
AN2221/D
Rev. 1, 08/2002

MI Bus Software Driver for
the MC9S12DP256

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

n
c

..
.

by Mark Houston
8/16 Bit Applications Engineering
Freescale, East Kilbride

Introduction

The MI Bus is a serial communications protocol that supports distributed real
time control. It is suitable for medium speed networks requiring very low cost
multiple wiring, providing high data integrity as a result of continuous push-pull
communications from the master to the slaves. A single wire is used to connect
the slave devices to the master, with up to 8 slave devices being able to
connect at one time.

The MI Bus is suitable to be used to control smart switches, motors, sensors
and actuators. In automotive applications the MI Bus can be used to control
systems such as air conditioning, mirrors, seats, window lift and head light
levellers.

This application note will describe software that will replicate a MI Bus Master
and describe the operation of such software. The Slave will not be discussed
in this document.
© Motorola, Inc., 2002

For More Information On This Product,
 Go to: www.freescale.com

RXZB30
forward100

RXZB30
logo

RXZB30
copyright

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MI Bus Concept

The MI Bus utilises a push/pull sequence to transfer data between the master
and slaves. The master sends a push field to the slave devices connected to
the bus. This field contains data, plus the address of one of the slaves. The
slave addressed then responds to the received data, transmitting the Pull field
on the MI Bus. The Master then collects this transmitted data from the bus. The
data returned by the slave is likely to be status bits representing internal or
external information.

Figure 1. Basic MI Bus Topology

Push/Pull Sequence Communication between the Master and Slave always uses the same frame
organisation. The Master initialises the communication by transmitting serial
data on the MI Bus; this is called the Push field. Once the Push field has been
completed, the Slave device that has been addressed returns the values it
holds. This response is called the Pull field.

Master
Slave 1

Slave 2

Slave 3

Slave 4

Slave 5

Slave 6

Slave 7

Slave 8
2 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
The MI Bus Concept

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Push Field The Push field contains four sections. A start bit, a push synchronisation bit, a
push data field and push address field. The start bit consists of 3 time slots held
at logic zero, violating the rules of bi-phase encoding. The synchronisation bit
consists of a Bi-phase encoded ‘0’, bi-phase encoding will be discussed later.
The data field contains 5 bits of bi-phase encoded data, and the address field
consists of 3 bits of bi-phase encoded data. The address data occupies the
upper bits of the data register, with the data bits occupying the lower 5 bits.

Figure 2. Push Field

Pull Field The pull field contains three sections. A pull synchronisation bit. This consists
of a bi-phase coded ‘1’ which is initiated by the Master in the time slot after the
last address bit in the push field. The Pull data field, which comprises of three
bits of Non Return to Zero coded transmission, with each bit taking a single time
slot. The final section in the pull field is the End of Frame field. This is composed
of a square wave signal typically having the frequency of 20KHz +/- 1%
tolerance.

Figure 3. Pull Field

Start
Bit Synchronisation Bit

Data Bits
Address Bits Synchronisation Bit

for Pull field

Pull Synchronisation Bit
NRZ Data End of Frame
MI Bus Software Driver for the MC9S12DP256 3

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MI Bus Timing Each of the level changes in the push/pull fields happens in a pre-determined
time slot. For example the Start bit in the Push field requires three time slots.
Similarly for the three data bits being returned by the slave on the Pull field,
each of these must be a single time slot. Below is a diagram taken from the
HC912D60 databook. This diagram shows how each of the time slots
correlates to a single bit on the MI Bus. It also shows how the push/pull
sequence affects the MI Bus Wire.

Figure 4. MI Bus Timing Diagram

To synchronise the Push/Pull data fields the synchronisation bits in the
respective fields are used, along with the start bit of the Push field. The MI Bus
Master transmits the frame data in the format described above, and awaits a
response from the slave devices. At the end of the push field the Master takes
the MI Bus Wire to the dominant state, initialising the first bit of the Pull
synchronisation. The slave watches for the MI Bus wire to go low once its data
register is full and knows to begin transmitting the pull field. The Master
monitors the MI Bus wire watching for a rising edge one time slot in length after
it has completed the push field, indicating that the Pull field is about to be
transmitted at the next time slot. When the Master registers the MI Bus Wire
going high for a single time slot it pulls the data from the MI Bus Wire.

1 0 0 1

10 2 3 4 6 75

Start Stop

Start
Push
sync D0 D1 D2 D3 D4 A0 A1 A2

Pull
sync S3 S2 S1

Data Address
NRZ
Data End of frame

Push field
(driven by MCU)

Pull field
(driven by slave)

Message frame

Push (biphase coded) Pull (NRZ coded)

N
ew

 fr
am

e

Push-pull function

Time slots

TxD0 pin (true data)

MI Bus wire

Bit fields
4 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
The MI Bus Concept

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bi-phase Coding The data and address bits in the push field are transmitted using biphase
coding. By implementing biphase encoding it allows the detection of a single
error at the time slot level. If data is received and both bits of the biphase-coded
data contain only values one or zero, then an error has occurred.

The biphase encoding utilizes two time slots to transmit a single bit of data. The
logic level “1” or “0” is determined by the order of the received bits; these are
always complimentary logic levels of 0 and +5V.

The data is encoded as follows:

Figure 5. Biphase Encoding Values

MI Bus Clock Rate The MI Bus Clock operates in a similar way to that of an SCI Clock. Both Master
and Slave must be configured to receive and transmit data at the same clock
speed. If they are not, synchronisation would be lost between Master and Slave
and the data received would be incorrect.

Error Detection There are several different types of errors that can occur within the MI Bus and
be detected. These are not mutually exclusive.

Field Error The communication between the Master and Slave is valid when the Master
reads a pull data field having correct codes (excluding the codes of ‘111’ and
‘000’) followed by a square wave signal, having the frequency of 20 KHz,
contained in the end of frame information.

An error occurs when the pull data field contains the code ‘111’ followed by the
end of frame tied to logic 1. When this occurs communication between the
Master and Slave was not valid. A Field Error can also occur when the Slave
detected that the fixed form of the Push field has been violated.

Logic Value to
be Encoded Voltage Levels Description

0
Time slot 1 = +5V

Time slot 2 = 0

1
Time slot 1 = 0

Time slot 2 = +5V
MI Bus Software Driver for the MC9S12DP256 5

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Noise Detector The Slave device that receives the push field samples the biphase-encoded
data twice in each time slot. An error occurs when the sampled bits value do
not match.

Figure 6. Bi – Phase coding and error detection by Slave

Biphase Detector If, when tested, the data received by the slave does not follow an Exclusive-OR
function the biphase data is incorrect, and an error has occurred. Please see
Figure 6 - Bi – Phase coding and error detection by Slave.

Bit Error The Master can monitor the MI Bus at the same time as transmitting data. An
error is detected if the value transmitted on the MI Bus is different from the
value that should be sent.

‘0’ ‘1’

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
t

Biphase coded signal

Biphase detection

Noise detection

a b a b

a’ b’a b a’ b’a b
6 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
MI Bus Hardware Interface

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MI Bus Hardware Interface

The MI Bus consists of a single wire to transfer the data packets between the
Master and the Slave. Only a few components are required to construct the
interface to allow full MI Bus operation. The MI Bus interface is constructed
using a single NPN transistor. The transistor serves both to drive the MI Bus
during the push field and to protect the MCU TX from voltage transients
generated in the wiring. Without this transistor Electro Magnetic Interference
(EMI) could damage the TX pin on the Master device.

Figure 7. MI Bus Interface

The pin used to receive the pull field of the MI Bus is protected with two diodes
and two resistors, which limit the value of the transient current generated by the
EMI. The circuit clamps the voltage to the limit of the voltage supply (VDD and
VSS) to the MCU. When a load dump occurs, the Zener diode is switched on
and therefore turns on the transistor generating the logic ‘0’ on the MI Bus.

MI Bus Levels The MI Bus line can have two states, recessive or dominant. The dominant
state (‘0’) is represented by a maximum voltage of 0.3V. The recessive state
(‘1’) is represented by +5V, through a pull-up resistor of 10Kohms.

Termination Network The busload depends on the number of devices connected on the bus. Each
device has a pull up resistor of 10Kohms. An external termination resistor is
used to stabilise the load resistance of the bus at 600 Ohms.

1.2kΩ

+12V

18V
4.7kΩ

3.9kΩ

10kΩ

MI Bus

TX

RX

MCU

VDD

VDD

T1

VDD

VSS

10kΩ
22kΩ
MI Bus Software Driver for the MC9S12DP256 7

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Implementation of MI Bus on MC9S12DP256

The MI Bus concept has been taken and applied to the MC9S12DP256. The
MC9S12DP256 has been designed to operate as the Master device in the MI
Bus Network, with the software been written so that most of the features
available on the hardware modules of the MI Bus have been replicated in
software.

Development
Environment

Metrowerks Codewarrior MOT Version 1.0 was used as the software
development environment.

Feature Replication There are some areas of the MI Bus hardware module that have not been
replicated, due to either not being required or the function being redundant, but
most of the functionality that is available on the MC68HC912D60 hardware
module has been replicated.

Many of the registers and flags used in the hardware module of the MI Bus
have been implemented in the design of the software driver. They are not all
necessary in the current revision of the software, but allow the software to be
easily integrated into another larger scale project that may require the flexibility
they bring.

Omitted Features The features that have not been included in the software design are detailed
below.

Omitted Functionality

• The MI Bus can be run at many different bus speeds, but within the
design of the software the bus was set to run at a nominal 20KHz.
Adjusting the software timing could easily vary the bus speed but this
functionality was not implemented.

• Serial communications interface STOP in WAIT mode. Not
implemented.

• Send Break; no requirement

• MI Bus TxD0 polarity; no requirement.

• No test was implemented for the end of frame. The frequency of the MI
Bus is running at 20KHz, therefore as long as the field data that have
been sampled by the data receive function are correct, then the end of
frame has been received.
8 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Software Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Omitted Flags and Registers

• In Status Register 2, the flag for enabling the MI Bus Module is not
required. Enabling the MI Bus function will be carried out by calling the
MI Bus function.

• MI Bus Clock Rate Control Register, used to modify the MI Bus Clock
speed.

MC9S12DP256
Hardware Features
utilised.

Some of the hardware features found on the MC9S12DP256 were
implemented in the design of the MI Bus Driver. These are described below.

• The PLL module was initialised to run the data bus at 25MHz.

• Port P was used for sending and receiving the data. Port P was selected,
as this is one of three ports that allow interrupts to be generated by a
rising or falling edge on the port. This is used to capture the data
transmitted by the slave. Port P also allows the implementation of the Bit
Error Test. A bit error is detected when the value monitored on the MI
Bus does not match the value transmitted. By using the Port P wired –
or mode this feature can be implemented.

The remaining features of the MI bus were implemented in software.

Software Design

The flow charts for the main software routines are shown below.
MI Bus Software Driver for the MC9S12DP256 9

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Main Routine

Figure 8. Main Flow chart

START

INITALISATION

WAIT FOR
INTERRUPT

ENABLE
INTERRUPTS

CLEAR
TRANSMIT

ENABLE FLAG

TRANSMIT ADDR
VIA BIPHASE
ENCODING

TRANSMIT DATA
VIA BIPHASE
ENCODING

GENERATE
START BITS

SET TRANSMIT
ENABLE FLAG

LOAD DATA &
ADDR TO

REGISTER

DATA RCV’D
CORRECT?

LAST BIT OF
DATA RCV’D?

INTERRUPT
??

DATA
TRANSMIT

OKAY?

SET FIELD
ERROR FLAG

COMPARE RCV’D
DATA WITH

FIXED PATTERN

SET RCV DATA
REG FULL FLAG

LOAD RCV DATA
TO

TRANSMISSION
REGISTER

SET RECEIVER
ACTIVE FLAG

RETURN

Yes

SET FIELD
ERROR FLAG

No

No

No

Yes
10 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Software Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The flow chart above shows the flow of the main loop. The section on the left
hand side depicts the transmit data, and the section on the left shows the
receive data. The transmit data function would be called from within the main
loop of the software, and the receive data would be generated by an interrupt
initiated by the port pin receiving a rising edge.

Entry Conditions:Data and Address loaded to Data Register
Exit Conditions: None
Subroutine Calls:

Transmit_Start_Data
Transmit Sync Data
Load_Transmit_Val
Transmit_Biphase_Data
MI Bus Software Driver for the MC9S12DP256 11

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Transmit_Biphase_
Data Function

Figure 9. Data Transmission Flow Chart

The flow chart above shows the steps taken to transmit the data via the port
pin. The software delay is used to set-up the time before the pull data is
received.

Entry Conditions: None
Exit Conditions: None
Subroutine Calls: Biphase_Encode

Delay

LAST BIT?

LOAD TRANSMISSION
REGISTER WITH

VALUE TO BE
TRANSMITTED

START

LOAD BIT FOR
TRANSMISSION TO

VARIABLE

TRANSMIT VIA
BIPHASE ENCODE

FUNCTION

DRIVE MI BUS LINE
LOW

DELAY FOR 1 BIT TIME

RETURN

Yes

No
12 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Software Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Biphase_Encode
Function

Figure 10. Biphase Encode function

The biphase encode function takes a bit value of either 1 or 0 and encodes this
into the 2-bit biphase value. It then transmits these values via the port pin.

Entry Conditions: Encode_Value contains bit to be encoded
Exit Conditions: None
Subroutine Calls: Delay

ENCODE
VALUE = 1?

START

RETURN

DELAY FOR 1
BIT TIME

PORT PIN LOW

DELAY FOR 1
BIT TIME

PORT PIN HIGH

DELAY FOR 1
BIT TIME

PORT PIN HIGH

DELAY FOR 1
BIT TIME

PORT PIN LOW

No

Yes
MI Bus Software Driver for the MC9S12DP256 13

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Collect_Data
Function

Figure 11. Collect_Data Flow chart

START

Yes

BIT = 1? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

BIT = 2? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

BIT = 3? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

BIT = 4? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

BIT = 5? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

BIT = 6? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

BIT = 7? RECEIVED
BIT = 0

PORT
PIN = 0?Yes Yes

NoNo RECEIVED
BIT = 1

ALL DATA
RCV’D?

DELAY FOR
1 BIT TIME

BIT > 0?

DISABLE
INTERRUPT

CLEAR
TRANSMISSION

REG

BIT = 0? RECEIVED
BIT = 0

PORT
PIN = 0? Yes

No RECEIVED
BIT = 1

Yes

INCREMEN
T BIT

COUNTER

No

RETURN

No

Yes
14 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Software Design

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The collect data function reads the data on the port pin as it is received. This
function is called by the interrupt service routine. On the first pass of the loop
the function reads the value of the port pin without any delay. The latency in
calling the interrupt service routine places the read time of the received data
almost in the middle of the first data bit, therefore reducing the likelihood of the
data being read on the port pin going out of synchronisation with the data being
received. On the next pass of the loop the data read is delayed by a bit time to
keep it in synchronisation with the data. The time taken to complete the loop is
negligible, therefore the delay is set to approximately 25µS for a 20KHz signal.

Entry Conditions: None
Exit Conditions None
Subroutine Calls: Delay
MI Bus Software Driver for the MC9S12DP256 15

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 12. Field Test

The final flow chart shows the field test. Each bit of the fixed form field is tested
to ensure that it is the correct value, if not an error is then flagged.

Entry Conditions: None
Exit Conditions: Pass or Fail
Subroutine Calls: None

BIT 0 = 1

START

FLAG FIELD
ERROR

FLAG FIELD
ERROR

BIT 4 = 1 No

Yes

FLAG FIELD
ERROR

BIT 5 = 0 No

Yes

FLAG FIELD
ERROR

BIT 6 = 1 No

Yes

FLAG FIELD
ERROR

BIT 7 = 0 No

Yes

No

RETURN
16 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Summary

The Freescale Interconnect Bus is a basic communication protocol that allows
communication between Master and Slaves to occur easily and reliably. As
shown by the implementation of the MI Bus Software Driver the device no
longer has to have the hardware modules designed into the device to allow
communication to be carried out via the MI Bus protocol, therefore allowing
many different devices to implement the advantages associated with the MI
Bus.

The suggested functionality shown in this application note is simple to
implement, however, there are additional features that can enhance the system
further. For example by using the timer channels on board the MC9S12DP256
the accuracy of the delays used to create the waveforms could be increased.
This would further reduce the likelihood of incorrect data being received.

By decreasing the time for the delays implemented within the source code, the
baud rate could be increased to allow faster communication between Master
and Slave. This has the obvious advantages associated with higher
communication rates.

In conclusion the MI Bus Software Driver is a useful building block for
implementing a reliable communication protocol between a master device and
several slave devices. There are a few alterations that could be made to
increase the functionality of the driver further but a basic reliable structure has
been implemented that can be built upon.
MI Bus Software Driver for the MC9S12DP256 17

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Code Implementation

The source code to implement the MI Bus Software Driver follows, including
header file.

Main Program Routine

/**
Function Name : main
Engineer : M.Houston
Date : 10/11/01

Parameters : NONE
Returns : NONE
Notes : main routine calls initialisation routines

**/
int main(void)
{

static tU16 count = 0;
 /* clear user defined flags */
 SystemFlags.byte = 0x00;

/* macro for ’asm sei’ */
DisableInterrupts;

/* Disable COP */
Crg.copctl.byte = 0;

/* Disable IRQ */
 Regs.intcr.bit.irqen = 0;
 /* map registers at default location */

Regs.initrg.byte = 0;

InitPorts();

/* configure pll with default multiplier & divider values */
#ifdef USING_PLL

if(SetPll() == FAIL)
{

/* display pll error flags on led array */
Regs.portb.byte = ~(SystemFlags.byte & 0x03);
while(FOREVER);
}

#endif /* USING_PLL */

 /* Main program */

 ControlReg2.bit.te =1; /* Set Transmiter Enable Flag in Control Reg 2 */

 Transmit_Start_Data(); /* Start Bits */
 Transmit_Sync_Data (); /* Synchronisation Bit */

 Data = 0x15; /* set value of data and address variables */
 Addr = 0x02;

 Load_Transmit_Val(Addr,Data); /* Load MI Bus Data Reg */
 Transmit_Biphase_Data(); /* Data transmission */

 ControlReg2.bit.te =0; /* Clear Transmitter Enable Flag in Control Reg 2 */
18 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 EnableInterrupts; /* macro for ’asm cli’ */

 ControlReg2.bit.rei =1; /* Set MI Bus interrupt enable Flag */
 ControlReg2.bit.re = 1; /* Set MI Bus receiver enable Flag */

 KnightRider();
}

Load Transmit Value Routine

/**
Function Name : Load_Transmit_Val
Engineer : M.Houston
Date : 23/10/01

Parameters : NONE
Returns : NONE
Notes : Loads data into the Transmit_Val to allow transmission of

data patterns and address data. BITS 4:0 are data pattern,
BITS 7:5 are address data.

**/
void Load_Transmit_Val(unsigned char Address_Pattern, unsigned char Data_Pattern)
{

DataRegLow.bit.adr = Address_Pattern;
DataRegLow.bit.data = Data_Pattern;

}

MI Bus Software Driver for the MC9S12DP256 19

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Transmit Biphase Data Routine

/**
Function Name : Transmit_Biphase_Data
Engineer : M.Houston
Date : 18/10/01

Parameters : Transmit_Val
Returns : NONE
Notes : Transmits data contained in TransmissionByte register.

The TransmissionByte0 data consists of 5 bits of data (4:0)
and 3 bits of address data (7:5). This data is transmitted
via manchester encoding, 10 times slots for data and 6
time slots for address data.

**/
void Transmit_Biphase_Data(void)
{

unsigned char Transmit_Val;

TransmissionByte.byte = DataRegLow.byte;

/* Transmit bits via manchester encoding */
Transmit_Val = TransmissionByte.bit.bit0; /* Load value of bit to be sent */
Biphase_Encode(Transmit_Val); /* Encode data and transmit on portp*/

Transmit_Val = TransmissionByte.bit.bit1;
Biphase_Encode(Transmit_Val);

Transmit_Val = TransmissionByte.bit.bit2;
Biphase_Encode(Transmit_Val);

Transmit_Val = TransmissionByte.bit.bit3;
Biphase_Encode(Transmit_Val);

Transmit_Val = TransmissionByte.bit.bit4;
Biphase_Encode(Transmit_Val);

Transmit_Val = TransmissionByte.bit.bit5;
Biphase_Encode(Transmit_Val);

Transmit_Val = TransmissionByte.bit.bit6;
Biphase_Encode(Transmit_Val);

Transmit_Val = TransmissionByte.bit.bit7;
Biphase_Encode(Transmit_Val);

Pim.ptp.bit.ptp0 = 0; /* data line low */

/* Set data direction register to input */
Pim.ddrp.byte = 0x00;

Delay(delayRate2, delayDecVal2); /* delay for 1 bit time for 20 KHz waveform*/

}

20 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Transmit Start Data Routine

/**
Function Name : Transmit_Start_Data
Engineer : M.Houston
Date : 18/10/01

Parameters : NONE
Returns : NONE
Notes : Start bit of MI Bus protocol. Consists of 3 time slots

held at 0. This violates the rules of biphase encoding.

**/
void Transmit_Start_Data (void)
{

Pim.ptp.bit.ptp0 = 0;
Delay(3, delayDecVal2); /* value passed to delay routine for 150uS delay */

}

Transmit Synchronisation Data Routine

/**
Function Name : Transmit_Sync_Data
Engineer : M.Houston
Date : 18/10/01

Parameters : NONE
Returns : NONE
Notes : Synchronisation bit for MI Bus protocol. Consists of a

 biphase encoded 0.

**/
void Transmit_Sync_Data (void)
{

Pim.ptp.bit.ptp0 = 1;
Delay(delayRate2, delayDecVal2);
Pim.ptp.bit.ptp0 = 0;
Delay(delayRate2, delayDecVal2);

}

MI Bus Software Driver for the MC9S12DP256 21

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Biphase Encode Routine

/**
Function Name : Biphase_Encode
Engineer : M.Houston
Date : 19/10/01

Parameters : Encode_Value
Returns : NONE
Notes : Routine to encode data in manchester format.

Value 0 = transition from 1 to 0
Value 1 = transition from 0 to 1

**/
void Biphase_Encode(int Encode_Value)
{

if(Encode_Value == 0)
{

Pim.ptp.bit.ptp0 = 1;
Delay(delayRate2, delayDecVal2);

/* read of PTIP register to ensure value is correct, no short circuit*/
if(Pim.ptip.bit.ptip0 == 0)

{
/* display error flags on led array */
Regs.portb.byte = (SystemFlags.byte & 0x03);
while(FOREVER);

}

Pim.ptp.bit.ptp0 = 0;
Delay(delayRate2, delayDecVal2);

/* read of PTIP register to ensure value is correct, no short circuit*/
if(Pim.ptip.bit.ptip0 == 1)

{
/* display error flags on led array */
Regs.portb.byte = (SystemFlags.byte & 0x03);
while(FOREVER);

}

}
else
{

Pim.ptp.bit.ptp0 = 0;
Delay(delayRate2, delayDecVal2);

/* read of PTIP register to ensure value is correct, no short circuit*/
if(Pim.ptip.bit.ptip0 == 1)

{
/* display error flags on led array */
Regs.portb.byte = (SystemFlags.byte & 0x03);
while(FOREVER);

}

Pim.ptp.bit.ptp0 = 1;
Delay(delayRate2, delayDecVal2);

/* read of PTIP register to ensure value is correct, no short circuit*/
if(Pim.ptip.bit.ptip0 == 0)

{
/* display error flags on led array */
Regs.portb.byte = (SystemFlags.byte & 0x03);
while(FOREVER);

}
}

}

22 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Collect Data Routine

/**
Function Name : Collect_Data
Engineer : M.Houston
Date : 7/11/01

Parameters : NONE
Returns : NONE
Notes : Function to collect data value from portp0, and store in

the approriate bit of the 8 bit TransmissionByte Register.

**/
void Collect_Data(void)
{

char y;
y = 0;

/* Disable Interrupts */
DisableInterrupts

/* Disable interrupts on port p */
Pim.piep.byte = 0x00;

/* Clear MI Bus Interrupt enable Flag */
ControlReg2.bit.rei =0;

/* Set MI Bus Receiver Active Flag */
StatusReg2.bit.raf =1;

/* Clear Receive data register full flag */
StatusReg1.bit.rdrf =0;

TransmissionByte.byte = 0x00;

do
{

if(y == 0) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit0 = 0;
}
else
{

TransmissionByte.bit.bit0 = 1;
}

Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */
}

else if(y>0)
{

Delay(delayRate4, delayDecVal4); /* delay until the middle of next bit */

if(y == 1) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit1 = 0;
}
else
{

MI Bus Software Driver for the MC9S12DP256 23

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TransmissionByte.bit.bit1 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}

else if(y == 2) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit2 = 0;
}

else
{

TransmissionByte.bit.bit2 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}

else if(y == 3) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit3 = 0;
}

else
{

TransmissionByte.bit.bit3 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}

else if(y == 4) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit4 = 0;
}

else
{

TransmissionByte.bit.bit4 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}

else if(y == 5) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit5 = 0;
}

else
{

TransmissionByte.bit.bit5 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}

else if(y == 6) /* test for DataRcv Reg Bit */
{

24 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit6 = 0;
}

else
{

TransmissionByte.bit.bit6 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}

else if(y == 7) /* test for DataRcv Reg Bit */
{

Regs.porte.bit.pte7 = 1; /* toggle port to allow debug */
if(Pim.ptp.bit.ptp1 == 0) /* test for value of port pin */
{

TransmissionByte.bit.bit7 = 0;
}

else
{

TransmissionByte.bit.bit7 = 1;
}
Regs.porte.bit.pte7 = 0; /* toggle port to allow debug */

}
}

y++; /* increment y to next datarcv reg bit */
}while (y<8); /* DataRcv Reg is 16 bit */

/* Set Receive data register full flag */
StatusReg1.bit.rdrf =1;

/* Clear MI Bus Receiver Active Flag */
StatusReg2.bit.raf =0;

/* Clear receiver enable flag */
ControlReg2.bit.re =0;

/* test received data to ensure matches fixed field */

if(Field_Test() == FAIL)
{

/* display error flags on led array */
Regs.portb.byte = (SystemFlags.byte & 0x03);
while(FOREVER);
}

}

MI Bus Software Driver for the MC9S12DP256 25

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Field Test Routine

/**
Function Name : Field_Test
Engineer : M.Houston
Date : 20/11/01

Parameters : NONE
Returns : NONE
Notes : Function to verify data received from master is correct.

The function will test to ensure that the data received
in the transmission register conforms to the following
pattern:

Bit0 = 1
Bit1 = X
Bit2 = X
Bit3 = X
Bit4 = 1
Bit5 = 0
Bit6 = 1
Bit7 = 0

Bit 1 represents the synchronisation bit from the slave.
Bits 1 to 3 represent the data bits from slave.
Bits 4 to 7 represent the end-of-frame

**/
int Field_Test (void)
{

if(TransmissionByte.bit.bit0 == 0)
{
 return FAIL;
}
else if(TransmissionByte.bit.bit4 == 0)
{

return FAIL;
}
else if(TransmissionByte.bit.bit5 == 1)
{

return FAIL;
}
else if(TransmissionByte.bit.bit6 == 0)
{

return FAIL;
}
else if(TransmissionByte.bit.bit7 == 1)
{

return FAIL;
}
else
{

return PASS;
}

}

26 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Delay Routine

/**
Function Name : Delay
Engineer : M.Gallop
Date : 02/06/00

Parameters : int delayTime
Returns : NONE
Notes : simple software delay dependent on CPU clock frequency and

compile strategy
**/
void Delay(int delayTime, int delayTime2)
{
 int x; /*outer loop counter */
 char y; /*inner loop counter */

 for (x=0; x<delayTime; x++)
 {
 for (y=0; y<delayTime2; y++);

}
}

MI Bus Software Driver for the MC9S12DP256 27

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Initialisation Routine

/**
Function Name : InitPorts
Engineer : M.Houston
Date : 10.10.01

Parameters : NONE
Returns : NONE
Notes : Code to set up i/o ports
**/
void InitPorts(void)

{
/* PORT A */

Regs.porta.byte = 0x00;
/* All pins outputs on initialisation */

Regs.ddra.byte = 0xFF;

/* PORT B */
/* driving cathode of LEDs so ’1’ = off and 0xFF = all off*/
/* Connected to LED Array on EVB, used for status flag */

Regs.portb.byte = 0xFF;
/* all pins o/p for LEDs */

Regs.ddrb.byte = 0xFF;

/* PORT E */
/* select pin PE4 for E clock o/p */

Regs.pear.bit.neclk = 0;
/* set port e to output for debug */

Regs.ddre.byte = 0xFF;

/* PORT P */
/* set port p to receive data */

 /* Clear port input register */
Pim.ptp.byte = 0x00;

/* All pins output on portp except ptp1*/
Pim.ddrp.byte = 0xFD;

/* Set polarity register to rising edge on ptp1 */
Pim.ppsp.byte = 0x02;

/* Set pull up/down on pin */
Pim.perp.byte = 0xFF;

/* Enable interrupts on port ptp1 */
Pim.piep.byte = 0x02;

}

28 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PLL Initialisation Routine

/**
Function Name : SetPll
Engineer : M.Gallop
Date : 18/07/01

Updated : 11.10.01 by Mark Houston
Notes : Removed control of PLL by DIP switch on portH. Value of

multiplier and divider declared in header file.

Parameters : N/A

Returns : int (PASS or FAIL)
Notes : PLL frequency will be OSCCLK freq * multiplier / divider.

The routine as implemented uses the sofware delay routine
to generate a pll timeout in case lock fails.
NOTE: It is the responsibility of the user to ensure that
the multiplier and divider values do not cause the MCU bus
specification to be exceeded.

**/
int SetPll(void)

{
char x;

/* clear error flags */
SystemFlags.bit.pllRangeError = 0;
SystemFlags.bit.pllLockFailed = 0;

/* select XTAL/2 as cpu clock */
Crg.clksel.bit.pllsel = 0;

/* Turn off PLL */
Crg.pllctl.bit.pllon = 0;

 /* Set new OSCCLK frequency multiplier; for 25MHz Bus SYNR= 0x18 */
 Crg.synr.byte = 0x18;
 /* Set new divider value; for 25MHz Bus REFDV = 0x03 */
 Crg.refdv.byte = 0x03;

/* Turn on PLL */
Crg.pllctl.bit.pllon = 1;

/* and wait for lock */
 for(x=0; x<100; x++)
 {
 if(Crg.crgflg.bit.lock)

{
 /* pll locked ok! */

/* select PLL as cpu clock */
 Crg.clksel.bit.pllsel = 1;

return PASS; /* escape! */
}
Delay(10, 100);

}
/* pll failed to lock! */
/* Turn off pll */

Crg.pllctl.bit.pllon = 0;
 /* flag that pll didn’t lock */

SystemFlags.bit.pllLockFailed = 1;
return FAIL;

}

MI Bus Software Driver for the MC9S12DP256 29

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Interrupt Service Routines

/**
Function Name : _dummyISR
Engineer : M.Gallop
Date : 25/07/01

Parameters : NONE
Returns : NONE
Notes : Interrupt service routine for unused interrupt vectors.
**/
#pragma TRAP_PROC /* Mark Function as Interrupt Function */
void _dummyISR(void)
{

/* endless cycle */
 while(1);
}

/**
Function Name : _portpISR
Engineer : M.Houston
Date : 13/11/01

Parameters : NONE
Returns : NONE
Notes : Interrupt service routine for portp.
**/
#pragma TRAP_PROC /* Mark Function as Interrupt Function */
void _portpISR(void)
{

/* collect data from pin */
 Collect_Data();

}

30 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Header File for MC9S12DP256 MI Bus Software Driver

/**
* COPYRIGHT (c) M
* FILE NAME: basic.h
*
* PURPOSE: header file for basic.c
*
* ***
* * THIS CODE IS ONLY INTENDED AS AN EXAMPLE OF CODE FOR THE *
* * METROWERKS COMPILER AND THE STAR12 EVB AND HAS ONLY BEEN GIVEN A *
* * MIMIMUM LEVEL OF TEST. IT IS PROVIDED ’AS SEEN’ WITH NO GUARANTEES *
* * AND NO PROMISE OF SUPPORT. *
* ***
*
*
* DESCRIPTION: definitions for ’basic’ application parameters
*
*
* AUTHOR: Martyn Gallop LOCATION: EKB Apps LAST EDIT DATE: 24.07.01
*
* UPDATE HISTORY
* REV AUTHOR DATE DESCRIPTION OF CHANGE
* --- ------ --------- ---------------------
* 1.0 M.Gallop 15/07/01 Original coding
* 1.1 M.Houston 11.10.01 MI Bus Implementation
*
**/

/*===*/
/* Freescale reserves the right to make changes without further notice to any */
/* product herein to improve reliability, function, or design. Freescale does */
/* not assume any liability arising out of the application or use of any */
/* product, circuit, or software described herein; neither does it convey */
/* any license under its patent rights nor the rights of others. Freescale */
/* products are not designed, intended, or authorized for use as components */
/* in systems intended for surgical implant into the body, or other */
/* applications intended to support life, or for any other application in */
/* which the failure of the Freescale product could create a situation where */
/* personal injury or death may occur. Should Buyer purchase or use Freescale */
/* products for any such intended or unauthorized application, Buyer shall */
/* indemnify and hold Freescale and its officers, employees, subsidiaries, */
/* affiliates, and distributors harmless against all claims costs, damages, */
/* and expenses, and reasonable attorney fees arising out of, directly or */
/* indirectly, any claim of personal injury or death associated with such */
/* unintended or unauthorized use, even if such claim alleges that Freescale */
/* was negligent regarding the design or manufacture of the part. Freescale*/
/* and the Freescale logo* are registered trademarks of Freescale Semiconductor, Inc.. */
/***/

/*Include files */

#include <hidef.h>
#include "peripherals.h"

/* additional common definitions - others can be found in HIDEF.H*/

#define OFF 0
#define ON 1

#define FOREVER 1

#define FAIL 0
#define PASS 1
MI Bus Software Driver for the MC9S12DP256 31

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/* User Defines */

/* initial values for pll */
/* modify depending on pll filter selection and target clock frequency */
/* PLLCLK = OSCCLK */
#define CLOCK_MULTIPLIER 4
#define CLOCK_DIVIDER 4

/* Function Prototypes */

int main(void);
void InitPorts(void);
int SetPll(void);
void Delay(int, int); /* simple software loop delay */
void Transmit_Start_Data (void);
void Transmit_Sync_Data (void);
void Biphase_Encode(int);
void Transmit_Biphase_Data(void);
void KnightRider(void);
void Load_Transmit_Val(unsigned char,unsigned char);
int Field_Test (void);

/* Interrupt service routine Prototypes */

#pragma CODE_SEG NON_BANKED

void _dummyISR(void);
void _portpISR(void);

#pragma CODE_SEG DEFAULT_ROM

/* User Typedefs */

typedef union /* global system flags byte - individual bits are */
{ /* assigned as tokens for tasks */
tU08 byte;
struct

{
tU08 pllLockFailed :1; //pll error flag
tU08 pllRangeError :1; //pll error flag

 tU08 :6; //not used
 }bit;

}tFLAGS;

typedef union /* global variable bit access */
{
tU08 byte;
struct

{
tU08 bit0 :1; /* bit0 of variable */
tU08 bit1 :1; /* bit1 of variable */
tU08 bit2 :1; /* bit2 of variable */
tU08 bit3 :1; /* bit3 of variable */
tU08 bit4 :1; /* bit4 of variable */
tU08 bit5 :1; /* bit5 of variable */
tU08 bit6 :1; /* bit6 of variable */
tU08 bit7 :1; /* bit7 of variable */
}bit;

}tVARIABLEBITS;

typedef union /* global MI Bus Data Register access */
{
tU08 byte;
struct
32 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

{
tU08 data :5; /* data pattern */
tU08 adr :3; /* address data pattern */
}bit;

}tMIBUS_DATA_REG_LOW;

#define data0 0x01; /*bit masks *//* Bit0 */
#define data1 0x02; /* Bit1 */
#define data2 0x04; /* Bit2 */
#define data3 0x08; /* Bit3 */
#define data4 0x10; /* Bit4 */
#define adr0 0x20; /* Bit5 */
#define adr1 0x40; /* Bit6 */
#define adr2 0x80; /* Bit7 */

typedef union /* global MI Bus Control Register 2 access */
{
tU08 byte;
struct

{
tU08 rei :1; /* receiver interrupt enable */
tU08 te :1; /* transmitter enable */
tU08 re :1; /* receiver enable */
tU08 :5; /* not used */
}bit;

}tMIBUS_CONTROL_REG_2;

typedef union /* global MI Bus Status Register 1 access */
{
tU08 byte;
struct

{
tU08 rdrf :1; /* Receive data register full */
tU08 be :1; /* Bit Error Flag */
tU08 nf :1; /* Noise Error Flag */
tU08 complete :1; /* Noise Error Flag */
tU08 :4; /* Not Used */
}bit;

}tMIBUS_STATUS_REG_1;

typedef union /* global MI Bus Status Register 2 access */
{
tU08 byte;
struct

{
tU08 raf :1; /* Receiver Active Flag */
tU08 :7; /* Not Used */
}bit;

}tMIBUS_STATUS_REG_2;
MI Bus Software Driver for the MC9S12DP256 33

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This Page Has Been Intentionally Left Blank
34 MI Bus Software Driver for the MC9S12DP256

For More Information On This Product,
 Go to: www.freescale.com

AN2221/D
Code Implementation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This Page Has Been Intentionally Left Blank
MI Bus Software Driver for the MC9S12DP256 35

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2221/D
For More Information On This Product,

 Go to: www.freescale.com

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

	Introduction
	The MI Bus Concept
	Push/Pull Sequence
	MI Bus Timing
	Bi-phase Coding
	MI Bus Clock Rate
	Error Detection

	MI Bus Hardware Interface
	Implementation of MI Bus on MC9S12DP256
	Development Environment
	Feature Replication

	Software Design
	Main Routine
	Transmit_Biphase_ Data Function
	Biphase_Encode Function
	Collect_Data Function

	Summary
	Code Implementation
	Main Program Routine
	Load Transmit Value Routine
	Transmit Biphase Data Routine
	Transmit Start Data Routine
	Transmit Synchronisation Data Routine
	Biphase Encode Routine
	Collect Data Routine
	Field Test Routine
	Delay Routine
	Initialisation Routine
	PLL Initialisation Routine
	Interrupt Service Routines
	Header File for MC9S12DP256 MI Bus Software Driver

