
AN2220/D
Rev. 0, 12/2001

Vectored Interrupt Handling
on the M·Core MMC2107

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

by Brian LaPonsey
M-Core Applications Group
Freescale, East Kilbride

Abstract

This application note addresses the need for a more in-depth discussion of
vectored interrupt handling on the M·Core MMC2107 microprocessor. Current
documentation is sparse, with few detailed examples. Metrowerks provides two
different, but closely related tool chains for M·Core, one with the classic
CodeWarrior compiler/debugger integrated development environment (IDE),
and one that incorporates the tools previously offered by Hiware. Code for both
of the Metrowerks M·Core IDEs is demonstrated in two projects using a
high-level programming language, and the main differences between the
versions are highlighted.

The target audience is the advanced engineering student, or the system
engineer who is new to the MMC2107 device and who may be unfamiliar with
the use of a high-level language for programming embedded applications. The
intent is to give these programmers a head start by offering sample solutions to
some of the more common obstacles. These examples should be used as a
starting point from which the engineer can progress independently. They are
not meant to be a “manual of best practice,” so much as an example of “what
worked in this case,” and the engineer is encouraged to accept, reject, or adapt
these examples as appropriate. The practice of hiding key parameters behind
multiple references and redefinitions has been avoided. The goal has been to
expose the workings of the application with transparent code, not to produce
production-quality reusable modules.

The introduction speaks briefly about the history and purpose of the M·Core
architecture, and presents the MMC2107 integrated processor.

The second section provides an overview of the concept of interrupts, and
defines some terminology. Some of the basic goals of interrupt processing are
discussed.
© Motorola, Inc., 2001

For More Information On This Product,
 Go to: www.freescale.com

RXZB30
forward100

RXZB30
logo

RXZB30
copyright

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The third section introduces some of the important features of the M·Core M210
central processing unit, and illustrates how these allow the core to optimize
interrupt handling for real-time control.

The fourth section highlights the specific features of the MMC2107 that allow it
to make full use of the M·Core architecture. The advantages of vectoring over
autovectoring are discussed, and the fast and normal interrupt types are
introduced.

Sections 5 and 6 describe in detail the sequence of events that occurs when an
interrupt request is made to the MMC2107. The Interrupt Controller Module is
introduced, and the construction of the vector table is explained. A hypothetical
interrupt sequence is analyzed.

Sections 7 and 8 discuss further optimization methods and develop the use of
the alternate register file. Some strategies are suggested on how to make use
of the fast interrupt type, and how to gain the most benefit from it. A potential
pitfall for high-level language programmers is highlighted, and a method for
avoiding this problem is discussed.

Section 9 provides a background of the tools used in the sample application
project.

The appendices contain a glossary and explanatory notes on the CodeWarrior
projects that make use of the concepts developed. The example employs
multiple types and sources of interrupt, and the alternate register file. The
M·Core instruction set architecture is tailored to support high-level languages,
so the example uses C language whenever possible.

I. Introduction

It is often said that “form follows function,” and in the microprocessor industry,
this adage certainly applies. Microprocessors are designed and built to fulfill the
expected requirements of typical systems, and the system designer will select
a processor that best fits the special needs of the application. Speed is always
a consideration, but in many circumstances, speed may not be the only, or
even the most important issue.

One industry requirement that has regularly appeared over the past decade is
for good real-time performance with low power consumption for extended
battery life in portable applications. In 1993, Freescale began research into a
new microprocessor architecture that would provide compact code, good
power efficiency and excellent real-time response for these portable embedded
systems. The M·Core M200 RISC processor core was the result of this
research. In addition to its efficiency, the M·Core also uses a fixed-length 16-bit
instruction set to optimize code density, and has impressive interrupt handling
2 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
II. Interrupt Processing and Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

capabilities that provide a deterministic interrupt response even at modest
clock frequencies.

Since the M·Core architecture’s public introduction in 1997, there have been
several microprocessors based on the M200 core, but only one was targeted
toward the general-purpose embedded controller market. The MMC2001, a
34MHz, 32-bit ROM device, does not implement the entire M200 feature set,
and this prevents programmers from fully optimizing its interrupt response
behavior. Although an excellent choice for many portable applications, the
MMC2001 is not always an ideal solution for real-time control.

In July 2000, Freescale introduced the first member of a new family of
general-purpose 32-bit microcontrollers based on the M·Core M210 processor
core.1 The MMC2107 is the first general-purpose M·Core device to fully utilize
the M210’s extensive interrupt-processing capabilities. This application note
will investigate the MMC2107’s enhanced functionality.

II. Interrupt Processing and Latency

An interrupt2 is the redirection of a program’s normal flow of execution triggered
by an asynchronous external event. When an interrupt occurs, the core has to
branch to an interrupt service routine, a special set of instructions written
specifically to deal with this event. In real-time embedded applications, the way
a processor reacts to these events is critical to the system’s performance.
Computer-controlled machine tools, data acquisition equipment, robotic
devices, and communication networks are types of systems that may require
interrupt servicing.

When an external event occurs that requires interrupt service, a signal must be
sent to the processor indicating that this event has taken place. This signal is
called an interrupt request. The time elapsed between the moment the external
event occurs and the moment its interrupt service routine (ISR) begins to
execute is called the latency. The latency will vary depending on other tasks
that the processor is performing when the interrupt request arrives. It is always
possible to improve a system’s latency by increasing the clock frequency, but
this has the unwanted side effects of increasing the power drain and
electromagnetic interference (EMI). This is acceptable if power consumption

1. The M210 is essentially just the M200 core with the addition of bus arbitration.

2. Much of the documentation for the M·Core family uses the term exceptions as well as the
term interrupts. In many cases these words appear to be interchangeable, but interrupts are
actually a subset of exceptions. An interrupt is specifically an intentional user-defined excep-
tion, from a source such as a timer module or an A/D converter. Exceptions also include other
unexpected events like a divide-by-zero, or a misaligned memory access error. These inter-
nally-generated system exceptions also need service routines, and have their own vector table
entries pre-assigned to them in positions 0-31 (see Table 1).
Vectored Interrupt Handling on the M·Core MMC2107 3

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

and EMI are not critical issues, but for many applications this is not always a
good compromise.

A more useful measure of latency is in processor clock cycles. This is
independent of clock frequency, allowing the system designer to compare
different processors without regard to speed of operation. The designer can
calculate the lowest acceptable clock frequency based on the maximum
acceptable response time, thereby meeting the latency requirement while
minimizing power consumption and EMI.

In real-time systems, it is not simply the best-case latency that determines the
system performance. Critical tasks often must be guaranteed to execute within
a bounded time interval, so the worst-case latency is just as important. If the
difference between the best-case and worst-case is relatively small, then the
system will service the critical interrupt within a narrowly defined and reliable
time window. Systems like these are said to be deterministic, and they are
highly valued in real-time applications for their ability to react consistently and
predictably to asynchronous events.

When an interrupt request is received, it needs to be recognized, identified and
serviced. Recognition means that the core becomes aware that an interrupt
has occurred and suspends the current process. Identification means that the
core uniquely associates the interrupt request with a particular source.
Servicing the interrupt begins when the program flow branches to the beginning
of the ISR for that interrupt source.

Interrupt requests cannot always be recognized, because there are times when
the core is preoccupied with other tasks. For example, it would not be
reasonable to expect any system to recognize interrupts during a power-up
initialization sequence. Another situation requiring interrupts to be disabled
would be during a critical operation, one which the programmer has deemed to
be more important than any other possible interrupt request. An example of this
might be a two-way communication system. If a data transmission is
interrupted, the information can probably be sent again later. Interrupt a data
reception, and its content may be lost forever.

All processors capable of dealing with interrupts must therefore have a way of
enabling and disabling interrupts from within the application. More advanced
devices will also have a system for choosing the priority of different interrupt
sources, so that higher priority interrupts will be serviced preferentially over
lower priority ones.

Even when interrupts are enabled, the processor still may not be able to
respond instantly to an interrupt request. Most microprocessor instruction sets
contain commands requiring more than one clock cycle to execute. If an
interrupt request occurs in the middle of the execution of a multi-clock
instruction, the request usually has to wait until the instruction is finished before
it can be recognized.
4 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
II. Interrupt Processing and Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If there is more than one source of interrupt, an important design decision to be
considered is whether some high-priority interrupts will be able to pre-empt the
execution of other interrupt service routines. The ability of a higher-priority ISR
to interrupt a lower-priority one is key to the design of deterministic systems.
The lower-priority ISR resumes execution when the higher priority ISR is
complete. This is called nesting, and often requires a carefully constructed
scheme of prioritization and masking.

Once an interrupt request is recognized, the core must identify the source of
the request. Somewhere in memory are the instructions of an ISR written to
service that interrupt source. The processor must somehow associate the
interrupt request with the address of that code, and then branch to that location
and begin execution. One way to do this is to arrange for each interrupt source
to provide the core with a vector number along with the request. The core can
then use that number to look up the ISR address from a dedicated block of
memory called a vector table.

If no vector number is available, or if there are more potential sources of
interrupt than there are entries available in the vector table, an interrupt handler
must be written to poll the available sources to find out which one was
responsible for the request. The address of this handler is then programmed
into the vector table. Once the handler identifies the interrupt source, it either
branches to an appropriate section of code within the handler, or calls a
separate function to process the interrupt. These look-up, address fetch and
branch operations all take time, and careful optimization of these steps can
significantly improve the system latency.

After the interrupt has been serviced, the program’s normal flow of execution
must be able to resume normally from the point the interrupt was recognized.
The only way to accomplish this is to save the machine state that existed just
before the interrupt occurred, and restore it after the ISR completes. This
machine state is often called the context, and it must be restored to its former
state to avoid corrupting the execution of the processor’s other tasks. A
complete context save includes the program counter (PC) and processor status
registers (PSR), any data registers the ISR uses, the stack pointer, and often
other special-purpose registers depending on the particular processor
architecture.3 Any of these that might be altered by the interrupt service routine
must be restored to their original state before the main application resumes
processing. If interrupt nesting is used, then several levels of context may need
to be stored, and the time it takes to do this can affect the system latency.

3. See M·Core Applications Binary Interface Standards Manual, Section 2.2.1 “Register
Assignments”
Vectored Interrupt Handling on the M·Core MMC2107 5

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

III. Interrupt Processing on M·Core

The M·Core architecture was designed from the outset for excellent real-time
response in embedded applications, and many features were added to make
this possible. Since the power-efficient M2xx cores are not intended to run at
high frequencies, they need other ways to improve their interrupt latency.

Deterministic interrupt response was accomplished by using an
instruction-restart model for processing interrupts. If an interrupt request occurs
while the core is processing a multi-clock instruction, an optional setting allows
that instruction to be aborted and restarted later, after the interrupt has been
serviced. This provides a best-case latency of 5 clocks, and a worst-case
latency of 9 clocks before an interrupt service routine begins to execute. These
performance figures represent the capability of the hardware. Software
methods for realizing this performance level will be discussed later.

It is futile to recognize an interrupt request quickly if it takes a long time to save
the context. To help resolve this problem, the M·Core architecture defines two
types of interrupt – normal and fast. This is more than just a simple two-level
priority definition. Normal and fast correspond to the two available interrupt
request signal paths into the core, and these different signals are used to
determine how the context is saved. Instead of saving the PC and PSR on the
stack, the M210 saves them in dedicated 32-bit shadow registers provided just
for that purpose. Moreover, there are two sets of these registers – one set for
normal interrupts (EPC and EPSR) and one for fast interrupts (FPC and FPSR).
There is no need to execute instructions to save the PC or PSR, because the
core saves them automatically as part of the sequence triggered by the
interrupt request.

Figure 1. Context Save for Normal and Fast Interrupts

EPC Program Counter (PC) FPC
EPSR Processor Status Register (PSR) FPSR

Normal Interrupt Fast Interrupt
6 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
III. Interrupt Processing on M·Core

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The M210 programming model also offers two complete sets, or “files”, of
general purpose data registers – 16 regular registers and 16 alternates (Figure
2). Using the alternate register file provides a significant speed advantage
when processing time-critical interrupts, because it allows a high-priority
interrupt to use an independent set of registers, thereby eliminating the need to
save the register context.

Figure 2. M210 Supervisor programming model

The state of the AF (Alternate File) bit in the PSR determines which register file
is active. In practice, the PSR(AF) bit does not usually need to be explicitly set
or cleared by the application. An example will be provided later explaining how
and when PSR(AF) bit is set, and some potential problems with using the
alternate file will also be discussed.

R0’ Alternate
Register
File

PC
R0

R1’
R1

R2’ PSR
R2

R3’ VBR
R3

R4’ EPSR
R4

R5’ FPSR
R5

R6’ EPC
R6

R7’ FPC
R7

R8’ SS0
R8

R9’ SS1
R9

R10’ SS2
R10

R11’ SS3
R11

R12’ SS4
R12

R13’ GCR
R13

R14’ GSR
R14

R15’
R15
Vectored Interrupt Handling on the M·Core MMC2107 7

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IV. MMC2107 Improves on MMC2001

All M·Core-based architectures dedicate a 512-byte contiguous block of
memory to be used as a vector table to hold the addresses of all exception
handlers and user-defined interrupt service routines. No M·Core device
actually has enough interrupt sources to fill the entire table, and there are many
locations that are reserved for future expansion. Table 1 shows the
assignments for the memory locations within the M210 vector table. The table
entries shaded in blue are for the addresses of user-defined ISRs.

Table 1. Vector Table Assignments

Vector
Number(s) Offset (Hex) Assignment

0 000 Reset

1 004 Misaligned access

2 008 Access error

3 00C Divide by zero

4 010 Illegal instruction

5 014 Privilege violation

6 018 Trace exception

7 01C Breakpoint exception

8 020 Unrecoverable error

9 024 Soft reset

10 028 INT autovector

11 02C FINT autovector

12 030 Hardware accelerator

13 034

(Reserved)14 038

15 03C

16–19 040–04C TRAP #0–3 instruction vectors

20–31 050–07C (Reserved)

32–127 080–1FC Assigned to vectored interrupt controller
8 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
IV. MMC2107 Improves on MMC2001

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

All M·Core-based processors have a special-purpose 32-bit vector base
register that the core uses to define the location of the vector table. The VBR
is always cleared to zero on reset, but can be rewritten later to contain any
address divisible by 1024. This means that after reset, the application program
can relocate the vector table to any place on a 1024-byte boundary within the
memory map.

The peripheral modules on the MMC2001 do not have the ability to provide a
vector number with their interrupt requests. Since the peripherals can’t
generate their own vector numbers, the core must provide a vector for them, so
this method is called autovectoring in the M·Core documentation. Even though
there are 96 additional vectors available for servicing user-defined interrupts,
the MMC2001 can only use the INT (normal) and FINT (fast) autovectors. This
restriction is not a problem as long as the application has only one or two
interrupt sources. Under these conditions, two request lines and a two-entry
vector table are sufficient.

As soon as a third interrupt source appears, an intermediate interrupt handler
has to be written to poll the interrupt pending registers to identify the active
source(s), select the source having the highest priority, and then branch to the
correct routine to service it. This is where the autovectoring approach becomes
a less attractive option, because of the additional processing needed between
the time the interrupt request occurs and the time it gets serviced.

The MMC2107 has improved this situation by allowing the peripheral modules
generating interrupt requests to also provide the core with a vector number.
The MMC2107 still supports autovectoring, but there is no longer any need to
use this method because all interrupt sources can now have their own unique
vector number.

Vectoring on the MMC2107 uses 32 separate priorities for normal interrupts,
and the application can assign one of these priorities to any interrupt source. A
complete vector table may be constructed based on these 32 priorities. With
vectored interrupts, the core is now able to redirect the flow of execution to an
ISR without the need for an intermediate handler to identify the interrupt’s
source or priority. This significantly reduces the overhead required before the
application can begin processing an interrupt request.

It is also possible to assign any of the 32 priorities to be implemented as a fast
interrupt type, which gives it precedence over all normal interrupts regardless
of priority. Because fast interrupts use a different set of shadow registers to
save the processor context, a single level of nesting can be implemented
without saving the PC or PSR on the stack. If this nested, fast interrupt is also
configured to use the alternate register set, then its ISR will benefit from the
smallest interrupt latency times even if other normal ISRs are being processed
concurrently.
Vectored Interrupt Handling on the M·Core MMC2107 9

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

V. The Vectored Interrupt Sequence on the MMC2107

There are nine hardware modules on the MMC2107 capable of generating 40
different user-defined interrupts, as shown in Table 2. The interrupt controller
module4 provides an interface to the processor core interrupt logic for these 40
interrupt sources.

When a module generates an interrupt, it supplies a unique signal to the
interrupt controller. The interrupt controller uses this signal to identify the
source, and then associates the source with a 5-bit priority level that the
programmer has chosen for that source. The interrupt controller module then
generates a request to the core consisting of a 7-bit vector number and an
interrupt request signal. This vector number is constructed from the 5-bit
priority level of the source and two additional bits to identify the type of
exception that has occurred – internal, normal, or fast.

The core itself knows nothing of the actual interrupt source – all the core knows
is that an exception has occurred, the type of exception, and its priority (0-31).
That is all the core needs to know, because the vector number contains all the
information necessary to calculate an offset into the vector table. The table
entry at this position is the address of the ISR for the source having a priority
corresponding to this position. Since the vector number is based on the priority
of the interrupt source and not on the source itself, the vector table must be
constructed according to priority, not according to source. Higher priority
interrupts will therefore have the addresses of their service routines at higher
positions in the vector table.

4. See MMC2107 Technical Data – Section 7, “Interrupt Controller Module” for an in-depth
description of the interrupt controller module.
10 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
V. The Vectored Interrupt Sequence on the MMC2107

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 2. MMC2107 Interrupt Source Assignments

Source Module Flag Description

0 QADC PF1 Queue 1 conversion pause

1 CF1 Queue 1 conversion complete

2 PF2 Queue 2 conversion pause

3 CF2 Queue 2 conversion complete

4 SPI MODF Mode fault

5 SPIF Transfer complete

6 SCI1 TDRE Transmit data register empty

7 TC Transmit complete

8 RDRF Receive data register full

9 OR Receiver overrun

10 IDLE Receiver line idle

11 SCI2 TDRE Transmit data register empty

12 TC Transmit complete

13 RDRF Receive data register full

14 OR Receiver overrun

15 IDLE Receiver line idle

16 TIM1 C0F Timer channel 0

17 C1F Timer channel 1

18 C2F Timer channel 2

19 C3F Timer channel 3

20 TOF Timer overflow

21 PAIF Pulse accumulator input

22 PAOVF Pulse accumulator overflow
Vectored Interrupt Handling on the M·Core MMC2107 11

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The programmer decides which priorities are assigned to which interrupt
sources, and this assignment is made in the Priority Level Select Registers
(PLSR) in the interrupt controller module. The MMC2107 has 40 unique
user-defined interrupt sources and 32 possible priorities to assign to them.
Naturally, there are 40 PLSRs corresponding to the 40 different interrupt
sources, and each PLSR can be programmed with a priority value from 0-31.
The interrupt controller module uses this information to associate a priority with
each incoming interrupt request, and it is this priority that the core uses to find
the address of each interrupt service routine.

23 TIM2 C0F Timer channel 0

24 C1F Timer channel 1

25 C2F Timer channel 2

26 C3F Timer channel 3

27 TOF Timer overflow

28 PAIF Pulse accumulator input

29 PAOVF Pulse accumulator overflow

30 PIT1 PIF PIT interrupt flag

31 PIT2 PIF PIT interrupt flag

32 EPORT EPF0 Edge port flag 0

33 EPF1 Edge port flag 1

34 EPF2 Edge port flag 2

35 EPF3 Edge port flag 3

36 EPF4 Edge port flag 4

37 EPF5 Edge port flag 5

38 EPF6 Edge port flag 6

39 EPF7 Edge port flag 7

Table 2. MMC2107 Interrupt Source Assignments

Source Module Flag Description
12 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
VI. An Example MMC2107 Interrupt Sequence

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VI. An Example MMC2107 Interrupt Sequence

For example, consider an Edge Port5 interrupt. The MMC2107 Edge Port
module provides eight external pins that can be configured to sense an external
pulse and generate an interrupt when that pulse occurs. This is useful for
interfacing with keypads, limit switches, motion sensors, or any other device
that can produce a voltage transition edge.

Table 2 shows that Edge Port Flag 5 (EPF5) is interrupt source number 37. If
the programmer wanted to give that interrupt source a priority of 13, he would
therefore program PLSR37 in the interrupt controller module with a value of 13.

The programmer then has to decide whether this should be a normal or fast
interrupt type. This decision will determine whether interrupts from this source
will use the normal or fast shadow registers to save the PC and PSR (see
Figure 1), and also whether this source will be able to interrupt the execution of
normal interrupt service routines already in progress.

Assume that the programmer wants this to be a normal interrupt, because it is
not time-critical to this system. He would then set the 13th bit in the Normal
Interrupt Enable Register (NIER). This defines a priority-13 interrupt to be a
normal type.

Now, whenever Edge Port 5 (source 37) generates an interrupt request, the
interrupt controller associates priority 13 with it, and sends a normal interrupt
request signal and a vector number to the core.

The normal interrupt request tells the core to stop doing whatever it is doing,
save the PC and PSR on the EPC and EPSR shadow registers, and then clear
the Exception Enable bit in the PSR. This last step is taken because, if another
normal interrupt request is recognized now, the core will be unable to save the
PC and PSR again, and the processor context will be lost. With PSR(EE)
cleared, any further normal exception requests will trigger an unrecoverable
error system exception. If the programmer has written a proper handler for this
situation, he’ll receive a diagnostic report that a fatal error has occurred. The
program will need to be modified to either avoid this error or take some
corrective action if it happens again.

The core then sets the PSR(S) bit to enter Supervisor mode, and clears the
PSR Trace Mode (TM) and Interrupt Enable (IE) bits to disable Trace Mode and
any further normal interrupts. The vector table is located in a real, physical
memory location, not on a virtual page, so the PSR(TC) bit is also cleared to
prevent the address from being translated by an external memory management
unit.

5. See MMC2107 Technical Data – Section 12, “Edge Port Module”.
Vectored Interrupt Handling on the M·Core MMC2107 13

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The core then extracts the priority information from the vector number. Based
on that priority (13), it fetches an address from the 13th 4-byte entry in the
vectored interrupt section of the vector table and copies that address into the
program counter.

Table 1 shows that the vectored interrupt section begins at an offset of 32
words (128 bytes) from the start of the vector table. The start of the table is
defined by the contents of the vector base register, so the core would read the
VBR, add an offset of (32 + 13) * 4 to it, and use the contents of that memory
location as the address of the EPF5 interrupt service routine. Hopefully the
programmer has had the foresight to place a useful address in this vector table
entry. If not, things are going to go very wrong, very quickly, because the
processor will jump to whatever address it finds there and begin executing
instructions at that address, whether or not they are valid.

With the Edge Port 5 ISR address loaded into the program counter, the core
fetches, decodes, and executes the first instruction of the ISR. In other words,
it begins servicing the normal interrupt. Note that the ability to recognize fast
interrupts has not been affected by any of these operations. The PSR(FE) bit
is still set, so the core can still recognize a fast interrupt request from some
other source, and the PC and PSR will still be saved because the FPC and
FPSR shadow registers are still available for that purpose.

In practice, the whole process can take as few as 5 clock cycles from the time
the interrupt request is recognized to the time the ISR begins to execute. This
latency will be longer if a multi-clock instruction is being executed when the
interrupt request occurs. The longest multi-clock instruction is the signed
divide, which can take an additional 37 clock cycles to complete. Setting the
Interrupt Control bit in the PSR can reduce this extra latency to 4 additional
clocks. If the PSR(IC) bit is set when the interrupt request is received, the core
will abort the multi-clock instruction, recognize and service the interrupt, and
then restart the original instruction afterwards. Like so many other options on
this device, PSR(IC) provides the flexibility to tailor the behavior of the
processor to suit the requirements of the system.
14 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
VII. Further Optimizations – The Alternate Register File

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VII. Further Optimizations – The Alternate Register File

After the core fetches the address of the EPF5 ISR from the vector table and
puts it into the program counter, it also uses that address to do one other very
important thing – the least significant bit of the EPF5 ISR’s address is copied
into the Alternate File bit of the PSR. The state of the PSR(AF) bit is what
enables the 16 alternate registers. These are the registers which should be
used if it is necessary provide the minimum latency for the most time-critical
interrupt service routine. Because the EPF5 interrupt isn’t very important in this
hypothetical application, there is no need for this extra level of optimization.

The PSR(AF) bit is cleared on reset and is seldom set in normal operations, so
the alternate registers are usually left disabled when an interrupt is serviced.
Remember that the M·Core architecture has a fixed-length, 16-bit instruction
set. Since all instructions are two bytes long, their addresses in the executable
section of the program code will always be even numbers. Since all the least
significant bits in all the ISR addresses contained in the vector table are always
zero, these bits would essentially be wasted space. M·Core’s designers
decided instead to use these bits as flags to selectively enable the alternate
registers for each individual ISR.

A vector table is constructed in Flash or RAM by copying the addresses of all
the interrupt service routines into it, either when the Flash is programmed, or
during the RAM initialization sequence. Since these ISR addresses are always
even by default, the only way a vector table entry can become odd is if the
compiler/linker forces it to be odd by explicitly setting that entry’s least
significant bit before the table is written. This can’t occur by accident, so the
alternate file remains disabled unless intentionally enabled by the program.

The alternate file should be used only for the most time-critical interrupt service
routines. When nesting is used, the alternate file should only be used with the
fast interrupt type to provide the minimum latency. The Edge Port Flag 5
interrupt was not time-critical in this example, so there was no need to use the
alternate register file.
Vectored Interrupt Handling on the M·Core MMC2107 15

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VIII. Unintended Consequences

Whenever a C function is called, the compiler preserves the register context by saving
onto the stack any non-volatile registers that the function uses. These will be popped
off the stack after the function returns, restoring the context to its former state.
Some of the function’s arguments may also be passed on the stack, depending
on how many there are.

From a C compiler’s point of view, an interrupt service routine is similar to a function
that is never called, takes no arguments and returns no values. The return
statement is different, but the compiler still generates the code to save the
register context before it uses any registers in the ISR. This is where a potential
problem arises, one which needs to be avoided when activating the alternate
registers for a fast interrupt service routine.

On the M·Core processor, certain registers are bound to a particular purpose
because specific instructions use them.6 In particular, the R0 register is used
as a stack pointer, because the M·Core instruction set contains some special
commands that depend on having R0 point to the next available stack location.

If the alternate register file is active, then the alternate register R0’ will be used
as a stack pointer instead of the normal R0. But R0’ is not connected to R0 to
allow it to constantly mirror the contents of the regular stack pointer. The two
are not linked together in any way. Unless R0’ is initialized in the startup
sequence, it will probably not even contain the address of a valid memory
location. Even if R0’ is initialized at startup, there is no way to ensure that R0’
still matches R0 when an ISR begins to execute. In short, if the alternate file is
enabled, the stack cannot be used safely without first checking that R0’ has the
same contents as R0.

This is the crux of the problem. When a C compiler generates code to save the
register context on the stack, this code forms the first executable statements of
the ISR. This preamble code runs before the ISR has a chance to do anything
else. By the time R0’ can be validated, the damage is already done. This is why
M·Core compilers need to provide the option of turning off the generation of
preamble code to build a stack frame.

The whole point of using the alternate registers is to avoid having to use the
stack to save the register context in the first place. The stack should not be
used when the alternate register file is enabled.

6. See M·Core Applications Binary Interface Standards Manual, Section 2.2.1 “Register
Assignments”
16 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
IX. Putting It All Together – A Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IX. Putting It All Together – A Sample Application

The Hardware
Platform

Freescale provides two hardware development tools for the MMC2107, a
mid-range EVB2107 evaluation board, and a more expensive CMB2107
Controller and Memory Board. On both the CMB/EVB2107 boards, there are
four LEDs available for user control.7 There are sample applications available
that blink these LEDs, but this project will do something a little more involved –
it will make the LEDs fade in and out by varying their apparent brightness.

If a light flashes rapidly enough, the human brain will sense a continuous light
source that appears to become brighter or dimmer as the duty cycle changes.
Varying the average power by changing the duty cycle is called pulse-width
modulation, and the technique is often used to control the speed and torque of
electrical motors. It is also a good way to save energy, because it allows the
average current through a coil (or an LED, in this case) to be limited without
using a resistance.

The MMC2107 Timer
Module8

Many microprocessor designs have integrated modules for measuring time
intervals and generating waveforms. There are two general-purpose,
four-channel timers on the MMC2107. Although these timers can implement
simple pulse-width modulation (PWM), they are not specially designed for this
purpose. In particular, the MMC2107 timers are not capable of generating
buffered PWM waveforms. This means that the duty cycle must not be changed
too suddenly, or the waveform will be inconsistent and the LEDs will flicker.

Another design constraint of this specific application is that the LEDs are not
electrically connected to the output channels of the timers on the
CMB/EVB2107 boards. Instead of using the timer output pins to drive
waveforms into the LEDs, the timers will generate interrupts. These interrupts
will be used to turn the LEDs on and off. This is a more processor-intensive way
to accomplish PWM, but it works on the CMB/EVB2107 without having to
change the circuit.

7. See MMCCMB2107 Controller and Memory Board (CMB2107) User’s Manual

8. See MMC2107 Technical Data – Section 15, “Timer Modules (TIM1 and TIM2)”.
Vectored Interrupt Handling on the M·Core MMC2107 17

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MMC2107 PIT
Module9

Once the LEDs are flashing with a given duty cycle, the duty cycle will be slowly
changed to produce a fading effect. The MMC2107’s Programmable Interrupt
Timer (PIT) will be used for this purpose. The PIT is a countdown timer driven
from a scalable input clock, and can be set to generate an interrupt when its
counter underflows. There are two PITs on the MMC2107, and both will be
used for this application. Each time a PIT interrupt occurs, a pointer will be
advanced through a look-up table of duty cycle values. By choosing these
values carefully, the fading effect will be produced.

Metrowerks
CodeWarrior

The Metrowerks CodeWarrior for M·Core R2.5 integrated development
environment (IDE) was used to develop this application. The R2.5 version of
CodeWarrior provides the user with a choice between the traditional
CodeWarrior R2.0 IDE (compiler / linker / debugger / project manager) and an
IDE that uses a similar set of tools developed by Hiware. Since it is impossible
to predict which CodeWarrior version will be in use by the reader, two separate
projects are included with this applications note. The syntax is very similar
(most of the source code is common to both versions) and there are only a few
things that need to be changed.

The most significant difference is in the files that instruct the linker where in
memory to locate the compiled objects. In the CodeWarrior environment, these
instructions are contained in a linker command file. In the Hiware tool set, this
is done in a linker parameter file. Although the format of these files is different,
the purpose is the same.

When programming an application that is closely tied to the processor
hardware, it is often necessary to issue commands directly to the compiler to
configure the way it produces executable code. These commands are called
pragmas, and their syntax is compiler-specific. Where pragmas have been
used, a conditional directive instructs the compiler to choose between the two
versions.

In both the Metrowerks and Hiware M·Core compilers, stack frame generation
is enabled by default, and the option to turn it off is selected by a pragma. The
pragma syntax is different for the two compilers, but they have the same effect.

9. See MMC2107 Technical Data – Section 14, “Programmable Interrupt Timer Modules
(PIT1 and PIT2)”.
18 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
IX. Putting It All Together – A Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Hiware and CodeWarrior assemblers also use different syntax. Assembly
language is required in cases where there is no appropriate C-language
command to accomplish what is desired at a hardware level. An example of this
is when the program must directly read or modify a hardware register on the
MMC2107. The C programming language does not contain any statements to
do this, so M·Core assembly language is used instead.

There are two ways to incorporate assembly language statements into a C
language program – in-line, or as a separate module – and examples are
provided for each method. Every compiler handles assembly language a little
differently, so this is another case where two different versions of the code are
necessary.

Once CodeWarrior is installed on the host computer, is should be possible to
double-click on either of the project (*.mcp) files to launch each CodeWarrior
project with its associated IDE.

Note that at the time of this writing, the Hiware version of the project does not
support the MetroTRK target resident kernel. Because of this, some type of
background debug mode interface (e.g. Freescale EBDI10) is necessary to run
the Hiware version. This project was initially developed using an Abatron11
BDI2000.

10. Enhanced Background Debug Interface, Freescale part number MMC14EBDI02

11. For information on the Abatron BDI2000, see http://www.abatron.ch
Vectored Interrupt Handling on the M·Core MMC2107 19

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Project Directory Tree

Common Files headers inttypes.h

 sources init_core.c

LED_Wave_CW LED_Wave_CW.mcp

LED_Wave.h

reg_rw.s

LED_Wave_(CMFR).lcf

LED_Wave_Hiware LED_Wave_Hiware.mcp

LED_Wave.h

reg_rw.asm

 prm burner-flash.bbl

isr_stubs.h

mmc2107_cc_cs.h

mmc2107_core.h

mmc2107_interrupts.h

mmc2107_pit.h

mmc2107_timer.h

mmc2107_wdog.h

init_ints.c

init_pits.c

init_timers.c

isr_PIT.c

isr_stubs.c

isr_TIMER.c

LED_Wave.c

vector_table.c

rom_copy.c

startup.c

strcpy.c

LED_Wave_(Ext RAM).lcf

startup.c

burner-ram.bbl

project-flash.prm

project-ram.prm

 headers

 sources

 headers

 sources

 linker

Source/header
files common to
both projects

Code Warrior
R2.0 Files

Code Warrior
(Hiware) Files
20 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
Appendix A: Notes on the LED_Wave project

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A: Notes on the LED_Wave project

The Main Program The LED_Wave main program is a simple interrupt-driven application, meaning
that it stays in a low-power mode and waits for interrupts to occur.

File: LED_Wave.c

void main (void)
{
 WriteVBR(vectors);
 init_core();
 init_pits();
 init_ints();
 init_timers();

 EnableExsAllInts;

 for(;;) {
 Doze_Mode
 }
}

The main() function points the VBR to the vector table, makes some one-time
calls to initialize the peripheral modules, enables interrupts, and goes to sleep.
The rest of the application’s working parts are in the initialization functions and
the interrupt service routines.

“EnableExsAllInts” and “Doze_Mode” are substitution macros for inline
assembly-language routines. Once the project is compiled, CodeWarrior will
navigate to the definitions of these macro names by using a right-mouse click.
The assembly code could have been written inline with the main program code,
but this would have required two different versions because the assembly
syntax is slightly different between the two compilers.

“WriteVBR(vectors)” is a function call to an assembler subroutine, one of a
complete set of register read/write routines that are present in two files called
reg_rw.s (CodeWarrior) and reg_rw.asm (Hiware).
Vectored Interrupt Handling on the M·Core MMC2107 21

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Initializing the
Vector Table

File: vector_table.c

A vector table is a block of memory containing pointers which are the physical
addresses of interrupt service routines. From the C language’s standpoint,
ISRs are functions which take and return no arguments, therefore the vector
table is defined that way:

void (*const vectors[128])(void) = { . . . }

It is an array of 128 constant pointers to functions taking no parameters and
returning no parameters. These are defined as constant pointers because they
will not change after the program is running. Vectors usually go into non-volatile
Flash memory, so it is entirely accurate to tell the linker that they are constants.

Also in vector_table.c is a macro definition:

#define set_low_bit(addr) ((void(*const)(void)) ((uint8_t *) (addr) + 1))

“set_low_bit” is a macro used to convert a vector table entry into an odd
number by setting its least significant bit. This is how the alternate registers are
enabled for a given interrupt service routine. Since the vector table is an array
of function pointers, it is not legal to “add a one” to them. The address first has
to be typecast into a “pointer to unsigned char” before it can be incremented.
(Note that ANSI C9x portable type definitions have been used throughout.)
Once the address has been changed, it is typecast back into a function pointer.

Further down the vector table is an example of how this macro is used:

set_low_bit(&isr_TIM1C0F),

The linker stores where it has relocated the isr_TIM1C0F module, so the
module’s name is used to reference its address, and the macro sets the least
significant bit. Now the service routine for the Timer 1, Channel 0 Flag interrupt
will use the alternate registers.

Note that although only six positions in the table are used for the interrupt
service routines, the remaining positions have been filled with the addresses of
stub ISRs. This is for debugging, as can be seen from the definition of one of
these routines:
22 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
Appendix A: Notes on the LED_Wave project

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

File: isr_stubs.c

/* Misaligned Access Exception Handler */
#ifdef HIWARE
#pragma NO_RETURN
#pragma NO_FRAME
#else
#pragma naked on
#endif

void misaligned_access(void)
{
 for(;;) {BreakPoint}
}

#ifndef HIWARE
#pragma naked reset
#endif

This translates into just two lines of assembly code – a breakpoint instruction,
and an unconditional branch back to that breakpoint. All of the conditional
directives are there to tell the two different compilers not to waste memory
space building a stack frame or executing a return statement. If the program
gets here, it will be trapped. If memory space is at a premium, these stubs could
be combined into a single “spurious interrupt” handler. It is easier when
debugging to keep them as separate routines, because then the information
about where the program is trapped appears in the debugging window.

Initializing the Core
and Peripherals

File: init_core.c
File: init_pits.c
File: init_ints.c
File: init_timers.c

These initialization functions are all pretty straightforward, with only a few
points worth mentioning. When the interrupt control module is initialized in the
init_ints() function, notice that four of the six TIMER interrupts are of the
fast interrupt type. This allows them to interrupt the other normal interrupt
service routines. Also notice that even though these Priority 0..3 TIMER
interrupts appear to be of lower priority than the rest, they are in fact higher
priority because they are fast interrupts.

There is also a point of interest in the TIMER initialization function. Although
there are only four LEDs to flash, six timer channels are actually used. The third
channel of both timers is set up to perform a special task – the Timer Counter
Reset Enable (TCRE) bits are set in the Timer Status and Control Registers,
causing each Channel 3 output-compare event to reset its main timer counter.
This allows the implementation of variable-frequency PWM with 16-bit
resolution.
Vectored Interrupt Handling on the M·Core MMC2107 23

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Interrupt
Service Routines

File: isr_PIT.c
File: isr_TIMER.c

These are the routines which handle the switching of the LEDs. The PIT ISR
sets a global flag which signals the other ISRs to change the duty cycle of the
LEDs.

The isr_TIMxC3F routines perform two functions. Most of the time, they turn on
two of the four LEDs. Occasionally they have to respond to a flag which tells
them to change the duty cycle, causing the apparent brightness of the LEDs to
change. In this application, each routine clears this flag after it finished setting
the new duty cycle, so two separate flags were required. If only one of the
routines cleared the flag, only one flag and one PIT interrupt would be
necessary.

The remaining four isr_TIMxCxF routines each toggle one of the four LEDs.
These fast interrupt service routines also use the alternate registers, as can be
seen from the compiler directives which surround the code. These ISRs can
pre-empt the others, they do not use the stack, they store the PC and PSR in
the fast shadow registers, and the compiler translates their return statement
differently.12

void isr_TIM1C0F (void)
{
 LED_State ^= bit16; /* toggle LED0 */
 *CMB2107_LED_addr = LED_State;
 TIM1FLG1_reg = 0x01; /* clear TIMER1 channel 0 flag */
}

The Project Header
File

File: LED_Wave.h

There are two versions of this file, one in the “CW” (CodeWarrior) subdirectory,
and one in the “HW” (Hiware) subdirectory. They are identical except for one
line:

#define HIWARE

in the Hiware version, and

/* #define HIWARE */

in the CodeWarrior version.

12. It is also possible to combine the first two statements of this ISR into one, and eliminate the
LED_State variable, but some compilers produce unexpected results when you do this.
24 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
Appendix A: Notes on the LED_Wave project

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A number of things get either initialized or declared in this file. This initialization
happens only once, when the file is #included from the main program. This
selectivity is handled by the GLOBALS flag, which is defined only once, in the
main program.

It is important to define NULL as a pointer to a type void, because NULL is used
as a filler for the unused vector table entries. Since the vector table is an array
of pointers, NULL needs to be a pointer as well. This is pretty standard, but
some libraries redefine NULL to be zero.

#undef NULL
#define NULL ((void *) 0)

The lookup table for duty cycles is self-explanatory. Notice that 0% and 100%
duty cycles are avoided (100% would be a value of 1024), and there are no
sudden large changes, because the MMC2107 timers cannot produce true
buffered PWM.

 const uint16_t oc_lookup[oc_tabsize] = {
 5, 5, 5, 5, 5,
 5, 5, 5, 5, 5,
 5, 5, 5, 5, 5,
 5, 5, 10, 15, 20,
 30, 50, 90, 130, 170,
 210, 250, 290, 330, 370,
 410, 450, 490, 530, 570,
 610, 650, 690, 730, 770,
 810, 850, 890, 930, 970,
 1010, 1010, 1000, 990, 970,
 950, 930, 910, 880, 840,
 800, 760, 720, 680, 640,
 600, 560, 520, 480, 440,
 400, 360, 320, 280, 240,
 200, 160, 120, 80, 40,
 20, 15, 10, 5, 5
 };

There is one especially important part of LED_Wave.h which is used only by
the Hiware linker, and it identifies the vector table as a block belonging to its
own special memory section. The reason for this is explained in the next
section on linker instructions.

#ifdef HIWARE
#pragma CONST_SECTION Exception_Table
#endif
Vectored Interrupt Handling on the M·Core MMC2107 25

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instructing the
Linker

Instructions must be provided to the linker to specify where the executable code
is to be located in memory. Because Hiware and CodeWarrior use different
linkers, it is not surprising that they use different linker instructions. In the
CodeWarrior version, these instructions are contained in a linker command file.
Hiware refers to them as linker parameter files, but their purpose is the same.

File: LED_Wave_(CMFR).lcf
File: LED_Wave_(Ext RAM).lcf

These two linker command files contain statements relating to the Executable
and Linking Format (ELF) output of the CodeWarrior linker.13 Most of the
statements in this file are explained in the documentation or in the comments
in the linker command files themselves, but a few things should be explained
because they are essential.

These two files differ by the value of one number on a single line – the first line
of the MEMORY section that defines the location of the vector table. In the
“CMFR” version, the linker is told to locate the vectors in the internal Flash array
of the MMC2107. In the “Ext RAM” version, the vectors will reside in external
RAM on the EVB2107 development board. Because the remaining memory
sections are located relative to the vectors, the entire program image will reside
either in Flash or external RAM depending on the value of that single address.
This allows the selection of either internal or external program execution simply
by choosing the build target containing the correct linker command file.

The vector table is a data block that is not accessed or referenced by any
executable statement in the program. An optimizing linker will recognize the
fact that this data is apparently unused and will omit this section in an effort to
reduce code size, a process known as dead-stripping. The CodeWarrior
linker’s FORCE_ACTIVE command is one way to inform the linker that the
objects within the brackets must be left alone and not dead-stripped:

FORCE_ACTIVE { # prevent dead-stripping of vector table
 vectors
}

Since interrupt service routines are never actually called, they would also be at
risk from dead-stripping were it not for the fact that they are referenced in the
vector table. As long as the vector table is forced active, the ISRs are safe and
will be included by the linker.

Notice also how the vector table data block is singled out from the rest of the
program by specifying just the read-only data (.rodata) generated from the
particular file containing the vector table:

13. A guide to the ELF Linker and Command Language is included in Chapter 9 of the docu-
ment CodeWarrior IDE – Targeting Freescale M·Core Embedded Systems
26 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
Appendix A: Notes on the LED_Wave project

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

.VECTOR_TABLE: {

 . = ALIGN(0x400); # vector table must reside on a 1KB boundary
 vector_table.c (.rodata)

} > .vectors

This only works if the following CodeWarrior IDE option is selected:

 - Mcore Base Project Settings

 - Target Settings Panel

 - Code Generation

 - Make Constant Data Read-Only

An initialized array like the vector table would ordinarily be placed in the “.data”
section, but the vectors need to be read-only because they are constants.
Selecting this option causes all constant data to be placed into the “.rodata”
section, which the linker then locates at an address specified in the MEMORY
segment at the beginning of the linker command file.

File: project-flash.prm
File: project-ram.prm

The Hiware linker instructions are somewhat less complex than CodeWarrior’s
linker command files because the Hiware SmartLinker doesn’t need as much
information. The Exception_Table section that was defined in the Hiware
version of the LED_Wave.h header file is referenced here, and it is easy to see
where the vectors are going to reside. The section labelled CMB2107_Pseudo_ROM
mirrors the part of the internal Flash array on the MMC2107 that would have
been used for constant data and program storage. The ability to locate the
entire program image into RAM allows the designer to develop the application
without repeatedly erasing and reprogramming the Flash array. When the
application is tested and stable, it can be located in Flash by selecting the Flash
build target.
Vectored Interrupt Handling on the M·Core MMC2107 27

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NAMES
END

SECTIONS
 MMC2107_Vector_ROM = READ_ONLY 0x00000000 TO 0x000001FF;
 MMC2107_OnChip_ROM = READ_ONLY 0x00000200 TO 0x0001FFFF;
 MMC2107_OnChip_RAM = READ_WRITE 0x00801000 TO 0x00801FFF;

 CMB2107_Vector_ROM = READ_ONLY 0x80000000 TO 0x800001FF;
 CMB2107_Extern_ROM = READ_ONLY 0x80000200 TO 0x801FFFFF;

 CMB2107_Vector_RAM = READ_ONLY 0x81000000 TO 0x810001FF;
 CMB2107_Pseudo_ROM = READ_ONLY 0x81000200 TO 0x8101FFFF;
 CMB2107_Extern_RAM = READ_WRITE 0x81020000 TO 0x811FFFFF;
END

PLACEMENT
 Exception_Table INTO CMB2107_Vector_RAM;
 DEFAULT_ROM INTO CMB2107_Pseudo_ROM;
 DEFAULT_RAM INTO CMB2107_Extern_RAM;
END

STACKSIZE 0x400
28 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
Appendix B: Glossary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B: Glossary

Autovector There are only two autovectors defined in the M210 core architecture. These
are the /INT and /FINT Autovectors, and are located at addresses
[VBR]+0x28 and [VBR]+0x2C, where [VBR] is the address contained by the
Vector Base Register. If the AE bit in the Interrupt Control Register is set, these
two autovectors contain the addresses of the two interrupt handlers that must
recognize, identify, prioritize and act upon every interrupt request.

EBDI Enhanced Background Debug Interface. A Freescale development tool that
translates debugging commands from a host computer into machine
commands that a target system can execute. The EBDI exercises the target
MCU and performs debugging functions through the On-Chip Emulation
(OnCE) connector or the Background Debug Mode (BDM) connector.

Fast Interrupt A fast interrupt is one that has been initialized to use the fast interrupt circuitry
of the M210 core. A fast interrupt is initialized when the bit is set in the Fast
Interrupt Enable Register (FIER) corresponding to the priority of the interrupt
source. For example, EPORT[6] is interrupt source 38. If PLSR38 is initialized
to 5, then EPORT[6] will be a priority-5 normal interrupt. But if the FIE5 bit in
the FIER is set, then all priority 5 interrupts will be processed as fast interrupts,
and will have the ability to preempt the processing of all normal interrupt service
routines.

Interrupt Request An interrupt request is a voltage transition on an interrupt request line into the
core. Before the core can recognize the interrupt request, it must synchronize
the request with the processor clock. If the MMC2107 is in Stop mode, there is
no clock available, so the part must wake up before processing the request.
This is possible because the request propagates from the interrupt stimulus,
through the interrupt controller, and into the M210 core through purely
combinational logic.

When a peripheral device asserts an interrupt request, this assertion must be
recognized and acted upon before it can be serviced. An interrupt request is
just that – a request. The request might be serviced immediately or not,
depending on whether it is normal or fast, whether interrupts are enabled at the
moment the assertion occurs, or whether interrupts of equivalent or lesser
priority have been masked.
Vectored Interrupt Handling on the M·Core MMC2107 29

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Interrupt Service
Routine

An ISR is an executable code segment containing the program instructions that
are associated with a particular interrupt source.

Mask To disable all interrupt sources of a given priority or less. Masking is useful only
if the program employs nesting of multiple interrupts of the same type (normal
or fast), because fast interrupts on the M·Core are capable of nesting over
normal interrupts.

Nesting Nesting is the recognition of one interrupt request from within another
interrupt’s service routine. The MMC2107 supports single-level nesting
automatically through the use of fast and normal interrupts, which have
separate fast and normal shadow registers to save the program counter and
processor status register. Nesting of multiple interrupts of the same type can
be accomplished by saving the complete context within an ISR, masking
interrupts of lesser or equal priority, and then re-enabling interrupts of that type
by setting the PSR(EE) or PSR(FE) bit.

Normal Interrupt A normal interrupt is one that has been initialized to use the normal interrupt
circuitry of the M210 core. A normal interrupt is initialized when the bit is set in
the Normal Interrupt Enable Register (NIER) corresponding to the priority of the
interrupt source. For example, the PIT2 module is interrupt source 31. If
PLSR31 is initialized to 3 and the NIER(NIE3) bit is set, then PIT2 interrupts will
be processed as normal, priority level 3.

Priority The value between 0-31 entered into the Priority Level Select Register (PLSR)
for a given interrupt source.

The position in the vector table of a given ISR's address entry. The higher in
the vector table, the greater the priority. If more than one interrupt is pending at
a given time, the one with greater priority will be serviced first.

Reset Vector The reset vector is the first entry of the vector table. On reset, the program
counter will be loaded with the value contained at this location, causing the
contents of memory at an address equal to this value to be fetched and
executed. This location may be in internal or external memory, depending on
the boot configuration.
30 Vectored Interrupt Handling on the M·Core MMC2107

For More Information On This Product,
 Go to: www.freescale.com

AN2220/D
Appendix B: Glossary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector An individual entry in the vector table. There are 15 internal system exception
vectors, and a choice of two autovectors or 64 user-defined interrupt vectors
implemented in the MMC2107 architecture. (There is room in the table for 96
interrupt vectors, but MMC2107 only implements 64 of them.) The system
exception vectors begin at the address contained by the Vector Base Register
(VBR). The VBR is cleared on reset, so the reset vector must always reside at
0x0. This address can be in external or internal memory, depending on the
choice of external or internal boot selection at reset. The 64 user-defined
vectors assigned to the vectored interrupt controller occupy a 256-byte
contiguous block of memory beginning at [VBR]+128. If the AE bit in the
Interrupt Control Register is clear, the core will use these 64 vectors as a table
from which it will fetch the addresses of any interrupt service routines. The
address will be fetched from a location in the table corresponding to the priority
of the interrupt source.

Vector Table In M·Core processors, this is a contiguous 512-byte memory segment
beginning at an address equal to the contents of the VBR. The vector table
contains the addresses of all the system exception handlers and user-defined
interrupt service routines. The vector table must reside on a 1024-byte
boundary, because the VBR's lowest 10 bits are hard-wired to zero.
Vectored Interrupt Handling on the M·Core MMC2107 31

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2220/D
For More Information On This Product,

 Go to: www.freescale.com

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

	Abstract
	I. Introduction
	II. Interrupt Processing and Latency
	III. Interrupt Processing on M·Core
	IV. MMC2107 Improves on MMC2001
	V. The Vectored Interrupt Sequence on the MMC2107
	VI. An Example MMC2107 Interrupt Sequence
	VII. Further Optimizations – The Alternate Register File
	VIII. Unintended Consequences
	IX. Putting It All Together – A Sample Application
	The Hardware Platform
	The MMC2107 Timer Module
	The MMC2107 PIT Module
	Metrowerks CodeWarrior

	Appendix A: Notes on the LED_Wave project
	The Main Program
	Initializing the Vector Table
	Initializing the Core and Peripherals
	The Interrupt Service Routines
	The Project Header File
	Instructing the Linker

	Appendix B: Glossary
	Autovector
	EBDI
	Fast Interrupt
	Interrupt Request
	Interrupt Service Routine
	Mask
	Nesting
	Normal Interrupt
	Priority
	Reset Vector
	Vector
	Vector Table

