Freescale Semiconductor, Inc.

An 8x8 DCT Implementation on the
Motorola DSP56800E

Aﬁgg)lication Note

by
Brad Zwernemann

AN2123/D
Rev. 0, 08/2001

@ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motorola reserves the right to make ehanges without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regardingsthessuitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or useZefiany product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rightspofiethers. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgicaliimplant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217.
1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3—20-1, Minami—Azabu, Minato—ku,
Tokyo 106—8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852—-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/ © Copyright Motorola, Inc., 2001

For More Information On This Product,
Go to: www.freescale.com

Abstract

Freescale Semiconductor, Inc.

and Contents

The 8x8 discrete cosine transform (DCT) is an efficient, real-valued transform often used in image
compression. Special, fast algorithms for the DCT have been devel oped to accommodate the many
arithmetic operations involved in implementing the DCT directly. In this application an implementation of
afast DCT algorithm is presented for the M otorola DSP56800E processor. The details of the
implementation are discussed and the results are presented.

1 INtrodUCTION .
2 Implementing the DCT e e
3 Implementation on the DSP56800E i,
31 INtaliZation B e
32 PatAofFlowGraph...........c i AN
33 PatBof HowGraph A
34 Reinitidization for Second Iteration of Outer LOOp. &% oo
4 Thelnverse DCT ... e e
5 ReSUILS ..o
6 Acknowledgements . . ctr . e
7 ReferenCes ..

@ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

An 8x8 DCT Implementation on the Motorola DSP56800E

For More Information On This Product,
Go to: www.freescale.com

@ MOTOROLA

Freescale Semiconductor, Inc.

1 Introduction

This document describes the implementation of atwo-dimensional (2-D) discrete cosine transform (DCT)
on the Motorola DSP56800E. The DCT isamember of the family of sinusoidal transforms and is often
used in image compression. The DCT isarea-valued transform with mirror-periodicity and asaresult is
more efficient than the discrete Fourier transform (DFT) for compression. This application implements an
8x8 2-D DCT for compression algorithms such as JPEG.

The one-dimensional (1-D) DCT isdefined as:

W v®=cC, (k)iZS(X)cosgﬂ”E k=01..,N-1 Eqn. 1

0 2N

The corresponding 2-D DCT is defined as:

e 2x + 1)k, 7T 2y + 1)k, 7T
Yk, Kk,) =Cy (K)Cy (K , = 2 Eqn. 2
(6 =Culk)ou ()35 sl yhood |2 TR BOBOTE e
where

_BUN k=0
3 CN(k)_g/Z/_N k=12..N-1

Eqgn. 3

2 Implementing the DCT

Implementing the DCT asin Equation 1 and Equation 2 is inefficient due to the large number of adds and
multiplies, so afast algorithm is used. There are several fast algorithms for implementing the 2-D DCT.
These algorithms exploit symmetries to greatly reduce the number of operations required in Equation 2.
Algorithms that optimize the entire 2-D structure are efficient but complex. Another option isto optimize
the 1-D algorithm. For this application a method using an optimized 1-D DCT asakernel for the 2-D DCT
was chosen in order to keep the implementation simple. This method utilizes the flow graph in Figure 1 to
calculate the 1-D DCTs of each row of the 8x8 input, the result of which is an 8x8 intermediate value

V(i)

(M) moToroLa Introduction 1

For More Information On This Product,
Go to: www.freescale.com

P

mplementing the pcT Freescale Semiconductor, Inc.

S5
Vv(0)

33

os(174)
(LN L R
< » a1 * Sn(re) Ros(178) V@
SN ol

) 1 * sn@e) ° V(©)

S1 S2 cos(4) SA

s(0)

sin(1v16) V(1)

s N * /
cos(1716)
s(5) // \\ cos(rid) o ><_ \mﬂ/l)
] / / 1 \\ ><(er/4) -1 Sn(3r16)
T4 -sin(3m16
(6) cos(174) osrv) -1 - s) V(@3)
1 e - (371
/ \ >< / m\ios(me)
5 . . V(7)

1 sin(v16)

a

()

s(7)

Figure 1. 1-D DCT Flow Graph [1]

The intermediate result is created with the first pass of. atoop that calculates eight 8-point 1-D DCTs. This
loop isthen used again in asecond pass with V(i,j).asthe input and Y(n,m), the final result of the 2-D DCT,
as the output. In the second pass, the DCTs of.the'columns of V(i j) are calculated. To simplify the use of
memory pointers and prevent the need to parse through both rows and columns, the output of each passis
stored transposed. Therefore, upon entry: to the second pass the input V(i,j) is transposed, so we calculate
for rows asin the first pass rather.than columns. Working with rows for both passes simplifies pointer
usage. The result of the secondypass is stored transposed giving a correctly oriented final result Y(n,m).

Each pass requires a scale factor of +/(2/N). After both passes the overall scale factor is equal to the square
of theindividual pasSfactors or 2/N. There are several ways to implement the scaling. A direct
implementation $eales the intermediate result V(i ,j) by the +/(2/N) factor. This method requires extra
multiplies for the scaling and limits precision due to round-off errors. The most precise way to implement
the scaling isto scale the final result, but this method still uses extra multiplies and must also use memory
moves making the method inefficient. Therefore, to reduce the number of multiplies needed while
maintaining precision, the scaling factor /(2/N) is not included directly in the DCT calculations.

In this implementation, we utilize the overall scaling 2/N which for N = 8 is equivalent to 1/4. The scaling
isaccomplished in the final result calculation by dividing the second pass coefficients (e.g., cos(174) in
Figure 1) by 4. Note that only the coefficientsin the final multiplies of the flow graph (S4 and S5in
Figure 1) are scaled. The division is done outside the program to create a second scaled set of coefficients.
This method allows for near-optimal precision without having to add any multiplies or moves.

One benefit of the particular algorithm used here is that after the calculations for S2 are done the algorithm
can be split into two independent parts. The first part, part A in Figure 1, includes the top four outputs of
the flow graph and the second part includes the bottom four, part B. Each part is only dependant on four
intermedi ate results between stages. These results can be kept in registersto limit memory traffic. Working
with all eight outputs simultaneously would require either eight data registers or more extensive memory

usage.

2 An 8x8 DCT Implementation on the Motorola DSP56800E @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc. Initialization

Another helpful property of this particular flow graph isthe ‘at+b, ab’ structure that allows datato be held
in registers for multiple calculations. This structure is found throughout the graph and helps cut down on
memory traffic. For example, in Code Example 1, the results s2(7) and s2(0) are kept in the registers y0O
and b respectively for usein S3.

Code Example 1. ‘a+b, a-b’ Structure

inC
o s2[0] =input[i][O] + input[i][7];
s2[7] =input[i][O] - input[i][7];
in assenbly:
nove. w x:(r0)+,y0 x:(r3)-,x0 ;// s1(0) ->y0, s1(7) -> x0
tfr yO, b ;11 s1(0) -> b
sub X0, y0 ;11 y0 = s1(0) - s1(7) = s2(7)
add X0, b /1 b =s1(0) + s1(7) = s2(0)
3 Implementation on the DSP56800E

The DSP56800E software that implements the 2-D DCT uses two loops to accomplish the two passes of
the DCT described in Section 2. The inner loop isthe kernel 1-D DCT of the flew graph. The outer loop
callsthe inner loop twice for the two passes. The first pass of the inner loap,calculates DCTs for the rows
of theinput. The output of the first passis then used as the input for the second pass. The output of the
second passisthefinal result of the function.

3.1 Initialization

When the functionis called, a pointer to the 8%8Word input signal should bein register R2 and a pointer to
the final 8x8 word output should be in register R3. The function can be called from C code with the
command DCT_2D(i nput, out put)¥ Wherei nput and out put are the appropriate pointers.

Addressregisters RO, R1, R2,R3,R4, R5, and N aswell asdataregisters X0, Y, A, B, C,and D areused in
this implementation. Constants for the coefficients are defined at the beginning of the code. Although the
flow diagram uses atetal of six different coefficients, there are twenty coefficients stored as constants. The
additional coefficients are repeated coefficients for more efficient pointer use and scaled coefficients for
output scaling. Notice that C41 in the second set of coefficientsis not scaled because it is not used in the
final stage of calculations. Space is defined for the output of the first pass with the label V. Space for
storage of flow graph stage results is defined with the label S,

Code Listing 1 shows the memory allocation for the variables and the Sand V spaces.

Code Listing 1. Memory Allocation

CRG X

cos_tab DC $5a82, $30f b, $7641, $5a82 ;// c41, s81, c81, c41l

cos_t ab2DC $18f 8, $7d8a, $6a6d, $471c ;// s161, cl6l, cl1l63, s163

cos_tab3DC $7d8a, $18f 8, $16al, $0c3f ;// cl6l, sl161, c41/4, s8l/4

cos_t ab4aDC $1d90, $5a82, $063e, $1f63 ;// c81/4, c4l, s161/4, cl6l/4

cos_tab5DC $1a9b, $11c7, $1f 63, $063e ;// c1l63/4, s163/4, cl6l/4, sl16l/4
;11 ¢4l = cos(pil4)
;11 ¢81 = cos(pil/8) s81 = sin(pi/8)
;11 ¢161 = cos(pi/16) s161 = sin(pi/16)
;11 ¢163 = cos(3pi/16) s163 = sin(3pi/16)

S DS 8 ;11 holds results of flow graph stages

\% DS 64 ;11 holds internediate DCT of rows of input

@ MOTOROLA Implementation on the DSP56800E 3

For More Information On This Product,
Go to: www.freescale.com

P

mplementation on the Dsm@§cale Semiconductor, Inc.

Theinitial instructions of the function are outside of the loop structure and serveto initialize pointer values
in registers. The input pointer istransferred to RO, the output pointer is transferred to R4, and an offset
input pointer istransferred to R3. The pointer to the coefficient table is put in R5, the pointer to the space S
is put into R1, the pointer to the space V is put into R2, and the value 16 is loaded into the N register for
indexing. Theinner loop consists of seven sections that correspond to the flow graph. The top portion of
the graph (part A) has three stages of calculations: S2, S3, and $4. These stages are completed first
followed by the bottom portion of the flow graph (part B) which includes four stages of calculations: S2,
S3, $4, and Sb. Refer to the corresponding assembly code below.

Code Listing 2. Pointer Initialization and Loop Calls

FDCT 2D

tfra r3, ra

tfra r2,ro0
noveu. w #cos_tab, rl
tfra rl, r5 cos_table ->r5
nmoveu. w #S,rl S->rl

/1 output ->r4
/1
/1
/1
e
noveu. w #V, r2 H V->r2
/1
/1
/1

input ->r0
cos_table ->r1l

nove.w #16, N i ndex for transposed out put storage
adda #7,r0,1r3 input+7 ->r3

do #2, EndQut er Loop
do #8, Endl nner Loop

rows then cols
1-D DCT

3.2 Part A of Flow Graph

Beginning with S2 (A), the input values are read from memory and stored'in registers using the input
pointers RO and R3. This stage cal culates the input values for S3(A).Mhich are kept in registers B, D, YO,
and Y 1. Theinput values for S3(B) are calculated and stored inamemory using R1 as a pointer to the
memory space S. Near the end of S2(A) the pointer to the cogfficient table istransferred from R5 to R3
where it will be used for the remainder of the iteration ofithe loop. Refer to the corresponding assembly
code below. Stage 2A is shown in Code Listing 3.

Code‘tiisting 3. Stage 2A

;11 start stage 2A (stage 1 is,the”collection of data into input array)

nove.w X:(r0)+y0 X (63) -, x0 /1 s1(0) ->y0, s1(7) -> x0

tfr y0, b /1 s1(0) ->b

sub x0, yO /1 y0 = s1(0) - s1(7)

add x0, b xa(ro)y+ yl x:(r3)-,x0 /1 b =s1(0) + s1(7) =s2(0), s1(1) -> yl, s1(6) -> x0
tfr b, d /1 d = s2(0)

tfr yl,b yo0, x: (rl)+ /1 s1(1) -> b, y0O -> s2(7)

sub x0yd /1yl =s1(1l) - s1(6) = s2(6)

add X0, b X: (r0)+, y0 x:(r3)-,x0 /1 b =s1(1) + s1(6) = s2(1), s1(2) -> y0, s1(5) -> x0
tfr y0, a yl, x:(rl)+ 11 s1(2) -> a, yl -> s2(6)

sub x0, a X:(r0)+,yl x:(r3)+,¢ /1 a =s1(2) - s1(5) = s2(5), s1(3) ->yl, sl(4) ->c
add x0, yO /1 y0 = s1(2) + s1(5) = s2(2)

tfr yl,a a, x:(rl)+ /1 s1(3) -> a, al -> s2(5)

tfra rs5,r3 /1l cos_table ->r3

sub c,a Il ¢ =s1(3) - s1l(4) = s2(4)

add c,yl H yl = s1(3) + s1(4) = s2(3)

nove. w a:x:(rl) a -> s2(4)

For stage S3(A) dl of the necessary inputs arein registers from S2(A) so there is no need for memory
moves. The results are calculated and kept in registers A, B, C, and D asinputs for stage S4(A), the final
stage for section A. This stage uses the inputs created in S3(A) and two coefficients from the table to
calculate the values V(0), V(2), V(4), and V(6) which are stored to memory using the pointer to V held in
R2. Theregister R2 isincremented using the N register with avalue of 16. This causes the values to be
stored transposed in the 8x8 space V. Stages 3A and 4A are shown in Code Listing 4.

4 An 8x8 DCT Implementation on the Motorola DSP56800E @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc. p s of Flow Graph

Code Listing 4. Stages 3A and 4A

nacr di, x0,y1l
nove.w bl, x: (r2)+N
nove.w al, x:(r2)+N

y = s81*s3(3) - ¢81*s3(2) = s4(3)
s4(2) -> v(2)
s4(1) -> v(4)

;11 stage 3A
tfr yl, a Il s2(3) -> a
add d, a /1 a =s2(0) + s2(3) = s3(0)
sub yl,d /1 d =s2(0) - s2(3) = s3(3)
tfr b, c /1l s2(1) ->c
tfr y0, b Il s2(2) ->b
add c, b /1 b =s2(1) + s2(2) = s3(1)
sub y0, c 11 ¢ =s2(1) - s2(2) =s3(2)
;11 stage 4A
tfr b1, yl /1 s3(1) ->yl
add a, b X:(r3)+y0 /1 b =s3(1) + s3(0), c4l -> y0
sub yl, a x: (r3)+ x0 /1 a =s3(0) - s3(1), s81 -> x0
npyr y0,bl, b /1 b = c41*(s3(1) + s3(0)) = s4(0)
npyr y0,al,a x:(r3)+ vyl /1 a =c41*((0) - s3(1)) = s4(1), c8l ->y1l
nove.w bl, x: (r2)+N /1 s4(0) -> v(0)
npyr yl,dl, b /1 = s3(3)*c81
nacr x0,cl,b /1 b =s3(2)*s81 + s3(3)*c81 = s4(2)
npyr -yl,cl,yl /1y = -c81*s3(2)
/1 =
/1
vy

3.3 Part B of Flow Graph

Part B starts with S3 in the flow graph. The values stored to Sin S2(A) are now retrieved using the R1
register. Theregister is decremented and reset to the beginning of Sin this{rocess. These values are put
intothe A, B, C, and D registers. In this stage two of the values are unehanged and passed directly to the
next stage in registers C and D. The other two values are calculatedtising one coefficient and left in
registers A and B for the next stage. The next stage S4(B) doesot require coefficients and is therefore
very simple. The four input values for S5(B) are calculatedand left in registers YO, B, C, and D. StagesB3
and B4 are shown in Code Listing 5.

Code Listing’5." Stages 3B and 4B

;/1 end of top side, start stage 3B

tfr c41*s2(5) ->yl
a = c41*s2(5) + c41l*s2(6)

b = c41*s2(6) - c41*s2(5)

add ,
sub yl, b X:(r3)+ vyl

nove.w Xx:(rl)-,c Il ¢ =s2,3(4)
nove.w Xx:(rl)-,a Il a = s2(5)
nove.w Xx:(rl)-,b /1 b = s2(6)
nove.w x:(rl),d /1 d=s23(7)
nove.w X: (r3)+, y0 ;11 ¢4l -> y0
npyr bl, y0, b ;11 c41*s2(6) -> b
npyr al,y0,a yl, x:(r2)+ ;11 c41*s2(5) -> a, s4(3) -> v(6)
adda #4dyr2 Il reset r2 to v(1)

a /1

b 11

11

s3(6)
s3(5), s161 -> vyl

;11 start stage 4B

tfr di, yo ;11 s3(6) ->y0

add a, yo 11 a = s3(7) + s3(6) = s4(7)

sub a, d ;11 d =s3(7) - s3(6) = s4(6)

tfr b, x0 ;11 y0 = s3(5)

add c, b x:(r3)+ al ;11 b =s3(5) + s3(4) = s4(4), s161 -> yl, cl6l -> al
sub X0, ¢ ;11 ¢ =s3(4) - s3(5) = s4(5)

Stage S5(B) is the most complex of the seven segments due to the use of four coefficients and the storage
to memory of the final results. The R3 register continues to be used as the coefficient pointer and R2 isthe
pointer to the output of the inner loop. Asin stage S4(A), R2 isincremented with the N register for
transposed storage to memory. This stage calculates V (1), V(3), V(5), and V(7). This stage also resets the
pointers for the next iteration of theinner loop. RO isincremented by four and points to the next row of the
input. R3 is given an offset value of RO, and R2 is reset to the next column of the intermediate result V.
Stage B5 is shown in Code Listing 6.

@ MOTOROLA Implementation on the DSP56800E 5

For More Information On This Product,
Go to: www.freescale.com

P

rhe Inverse DCT Freescale Semiconductor, Inc.

Code Listing 6. Stage 5B

;11 start stage 5B

npyr al,y0,a x:(r3)+ x0
nacr bl,yl,a x:(r3)+ vyl
nop

nove.w al, x: (r2)+N

a = cl161*s4(7), cl63 ->x0

a = s161*s4(4) + clél*s4(7) = v(1), sl1l63 ->yl
pi pel i ne stall

al -> v(1)

npyr -cl,yl,a a = -s163*s4(5)

nacr di, x0, a a = cl163*s4(6) - s163*s4(5) = v(3)
adda #4,10 rO = input+8
nove.w al, x: (r2)+N al -> v(3)

npyr yl,dl, a a = s163*s4(6)

nacr cl, x0,a a = cl163*s4(5) + cl1l63*s4(6) = v(5)
nove.w X:(r3)+vyl clél -> y1

nove.w X:(r3),x0 s1l61 -> x0

npyr -bl,y1,b b = -cl61*s4(4)

nacr y0, x0, b al, x: (r2) +N
adda #7,1r0,13

nove.w bl, x: (r2)

adda #-55,r2

b = s4(7)*s161 - c161*s4(4) = v(7), al -> v(5)
input+7 ->r3

bl -> v(7)

reset r2 to v+1

~— e e e e e e e e e —
— e e e e e e e e e e —

3.4 Reinitialization for Second lteration of Outer Loop

After eight iterations of the inner loop several adjustments are made before beginning the second iteration
of the outer loop. The pointer to the coefficient table, R5, is set to point to the second, scaled set of
coefficients. The register RO is loaded with an offset value of R2 and is now the pointer to V, which isthe
input for the second iteration of the outer loop. The R2 register isloaded withthe value from R4 whichis
the pointer to thefinal result. Finally R3 isloaded with an offset value of ROvas an offset input pointer. Teh
reinitializatioin code shown in Code Listing 7.

Code Listing 7. Setup for Second Iteration of Outer Loop

adda #10,r5 ;11 seteC0s tab to second set of coef’s

adda #-8,r2,10 ;11 geterid of +8 to V by inner loop, put in r0 as input
tfra rd,r2 /4 output ->r2

adda #7,r0,13 WL T nput +7 -> r3

The second iteration of the outer loop isTun. At the end of the second iteration the final result isin the 8x8
memory space pointed to by the output pointer passed into the function.

4 The“Inverse DCT

When the DCT is used in an application such asimage compression, it is necessary to use the inverse of the
transform for the image decompression. The 2-D Inverse DCT (IDCT) is defined as:

s(xy)=C Z_:NZI)Y k,,K,) cosEKZXJr1k HH: E(2y+1k HE Eqn. 4

The equation for the IDCT isthe same as that of the DCT with the indices k1 and x reversed and the
indicesk2 and y reversed in the summations. Thereversal of these indices affects the values of the cosine
factorsin such away that the a gorithm developed for the DCT cannot be reused for the IDCT with simple
cosine factor changes. However, the IDCT can be implemented with the 1-D signal flow using the same
flow graph asthe DCT with one mgjor change. The signal flow from the flow graph in Figure 1 must be
reversed. The resulting graph can then be used in the calculation of the IDCT.

6 An 8x8 DCT Implementation on the Motorola DSP56800E @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductorsdne: icration of outer Loop

The assembly language implementation of the IDCT differs from that of the DCT in its order of operations
but it isvery similar in technique and form. Performance of the IDCT is also similar to the DCT in both
code size and cycle count. Dueto the similarities with the implementation of the DCT, the IDCT
implementation is not presented here.

5 Results

The methods used in this implementation maintain precision while optimizing the algorithm for use with
the 56800E processor. All rounding operations were performed with the 56800E rounding capabilities
through the MPYR and MACR instructions. The precision and accuracy were confirmed by testing the output
of the function against the output of afloating point C implementation and deriving the RM S error over the
8x8 data. The program size and execution speed are shown in Table 4-1.

Table 5-1. Program Cycle Count and Memory

Code Segment Cycle Count Program Words
Init 8 3
Data 92
Kernel 1193 95
6 Acknowledgements

The author would like to thank Kim-Chyan Gan<for assistance with algorithm devel opment, and Joseph
Gergen for assistance with algorithm development and assembly code optimization.

@ MOTOROLA Results 7

For More Information On This Product,
Go to: www.freescale.com

A\ 4
AN eferences Freescale Semiconductor, Inc.

7 References

[1] W. H. Chen, C. H. Smith, and S. C. Fralick, “A Fast Computational Algorithm for the
Discrete Cosine Transform,” |EEE Trans. Communications, vol. 25, pp. 1004—1009, 1977.

8 An 8x8 DCT Implementation on the Motorola DSP56800E @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

	Title Page
	Abstract and Contents
	1 Introduction
	2 Implementing the DCT
	3 Implementation on the DSP56800E
	3.1 Initialization
	3.2 Part A of Flow Graph
	3.3 Part B of Flow Graph
	3.4 Reinitialization for Second Iteration of Outer Loop

	4 The Inverse DCT
	5 Results
	6 Acknowledgements
	7 References

