory

org p: ;start of PPP code, declare in control file

Start:
clr a
clr b ;Ensure accumulators are clear first
move y:StartOfCode,r0 ;use r0 as an indexed pointer

Next:
move y:(r0)+,b

*1 move #>$0000FF,y0 ;Mask off the 16MSBs (only 8 bit value)
*1 and y0,b

move b1,x0 ;get the value into x0
add x0,a ;Add value to running total in a
move r0,y0 ;Check where we are in the EPROM
move y:EndOfCode,b
cmp y0,b ;Check if at end of code
jeq Getsum ;Reached the end of code
jmp Next ;Get Next opcode in memory

Getsum:
move a1,y:Checksum ;Store result in y:Checksum

;****************
clr a ;Signal OK status
rts ;Exit

;****************

ENDSEC

NOTE - ‘*1’ code only required if checking an external EPROM which is 8 bits wide

;___

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

Control File

; This is required as the code was written to be re-locatable
; The sections below may have to be changed to suit different ROMs

;****************** Freescale DSP56362 ******************
;*** memory configuration file ***
;***

START Start ;define entry point

; allocate sections in memory

SECTION y_memory y:$300 ;allocate Y memory
SECTION p_memory p:$200 ;allocate program space

;___

Assemble and Link Commands

Assemble.cmd

(creates a ‘.cln’ file from the ‘.asm’)

asm56300 -b -l Download.asm > AssembleErrors.txt

Link.cmd

(creates ‘.map’ and ‘.cld’ files from the ‘.ctl’ and ‘.cln’ files)

dsplnk -mDownload.map -rControlFile.ctl -bDownload.cld Download.cln >
LinkErrors.txt

NB – Freescale development tools are available from
http://www1.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

