

Order this document
by AN2093/D

© Motorola, Inc., 2000 AN2093

AN2093

Creating Efficient C Code for the MC68HC08

by Stuart Robb
East Kilbride, Scotland

1 Introduction

The C programming language is a powerful, flexible and potentially
portable high-level programming language. These and other features,
such as support for low-level operations, make this a useful language for
programming embedded applications. Many embedded applications use
low-cost microcontrollers with an 8-bit data bus. Such microcontrollers
often have limited on-chip resources, such as few CPU registers and
limited amounts of RAM and ROM. Compared to other 8-bit
microcontrollers, the HC08 architecture is well suited to the C
programming language. It has an effective instruction set with
addressing modes which enable efficient implementation of C
instructions. The instruction set includes instructions for manipulating
the stack pointer. The addressing modes include indexed addressing
modes with the index contained in the index register or the stack pointer
register. These features allow efficient access to local variables. The C
language may be used successfully to create the program for the HC08
microcontroller, but to produce the most efficient machine code, the
programmer must carefully construct the C language program. In this
context, “efficient code” means compact code size and fast execution
time. The programmer must not only create an efficient high level
design, but also pay attention to the detailed implementation. Principally,
efficiency improvements may be obtained by appropriate design of data
structures and use of data types. Programmers accustomed to coding in
assembly language will be familiar with these issues and C
programmers should remember that their C code is converted into
assembly language by the compiler. In actual fact, the compiler will
recognise certain constructs in C and replace them with functions or
in-line code which have often been hand coded in assembly. Thus a

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Produc
 Go to: www.freescale.com

n
c

..
.

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

AN2093

2

Application Note

compiler is no more efficient that a good assembly programmer. It is
however, much easier to write good code in C which can be converted
into efficient assembly code than it is to write efficient assembly code by
hand. The potential drawback is that it is very easy to create C code
which no compiler, no matter how good, can convert into efficient
assembly code.

Some hints and tips are presented in this paper to aid the programmer
to write their code in C in a way in which a compiler can convert into
efficient machine code. Some of these tips will also improve the
portability of the code. Examples are given based on real compiler
output generated by the Hiware HC08 compiler from Metrowerks Europe
(formerly Hiware AG), a Freescale company.

2 CPU08 Register Model

Figure 1 CPU08 Register Model

An overview of the CPU08 register model is given here for
completeness. The CPU08 has five registers which are not part of the
memory map. These registers are briefly described.

Accumulator

The accumulator is a general purpose 8-bit register. The CPU uses the
accumulator to hold the operands and results of operations.

Index Register

The 16-bit index register is called H:X and is used by indexed addressing
modes to determine the effective address of an operand. The index

Accumulator (A)

Index register (H:X)

Stack pointer (SP)

Program counter (PC)

Condition code register (CCR)

Carry/borrow flag
Zero flag
Negative flag
Interrupt mask
Half-carry flag
Two’s complement overflow flag

V 1 1 H I N Z C

H X

0

0

0

0

7

15

15

15

7 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

3

Addressing Modes

register can access a 64K byte address space in this mode. The lower
byte X is used to hold the operand for the MUL and DIV instructions. H:X
can also serve as a temporary data storage location.

Stack Pointer

The 16-bit stack pointer is used to hold the address of the next available
location on the stack. The CPU uses the contents of the stack pointer
register as an index to access operands on the stack in stack pointer
offset addressing modes. The stack can be located anywhere where
there is RAM in the 64K byte address space.

Program Counter

The 16-bit program counter contains the address of the next instruction
or operand to be fetched. The program counter can access a 64K byte
address space.

Condition Code
Register

The 8-bit condition code register contains the global interrupt mask bit
and five flags that indicate the results of the instruction just executed.
Bits 5 and 6 are permanently set to logic 1.

3 Addressing Modes

The CPU08 has 16 different addressing modes. A brief overview is given
here.

Inherent

Inherent instructions have no operand to fetch and require no operand
address. Most are one byte long.

Immediate

The operand for immediate instructions is contained in the bytes
immediately following the opcode. Immediate instructions therefore
have constant operands.

Direct

Direct instructions are used to access operands in the direct page, i.e. in
the address range $0000 to $00FF. The high-order byte of the address
is not included in the instruction, thus saving one byte and one execution
cycle compared to extended addressing.

Extended

Extended instructions can access operands at any address in a
64K byte memory map. All extended instructions are three bytes long.

Indexed

Indexed instructions use the contents of the 16-bit index register to
access operands with variable addresses, such as variables accessed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

4

Application Note

through a pointer. There are five modes of indexed addressing: indexed,
no offset, with or without a post-increment of the index register; indexed,
8-bit offset, with or without a post-increment of the index register; and
indexed with a 16-bit offset.

Stack Pointer

Stack pointer instructions are similar to indexed instructions only they
use the contents of the stack pointer as an address of the operand
instead of the index register. There are two modes of stack pointer
addressing: stack pointer with an 8-bit offset and with a 16-bit offset.
Stack pointer instructions require one extra byte and one extra execution
cycle compared to the equivalent indexed instruction.

Relative

All conditional branch instructions use relative addressing evaluate the
effective address. If the branch condition is true, the CPU evaluates the
branch destination by adding the signed byte following the opcode to the
program counter. The branch range is –128 to +127 bytes from the
address after the branch instruction.

Memory to
Memory

Memory to memory instructions copy data from one location to another.
One of the locations is always in the direct page. There are four modes
of memory to memory instructions: move immediate data to direct
location; move direct location to direct location; move indexed location
to direct location with post-increment of the index register; and move
direct location to indexed location with post-increment of the index
register.

4 Basic Data Types

Easily the greatest savings in code size and execution time can be made
by choosing the most appropriate data type for variables. This is
particularly true for 8-bit microcontrollers where the natural internal data
size is 8-bits (one byte) whereas the C preferred data type is ‘int’. The
ANSI standard does not precisely define the size of its native types, but

Table 1 Basic Data Types

Data Type Size Range (unsigned) Range (signed)

char 8 bits 0 to 255 –128 to 127
short int 16 bits 0 to 65535 –32768 to 32767
int 16 bits 0 to 65535 –32768 to 32767
long int 32 bits 0 to 4294967295 –2147483648 to 2147483647

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

5

Basic Data Types

compilers for 8-bit microcontroller’s usually implement ‘int’ as a signed
16-bit value. As 8-bit microcontrollers can process 8-bit data types more
efficiently than 16-bit types, ‘int’ and larger data types should only be
used where required by the size of data to be represented. Double
precision and floating point operations are particularly inefficient and
should be avoided wherever efficiency is important. This may seem
obvious, but it is often overlooked and has a huge impact on code size
and execution time.

As well as the magnitude of the required data type, the signedness must
also be specified. The ANSI standard for C specifies ‘int’ to be signed by
default, but the of ‘char’ is not defined and may vary between compilers.
Thus to create portable code, the data type ‘char’ should not be used at
all. Instead the signedness should be defined explicitly: ‘unsigned char’
or ‘signed char’. It is good practice to create type definitions for these
data types in a header file which is then included in every other file. It is
also worthwhile to create type definitions for all the other data types
which are used as well, for consistency, and to allow for portability
between compilers. Something like the following may be used:

typedef unsigned char UINT8;
typedef signed char SINT8;
typedef unsigned int UINT16;
typedef int SINT16;
typedef unsigned long int UINT32;
typedef long int SINT32;

A variable is typically used in more than one expression, but some of
those expressions may not require the full data size or signedness of the
variable. In this case, savings can be made by casting the variable, or
part of the expression containing the variable, to the most appropriate
data size.

Summary:

• Create type definitions for all data types used.

• Use the smallest data type appropriate to each variable.

• Use signed data types only when required.

• Use casts within expressions to reduce data types to the minimum
required.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

6

Application Note

5 Local versus Global Variables

Variables can be classified by their scope. Global variables are
accessible by any part of the program and are allocated permanent
storage in RAM. Local variables are accessible only by the function
within which they are declared and are allocated storage on the stack.
Local variables therefore only occupy RAM while the function to which
they belong is running. Their absolute address cannot be determined
when the code is compiled and linked so they are allocated memory
relative to the stack pointer. To access local variables the compiler may
use the stack pointer addressing mode. This addressing mode requires
one extra byte and one extra cycle to access a variable compared to the
same instruction in indexed addressing mode. If the code requires
several consecutive accesses to local variables, the compiler will usually
transfer the stack pointer to the 16-bit index register and use indexed
addressing instead. The 'static' access modifier may be used with local
variables. This causes the local variable to be permanently allocated
storage in memory, like a global variable, so the variable's value is
preserved between function calls. However the static local is still only
accessible by the function within which it is declared.

Global variables are allocated permanent storage in memory at an
absolute address determined when the code is linked. The memory
occupied by a global variable cannot be reused by any other variable.
Global variables are not protected in any way, so any part of the program
can access a global variable at any time. This gives rise to the issue of
data consistency for global variables of more than a single byte in size.
This means that the variable data could be corrupted if part of the
variable is derived from one value and the rest of the variable is derived
from another value. Inconsistent data arises when a global variable is
accessed (read or written) by one part of the program and before every
byte of the variable has been accessed the program is interrupted. This
may be due to a hardware interrupt for example, or an operating system,
if one is used. If the global variable is then accessed by the interrupting
routine then inconsistent data may result. This must be avoided if
reliable program execution is desired and this is often achieved by
disabling interrupts while accessing global variables.

The 'static' access modifier may also be used with global variables. This
gives some degree of protection to the variable as it restricts access to
the variable to those functions in the file in which the variable is declared.

The compiler will generally use the extended addressing mode to access
global variables or indexed addressing mode if they are accessed
though a pointer. The use of global variables does not generally result in
significantly more efficient code than local variables. There are some

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

7

Direct Page Variables

limited exceptions to this generalisation, one being when the global
variable is located in the direct page.

However, use of global variables prevents a function from being
recursive or reentrant, and often does not make the most efficient use of
RAM, which is a limited resource on most microcontrollers. The
programmer must therefore make a careful choice in deciding which
variables, if any, to make global in scope. Worthwhile gains in efficiency
can sometimes be obtained by making just a few of the most intensively
used variables global in scope, particularly if these variables are located
in the direct page.

Summary:

• Careful analysis is required when deciding which variables to
make global in scope.

6 Direct Page Variables

The address range $0000 to $00FF is called the direct page, base page
or zero page. On the M68HC08 microcontrollers, the lower part of the
direct page always contains I/O and control registers and the upper part
of the direct page always contains RAM. After a reset, the stack pointer
always contains the address $00FF. The direct page is important
because most CPU08 instructions have a direct addressing mode
whereby they can access operands in the direct page in one clock cycle
less than in extended addressing mode. Furthermore the direct
addressing mode instruction requires one less byte of code. A few highly
efficient instructions will only work with direct page operands. These are:
BSET, BCLR, BRSET and BRCLR. The MOV instruction requires one of
the operands to be in the direct page.

A compiler cannot take advantage of the efficient direct addressing
mode unless variables are explicitly declared to be in the direct page.
There is no ANSI standard way of doing this and compilers generally
offer different solutions. The Hiware compiler uses a #pragma
statement:

#pragma DATA_SEG SHORT myDirectPageVars
UINT16 myDirectPageVar1; /* unsigned int in direct page */
#pragma DATA_SEG DEFAULT

This declares the direct page segment myDirectPageVars which
contains the variable myDirectPageVar1 which may be accessed using
the direct addressing mode. The programmer must remember to make
the linker place the myDirectPageVars segment at an address in the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

8

Application Note

direct page. The amount of RAM in the direct page is always limited, so
only the most intensively used variables should be located in the direct
page. To release more of the direct page RAM for global variables, the
stack can be relocated to RAM outwith the direct page, if available. This
will not affect the stack pointer addressing modes.

Many I/O and control registers are located in the direct page and they
should be declared as such so the compiler can use the direct
addressing mode where possible. Two possible ways to do this are:

Define the register name and its address together:

#define PortA (*((volatile UINT8 *)(0x0000)))
#define PortB (*((volatile UINT8 *)(0x0001)))

or define the register names in a direct page segment and define the
segment address at link time:

#pragma DATA_SEG SHORT myDirectPagePortRegisters
volatile UINT8 PortA;
volatile UINT8 PortB;
#pragma DATA_SEG DEFAULT

Summary:

• Declare all direct page registers to the compiler.

• Put only the most frequently used variables in the direct page.

• Release more direct page RAM for variables by relocating the
stack.

7 Loops

If a loop is to be executed less than 255 times, use 'unsigned char' for
the loop counter type. If the loop is to be executed more than 255 times,
use 'unsigned int' for the loop counter. This is because 8-bit arithmetic is
more efficient than 16-bit and unsigned arithmetic is more efficient than
signed.

If the value of the loop counter is immaterial, it is more efficient to
decrement the counter and compare with zero than to increment and
compare with a non-zero value. This optimisation is not effective if the
loop must be executed with the loop counter equal to zero, such as when
the loop counter is used to index an array element and the first element
must be accessed.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

9

Data Structures

If the loop counter is used in expressions within the loop, remember to
cast it to the most appropriate data type each time it is used.

When a loop is performed a fixed number of times and that number is
small, such as three or four, it is often more efficient not to have a loop
at all. Instead, write the code explicitly as many times as required. This
will result in more lines of C code but will often generate less assembly
code and may execute much faster than a loop. The actual savings will
vary, depending on the code to be executed.

In summary

• Use the smallest appropriate unsigned type for the loop counter.

• Decrement the loop counter and compare with zero where
possible.

• If the loop counter is used within the loop, cast it to the most
appropriate data type.

• Do not use a loop if code is to be executed a small, fixed number
of times.

8 Data Structures

When programming in C it is easy to create complex data structures, for
example an array of structures with each structure containing a number
of different data types. This will produce complex and slow code on a
8-bit microcontroller which has a limited number of CPU registers to use
for indexing. Each level of de-referencing will result in a multiplication of
the element number by the element size, with the result probably pushed
onto the stack in order to do the next calculation. Structures should be
avoided where possible and the data structures kept simple. This can be
done by organising data into simple one-dimensional arrays of a simple
data type. This will result in a greater number of arrays, but the program
will be able to access the data much more quickly. If structures are
unavoidable, they should not be passed as a function argument or a
function return value, they should be passed by reference instead.

Summary

• Do not use complex data structures.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

10

Application Note

9 Examples

Examples of assembly code generated by the Hiware HC08 compiler
are described in this section, based on the following type definitions:

typedef unsigned char UINT8;
typedef signed char SINT8;
typedef unsigned int UINT16;
typedef int SINT16;

9.1 Register1

This example illustrates bit manipulation for a register in the direct page
(PORTA) and for one not in the direct page (CMCR0). Setting or clearing
one or more bits in a register not in the direct page requires 7 bytes of
ROM and 9 CPU cycles. Setting or clearing multiple bits in a register in
the direct page requires 6 bytes of ROM and 8 CPU cycles. Setting or
clearing a single bit of a register in the direct page requires 2 bytes of
ROM and 4 CPU cycles.

C Code Assembly Code Bytes Cycles

#define PORTA (*((volatile UINT8 *)(0x0000)))
#define CMCR0 (*((volatile UINT8 *)(0x0500)))

void
register1(void) LDHX #0x0500

3 3

{ LDA ,X

1 2

CMCR0 &= ~0x01; /* clr bit1 */ AND #0xFE

2 2

PORTA |= 0x03; /* set b1,2 */ STA ,X

1 2

PORTA &= ~0x02; /* clr bit2 */ LDA 0x00

2 3

} ORA #0x03

2 2

STA 0x00

2 3

BSET 0,0x00

2 4

RTS

1 4

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

11

Examples
Datacopy1

9.2 Datacopy1

This is an example of the inappropriate use of ‘int’ for variable ‘i’ which
is used as both the loop counter and the array index. The compiler is
forced to use signed 16-bit arithmetic to calculate the address of each
element of dataPtr[]. This routine requires 50 bytes of ROM and with 4
iterations of the loop, executes in 283 CPU cycles.

C Code Assembly Code Bytes Cycles

UINT8 buffer[4];

void

PSHA 1 2

datacopy1(UINT8 * dataPtr)

PSHX 1 2

{

AIS #-2 2 2

 int i;

TSX 1 2
CLR 1,X 2 3

 for (i = 0; i < 4; i++)

CLR ,X 1 2

 {

TSX 1 2

 buffer[i] = dataPtr[i];

LDA 3,X 2 3

 }

ADD 1,X 2 3

}

PSHA 1 2
LDA ,X 1 2
ADC 2,X 2 3
PSHA 1 2
PULH 1 2
PULX 1 2
LDA ,X 1 2
TSX 1 2
LDX ,X 1 2
PSHX 1 2
LDX 3,SP 3 4
PULH 1 2
STA buffer,X 3 4
TSX 1 2
INC 1,X 2 4
BNE *1 2 3
INC ,X 1 3
LDA ,X 1 2
PSHA 1 2
LDX 1,X 2 3
PULH 1 2
CPHX #0x0004 3 3
BLT *-39 2 3
AIS #4 2 2
RTS 1 4

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

12

Application Note

9.3 Datacopy2

In this example, the loop counter and array index variable is optimised
to an ‘unsigned char’. This routine now requires 33 bytes of ROM, 17
bytes less than Datacopy1. With four iterations, Datacopy2 executes in
180 CPU cycles, 103 cycles less than Datacopy1. In this example the
value of the loop counter is important; the loop must execute with i = 0,
1, 2 and 3. No significant improvement is obtained in this case by
decrementing the loop counter instead of incrementing. Also, no
significant improvement is obtained in this case if variable ‘buffer’ is
place in the direct page: the instruction ‘STA buffer,X’ uses direct
addressing instead of extended, saving one byte of code and one CPU
cycle per iteration.

C Code Assembly Code Bytes Cycles

UINT8 buffer[4];

void
datacopy2(UINT8 * dataPtr)

PSHA 1 2

{

PSHX 1 2

 UINT8 i;

PSHH 1 2
TSX 1 2

 for (i = 0; i < 4; i++)

CLR ,X 1 2

 {

LDA ,X 1 2

 buffer[i] = dataPtr[i];

ADD 2,X 2 3

 }

PSHA 1 2

}

CLRA 1 1
ADC 1,X 2 3
PSHA 1 2
PULH 1 2
PULX 1 2
LDX ,X 1 2
TXA 1 1
TSX 1 2
LDX ,X 1 2
CLRH 1 1
STA buffer,X 3 4
TSX 1 2
INC ,X 1 3
LDA ,X 1 2
CMP #0x04 2 2
BCS *-25 2 3
AIS #3 2 2
RTS 1 4

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

13

Examples
Datacopy3

9.4 Datacopy3 In this example, the data is copied without using a loop. This routine
requires 23 bytes of ROM and executes in 36 CPU cycles. This is 10
bytes less ROM and 144 fewer CPU cycles than Datacopy2. If 8 bytes
were to be copied, this method would require 10 bytes more ROM than
Datacopy2, but would execute in 280 fewer CPU cycles. Although there
are potential savings to be had if the variable ‘buffer’ is located in the
direct page, the compiler does not take full advantage of them in this
case.

C Code Assembly Code Bytes Cycles

UINT8 buffer[4];

void
datacopy3(UINT8 * dataPtr) PSHX 1 2
{ PULH 1 2
 buffer[0] = dataPtr[0]; TAX 1 1
 buffer[1] = dataPtr[1]; LDA ,X 1 2
 buffer[2] = dataPtr[2]; STA buffer 3 4
 buffer[3] = dataPtr[3]; LDA 1,X 2 3
} STA buffer:0x1 3 4

LDA 2,X 2 3
STA buffer:0x2 3 4
LDA 3,X 2 3
STA buffer:0x3 3 4
RTS 1 4

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

14

Application Note

9.5 Loop1 If only the number of iterations matter and not the value of the loop
counter, it is more efficient to decrement the loop counter and compare
it with zero. In this example the ‘for’ statement requires 7 bytes of ROM.
and the increment and test of the loop counter take 6 CPU cycles for
each iteration. This saves 2 bytes of ROM and 9 CPU cycles per iteration
compared to the ‘for’ statement in Datacopy2. However this optimisation
cannot be applied to Datacopy2 as the code within this loop is executed
with i = 4, 3, 2 and 1.

C Code Assembly Code Bytes Cycles

void
loop1(void)
{
 UINT8 i; PSHH 1 2

LDA #0x04 2 2
 for(i=4; i!=0; i--) TSX 1 2
 { STA ,X 1 2
 /* code */
 } TSX 1 2
} DBNZ ,X,*-offset 2 4

PULH 1 2
RTS 1 4

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2093

15

Examples
Loop1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

rxzb30
freescalecolorjpeg

