
AN2250/D
Rev. 0, 1/2002

Audio Reproduction on
HCS12 Microcontrollers

Application Note

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

by Grant M More
8/16 bit Applications
Freescale, East Kilbride

Introduction

This document describes an audio reproduction technique that may be
employed on any HCS12 series microcontroller (MCU) with pulse-width
modulation (PWM) capability. The approach is optimised in that it uses a
minimal number of components external to the MCU, and when reproducing
stored sample data, is almost completely passive in relation to processor core
usage.

This document focuses on the reproduction of .WAV files, primarily because
they are commonly available, uncompressed, and easy to manipulate. There is
no reason, however, why the technique should not be applied to other file
formats.

Another technique is described, in addition to the sample reproduction
technique, which allows simple warning noises to be created from basic
mathematical algorithms.
© Motorola, Inc., 2001

rxzb30
copywithline

AN2250/D

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Background & Concept

The HCS12 series of microcontrollers does not support dedicated internal
digital-to-analogue conversion hardware, and thus external hardware, perhaps
in the form of a digital-to-analogue conversion IC, is required to perform the
necessary manipulation. This approach may be well justified if the process data
is high quality, high bit rate audio, for example a bit stream within a CD player.
The use of an external digital-to-analog converter (DAC) in this context is
justified primarily by the benefit given from the device, offset by the relatively
high cost.

In applications where a requirement exists for audio reproduction, but the cost
of a DAC precludes external conversion, the technique described here may be
a prime solution. An example of this may be a security alarm control panel
where a microcontroller is employed to perform the user interaction and system
control functions. Communication with the user could be improved with the
implementation of sound capability, perhaps only the generation of beeps,
dings and alarm functions, or perhaps issuing clear, concise voice instructions.
Both are easily possible.

The basic principle of audio reproduction using the PWM module involves
using sampled data to vary the duty cycle of a PWM signal, the period of which
is held at a constant value. The signal produced by the PWM module is then
fed to a low-pass filter, which effectively integrates the pulsed data and
produces a signal that is decipherable by the human ear.
2 Audio Reproduction on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D
Software

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Software

Principle The basic purpose of the software is to use either stored data samples, or an
algorithm to produce samples in real-time, to directly change the duty cycle of
a PWM signal. This task is relatively straightforward: a simple case of loading
the PWM duty register at intervals specified by a strategically set timer. The
more complex task is taking data in a manageable form, namely .WAV data,
and passing this to the HCS12 MCU in a format that can be easily stored and
retrieved.

Storing and
Retrieving Sample
Data

In order to accomplish the storage and retrieval task, raw sample data is
stripped from a .WAV file by a run-time utility which creates a number of 16kb
ASCII arrays of the type which can be handled by the coding environment.
Each array can then be loaded into a 16kb discrete flash memory page, and
accessed with a far data pointer. Each page can then be accessed sequentially
and the data read out as one audio stream.

The binary data is converted to ASCII to allow the development environment to
handle the arrays. This creates run-time array files that are a great deal larger
than 16kb, but the compiler stores these as the original 16kb of binary data
within the flash memory.

A variation on this is the provision for storing a number of discrete audio
samples in individual pages. These could then be accessed individually and
allow a number of samples to be reproduced independently. This may have
application in systems where a number of short samples, perhaps voice
commands, need to be reproduced.
Audio Reproduction on HCS12 Microcontrollers 3

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

.WAV Files .WAV files have a standard format that contains sample data and a header
describing the format and contents of the file. It is important to check the format
of the file to be downloaded to the HCS12 MCU, as reading a file of an
unexpected format will result in corrupt sample data. Reading the value of a
number of the parameters stored in the header and comparing these to the
values expected authenticates the format of the file. This is the method used to
check the validity of the .WAV file in the accompanying example source code.

The critical parameters that should always be checked are:

• The magic number used to define the file as a type .WAV (Hex
52494646)

• Number of channels
• Sample rate
• Number of bytes per sample

The length of the raw data (specified in bytes 4-7 of the DATA chunk) can be
copied from the .WAV file and used to determine the memory page
requirement. This value is also used to determine the code length for each
page (all pages = 16kb except the last page), which is written as the first two
bytes to the beginning of each array (page) in order to allow the playback code
to detect the size and end of the file.

Choosing Sample
Rate

The sample rate depends entirely on the application. The final choice is a trade-
off between intelligibility and sample storage (time) capability. Commonly
available sample rates are:

• 8kHz telephone quality
• 11.025 kHz AM radio quality
• 22.05kHz TV/FM radio quality
• 44.1kHz CD quality

There is no reason, however, why the sample rate cannot be chosen out with
these values, especially if the .WAV data is obtained from a file upon the
creation of which the sample rate was selectable. In theory, the sample rate
determines the bandwidth available for reproduction, and by the Nyquist
Criterion, the highest frequency that can be reproduced accurately at a sample
rate of z kHz is z/2 kHz.

The scope of application for this reproduction technique is such that it is unlikely
that the 22.05/44.1kHz sample rates be used. In relation to Figure 2, it is clear
that these sample rates demand a much greater storage requirement, and are
thus likely to be quite impractical, though not impossible. In practice, an
11.025kHz sample rate has yielded good results. Speech is entirely clear and
intelligible, and music data is equally good, though one must take into account
the bandwidth limitation imposed by the lower sample rate.
4 Audio Reproduction on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D
Software

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Simple Beeps and
Alarm Sounds

By generating sample data in real time with the use of an algorithm, it is
possible to eliminate the requirement for sample storage space. Clearly this is
not practical for reproducing speech, music or any type of randomly varying
audio signal, as the algorithm would be extremely complex. However, simple
beeps and warning signals may be constructed with comparative ease.

The two parameters that can be controlled directly from software are the PWM
duty cycle and the PWM period length. A simple sinusoidal output can be
achieved by cycling the PWM duty cycle register, and a delay introduced into
the register write operation can be used to control the pitch of the signal. This
procedure forms the basis of a simple beep, where the sinusoid is applied and
withdrawn after a set amount of time.

The PWM period length register can be used in conjunction with the PWM duty
cycle register to control the amplitude of the output signal. As the PWM period
decreases, the maximum possible amplitude of the output signal is
proportionally reduced. This can be used to produce a number of interesting
effects including alarm sounds, signal fades and cyclic warning noises. A
degree of experimentation can yield a range of different outputs, a sample of
which are demonstrated in the accompanying source code.

Reproducing Audio As has been previously described, the task of reproducing the audio is
accomplished by loading the PWM duty register with values pointed to by the
far type data pointer. The timing of the samples is controlled by the modulus
down counter, which interrupts and activates an ISR to perform the required
PWM register and pointer servicing.

The modulus down counter operates by counting down from a prescribed value
and generating an interrupt when zero is reached, then reloading the
prescribed value and starting again. This gives good flexibility in this application
as any practical sample rate can be reproduced by setting the appropriate
count start value. This can be calculated by identifying the down counter count
rate (set to bus clock in example source code), and identifying how many bus
clock cycles should pass between sample write operations to the PWM duty
register. For example, the modulus down counter on an HCS12 MCU,
operating from a 32MHz crystal with a 16MHz bus clock will down count once
every 62.5nS (assuming that the bus clock is used as the counter clock). To
reproduce a sample at a sample rate of 11.025kHz the counter will need to
count down from 1451 (hex 0x05AB). This ensures that the samples are
scheduled at the correct rate.
Audio Reproduction on HCS12 Microcontrollers 5

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Reproducing Multi-
channel/Stereo
Audio

Stereo samples may be reproduced by making use of a second PWM channel.
The channels can therefore be assigned one to the left channel, the other to
the right channel. Data can then be read from the stored data file in pairs, the
relative data being passed to the correct PWM channel. This is straightforward
as data is stored in a .WAV file as a series of sequential sample pairs format as
shown in Figure 1.

Figure 1. Arrangement of Samples Within a Stereo .WAV File

Although entirely possible, the stereo reproduction technique halves the
available reproduction time, and thus makes the implementation much less
attractive.

A much more practical use for two PWM channels may be to use the second
channel to drive a second loudspeaker in a different location. This would allow
both loudspeakers to operate simultaneously, reproducing different samples.
An example of this is again the use of the MCU in a security alarm circuit. On
intruder detection, one PWM channel could be used to generate the alarm
sound for the external siren on the outside of the building, while the other could
be used to sound a different alarm inside the building.

Using this technique, a maximum of eight separate channels could be used,
each reproducing a different sample. For example, a third PWM channel could
be used to reproduce a stored sample detailing the address of the protected
property, which is relayed by telephone line to the police.

Reproducing 16-bit
Samples

The PWM module on HCS12 series microcontrollers supports 16-bit PWM
operation. This provides 16-bit duty cycle resolution, and thus it is technically
possible to load 16-bit sample data to the PWM. The concatenation of two
PWM channels has the effect that the PWM period is increased by a factor of
256 and therefore, the sample reproduction rate capability is reduced by a
factor of 256. Furthermore, the use of 16-bit samples halves the playback time
capability of the MCU and will not yield a vast increase in audio quality,
especially if the passive RC low-pass filter is implemented.

The practical consequences of 16-bit sample reproduction have not been fully
investigated, but it is absolutely possible.

Left 1 Right 1 Left 2 Right 2 Left 3 Right 3 Etc.
6 Audio Reproduction on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D
Hardware

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Compression Audio reproduction is clearly a process that monopolises a vast amount of
memory. As has already been discussed, the limitation on sample storage time
is based on the available memory. It is possible to compress the raw sample
data, thus allowing more sample data to be stored in an equivalent space,
allowing greater playback time with an equivalent memory capacity. This
approach optimises memory usage and minimises hardware costs.

Hardware

The basic requirement for reproduction is an HCS12 series microcontroller
equipped with a PWM module. One PWM channel is required for each audio
channel, thus one for mono reproduction, two for stereo. The specific choice of
microcontroller is fundamental to the amount of stored sample data that can be
replayed. Clearly a greater memory provision allows more storage and a
greater playback time capability. As a benchmark, an MC9S12DP256 micro-
controller equipped with 256kb of flash memory could theoretically store 23.78
seconds of 8-bit uncompressed mono samples at a sample rate of 11.025kHz.
In practice this consumes the whole flash memory area, leaving no space for
the program code. Should one 16kb page be reserved for the code, 22.29
seconds of playback is possible. The various playback capabilities are
summarised below.

Figure 2. Playback Capability (in Seconds) at Various Resolutions
and Frequencies (Mono Sample)

NOTE: Playback capability is halved for stereo samples. The entire flash memory area
is used for data storage.

Sample Res (bits) 8 16 8 16 8 16 8 16

Sample Freq (kHz) 8 8 11.025 11.025 22.05 22.05 44.1 44.1

Flash Memory (Kb)

32 4.10 2.05 2.97 1.49 1.49 0.74 0.74 0.37

64 8.19 4.10 5.94 2.97 2.97 1.49 1.49 0.74

128 16.38 8.19 11.89 5.94 5.94 2.97 2.97 1.49

256 32.77 16.38 23.78 11.89 11.89 5.94 5.94 2.97

512 65.54 32.77 47.55 23.78 23.78 11.89 11.89 5.94
Audio Reproduction on HCS12 Microcontrollers 7

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Filtering

The task of filtering the PWM output must be assigned to a low-pass filter. The
type of filter and the relative attributes are determined by the sampled audio
data that is to be reproduced and the price budget.

The simplest implementation is an RC filter. This provides an extremely basic
first-order roll-off, but offers the advantage that there are only two components
external to the MCU. The other implementation is an active filter. This approach
provides a much more flexible solution in that the order of the filter, and thus
the complexity and number of components, can be chosen to suit the
application.

The cut-off frequency of the filter is critical to the frequency content of the output
audio. As a rule of thumb, it is recommended, on the basis of the Nyquist
Criterion, that the cut-off frequency of any filter used be set at half the frequency
of the sample playback rate. In order to obtain a dynamic value for the cut-off
frequency, it is necessary to perform a spectral analysis of the audio sample
data and set the cut-off at a value just above the highest frequency that
contains intelligible data. Clearly, this becomes more critical as the order of the
filter is increased, but for general applications this is unlikely to be necessary.
In some applications, the undefined (harmonics/ripple) components above the
cut-off frequency may not degrade the intelligibility of the signal and thus a
simple first-order RC filter may be perfectly adequate.

A suggestion for the design of an active filter is shown in Figure 3. This is a
third-order filter with a cut-off frequency of 5.5kHz (11.025kHz/2). This device
makes use of two op-amps, leaving two spare if the LM324 quad op-amp
package is used. These spare devices could be used to drive a small
loudspeaker.

Figure 3. Suggested Active Filter Circuit Layout

1

-

+

LM324

3

2
1

V
ou

t1

Vin

100k

0.1nF

LM324
100k

1.5nF

100k-

+3

2
1

0.47nF
8 Audio Reproduction on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D
Amplification and Loudspeakers

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4 shows the fast Fourier transforms of a speech sample played through
a first-order passive and a third order active filter of equal cut-off frequency. The
upper frequency components are clearly visible in the passive transform, while
these are suppressed in the active example. These components give the
passively filtered sample a tinny sound, while the active filtered sample is much
clearer. Both samples are perfectly intelligible.

Figure 4. Fast Fourier Transform of Speech Sample

Amplification and Loudspeakers

The signal obtained from either filter should be amplified and used to drive a
loudspeaker. This circuitry will depend upon the target loudspeaker, but it may
be possible, design depending, to integrate op-amps used in active filtering
with op-amps used to drive the loudspeaker on one IC, minimising the external
component count.

It is possible to drive a small loudspeaker directly from the port pin with the
series introduction of a strategically chosen capacitor. The loudspeaker will
provide the resistive component of the RC filter, reducing external components
to an absolute minimum. Extreme care should be taken not to overload the
MCU, as damage will result if too much current is drawn from the port pin.
Consult the data book for the device in question.

(a) Passive Filter (b) Active Filter
Audio Reproduction on HCS12 Microcontrollers 9

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

An example of a directly driven loudspeaker is shown in Figure 5. Note the
22µF capacitor, used to implement a low-pass filter, rolling off at approximately
5KHz in conjunction with the 8Ω speaker. This has been implemented using a
6.5cm diameter speaker. In quiet conditions, the results are perfectly audible at
a range of a few metres.

Figure 5. Direct Loudspeaker Drive Arrangement

Summary

The techniques described here provide simple and flexible solutions for audio
reproduction, which are portable across the HCS12 range of microprocessors.
These should find use in a number of applications where lo-fidelity, low
performance reproduction is required.

8Ohms

Loudspeaker

22uF

MCU O/P PIN

1

10 Audio Reproduction on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2250/D
Using the Source Code Examples

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

Using the Source Code Examples

Three examples of source code are available from the Freescale web site. They
are:

generatedsounds.c The name of this file on the Freescale web site is AN2250SW1.zip.

This is a stand-alone beep creator program that has been configured to play
three different noises demonstrating the algorithmic reproduction capabilities of
the HCS12 without the use of stored sample data. The three samples are a
periodic beep, a periodic beep with a fade effect, and a warning whoop sound.

arraycreator.c The name of this file on the Freescale web site is AN2250SW2.zip.

This is the source code for the arraycreator.exe executable program. This
takes a .WAV file called input.wav and produces a number of C files called
output{xx}.c

pwmcontroller.c The name of this file on the Freescale web site is AN2250SW3.zip.

This is the master program that takes the C files made by the arraycreator.exe
program, stores them in the Flash memory, and implements the playback
facility.
Audio Reproduction on HCS12 Microcontrollers 11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le

S

e
m

ic
o

n
d

u
c

to
r,

I

Freescale Semiconductor, Inc.
n

c
..

.

AN2250/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Background & Concept
	Software
	Principle
	Storing and Retrieving Sample Data
	.WAV Files
	Choosing Sample Rate
	Simple Beeps and Alarm Sounds
	Reproducing Audio
	Reproducing Multi- channel/Stereo Audio
	Reproducing 16-bit Samples
	Compression

	Hardware
	Filtering
	Amplification and Loudspeakers
	Summary
	Using the Source Code Examples

