
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2008. All rights reserved.

This document addresses problems programmers and
designers may encounter when working with big-endian
Power Architecture™ processors in conjunction with other
devices that are little-endian. The problems arise because a
big-endian (BE) system stores the most significant byte
(MSB) of the data at the starting (or lowest) address, but a
little-endian (LE) system stores the least significant byte
(LSB) of the data at the starting address. Examples and
explanations of data versus address invariance policies are
provided throughout this document. The terms ‘PCI bus’
and ‘agent’ are used synonymously because an agent
add-in card (a little-endian agent is considered in this
application note) and the PCI bus of a motherboard into
which the agent is inserted are both little-endian, so data
appears identically on both.

AN2285
Rev. 2.2, 3/2008

Contents

1 CPU Bus Versus PCI Bus Data Interpretation 2
2 Data Movement: Big-Endian Host to Little-Endian Agent 3
3 Address and Data Invariance . 4
4 Hardware Byte Swapper . 5
5 Conclusion . 8
6 Revision History . 8

Data Movement Between Big-Endian and
Little-Endian Devices
by Kyle Aubrey, Field Technical Leader Ashan Kabir, System Engineering

Freescale Semiconductor, Inc. Freescale Semiconductor, Inc.
San Jose, CA Austin, TX

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

2 Freescale Semiconductor

CPU Bus Versus PCI Bus Data Interpretation

1 CPU Bus Versus PCI Bus Data Interpretation
Figure 1 shows data on the CPU bus (big-endian) and on the PCI bus (little-endian).

Figure 1. Data on Processor Bus and PCI Bus

As Figure 1 shows, the endianness of a bus determines whether the MSB is put into the lowest address
(big-endian) or in the highest address (little-endian). Also, note that the PCI bus AD[31–0] signals are
shown as discontinuous (that is, AD[7–0], AD[15–8], AD[23–16], and AD[31–24]) because of the bit
ordering required by the PCI specification. Regardless of a device’s endianness, data is interpreted from
MSB to LSB. As shown in Figure 2 and Figure 3, this results in different interpretations of the data
represented in Figure 1.

Figure 2. Interpretation of Processor Data on the CPU Bus (MSB to LSB)

Note that the interpretation of the data on the CPU bus appears reversed on the PCI bus.

Figure 3. Interpretation of Data on the PCI Bus (MSB to LSB)

0x01 0x23 0x45 0x67

0x01 0x23 0x45 0x67

DH[0–7] DH[8–15] DH[16–23] DH[24–31]

AD[31-24]AD[23–16]AD[15–8]AD[7–0]

CPU bus (Big-Endian)

MSB

Data

Data

PCI bus (Little-Endian)

0x00 0x01 0x02 0x03 Address

MSB

DH[] = upper 32 bits of CPU data bus
AD[] = multiplexed PCI address and data bus

= 0x0123456701 23 45 67

= 0x6745230101 23 45 67

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

Freescale Semiconductor 3

Data Movement: Big-Endian Host to Little-Endian Agent

2 Data Movement: Big-Endian Host to Little-Endian
Agent

Consider a host system in which the host is a big-endian Freescale processor with an integrated PCI bridge
that allows data movement from the processor bus to a PCI bus. The following initialized data structure is
placed into the memory of the big-endian host. Note that the __packed__ switch is used to ensure that there
is no inter-member padding and that natural alignment is not enforced. Because of the __packed__ switch,
var2 resides in memory immediately following var1, var3 immediately follows var2, and so on.

typedef __packed__ struct {

unsigned long var1; //4Bytes; var1=0x01234567

unsigned long long var2; //8Bytes; var2=0x1122334455667788

unsigned char var3; //1Byte; var3=‘a’

unsigned short var4; //2Bytes; var4=0xBBCC

}FRAME;

Table 1 shows how the data structure FRAME appears on the processor bus of the host device.

2.1 Big-Endian Host Interpretation of Data
Because data is interpreted from MSB to LSB, the values of the variables from the example data structure
shown in Table 1 are as follows:

var1 = 0x01234567

var2 = 0x1122334455667788

Table 1. Example Data Structure FRAME on Processor Bus (Big-Endian)—No Padding

Content 01 23 45 67

Address 00 01 02 03

Content 11 22 33 44

Address 04 05 06 07

Content 55 66 77 88

Address 08 09 0A 0B

Content ‘a’ BB CC —

Address 0C 0D 0E 0F

var1

var2

var2

var3 var4

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

4 Freescale Semiconductor

Address and Data Invariance

var3 = ‘a’

var4 = 0xBBCC

2.2 Little-Endian Agent Interpretation of Data
If data is transferred from its location on the host to the same location on the agent (data located in 0x0 of
the host bus is transferred to 0x0 of the agent and so on), the data content of the agent memory appears as
shown in Table 1. This is the default policy for dealing with endianness conversion, which is called address
invariance, and it is defined later in this document. However, because the agent is a little-endian system,
the interpretation of the data changes—data in the lowest location—is treated as the LSB. Therefore, the
interpretation of the data in the agent little-endian system is as follows:

var1 = 0x67452301 (Reversed. See Figure 1.)

var2 = 0x8877665544332211 (Reversed. See Figure 1.)

var3 = ‘a’ (Restored. endianness concept does not apply for a single byte.)

var4 = 0xCCBB (Reversed. See Figure 1.)

In summary, the interpretation of data transferred from a big-endian host to a little-endian agent is
sometimes reversed (var1, var2, and var4) and sometimes restored (var3).

2.3 Restoration of Reversed Data
Without the aid of a byte swapper that can interpret the software data structure, software must restore the
reversed data. Because the interpretation of var1, var2, and var4 in the little-endian agent is reversed,
software must first byte-swap the value of var1 obtained from the big-endian memory before transferred
data can be read, as follows:

Temp = Byte_Swap_Long (var1);

Byte_Swap_Long() in this case takes a long value, swaps its byte locations, and returns the
byte-swapped value. After the routine is called, Temp holds the true interpretation of var1 in a
little-endian system, which is 0x01234567. This process can then be repeated for subsequent variables.

3 Address and Data Invariance
Invariance is defined as not varying, constant, or preserved. There are two approaches to endian mapping:
address invariance and data invariance. Address invariance preserves the addressing of the byte in
memory. Data invariance preserves the relative byte significance but translates the byte addressing.

3.1 Address Invariance
The default policy for dealing with endianness conversion in Freescale Power Architecture processors is
the policy of address invariance. This policy preserves the byte address of each byte on a particular I/O
interface as it is placed into main memory or moved to Power ISA registers by swapping the byte-lanes.
As described in Section 2.2, “Little-Endian Agent Interpretation of Data,” this policy can have the effect
of reversing the order of significance of bytes (most significant to least significant) or a particular datum,
but it has the benefit of preserving the format of the general data structures so that software that is aware
of both endianness and data structure format can properly access the data structure.

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

Freescale Semiconductor 5

Hardware Byte Swapper

3.2 Data Invariance
An alternative policy is data invariance. This policy preserves the exact value of data by swapping the byte
addresses of each byte within the datum. Although this preserves values for a given size of datum (usually
4 bytes), it has the undesirable effect of scrambling the addresses and formats of the datum or data
structures of other sizes. For instance with data invariance, byte 0 is still the most significant byte in the
data structure but is now located at address 0x03 in memory rather than address 0x00.

The integration of a data invariance mode into a PCI bridge (as well as PCI-Express or HyperTransport
bridge) is referred to as a “Hardware Byte Swapper.”

4 Hardware Byte Swapper
This section describes the hardware byte swapper, or data invariance mode, built into certain bridges.

4.1 Common Misconception
There is a common misconception that if the PCI block has a byte swapper operating on-the-fly, the
interpretation of a software data structure can be restored without any software intervention in the
destination. This idea is false because the byte swapper of a PCI block can swap bytes only on aligned
boundaries (for example, a 4-byte word boundary). When the byte swapper is turned on, it takes a word
from the source memory, byte-swaps the word, and places the word into the PCI interface. The hardware
byte swapper cannot interpret a data structure containing different types of variables, such as byte, half
word, word, and doubleword.

4.2 Byte Swapper Usage
Table 1 in Section 2, “Data Movement: Big-Endian Host to Little-Endian Agent,” shows the data content
of the memory of a big-endian host. If the host device has a byte swapper in its PCI hardware block and if
the byte swapper is turned on when the data moves from the host memory to the PCI bus, the byte swapper
takes the first row in Table 1, byte-swaps the content, and places the swapped data on the PCI bus
(little-endian). Then it repeats this process for rows 2, 3, and 4. Eventually, the data on the PCI bus appears
as shown in Table 2.

Table 2. Example Data Structure Frame on PCI Bus (Little-Endian)

Table 3. with Byte Swapper Turned On

Content 01 23 45 67

Address 03 02 01 00

Content 11 22 33 44

Address 07 06 05 04

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

6 Freescale Semiconductor

Hardware Byte Swapper

Based on Table 2, Table 4 shows the interpretation of var1, var2, var3, and var4.

Content 55 66 77 88

Address 0B 0A 09 08

Content ‘a’ BB CC —

Address 0F 0E 0D 0C

Table 4. Interpretation of Byte Swapped Data on a Little-Endian Agent

Variable Size LSB MSB Interpretation 1

1 Interpretation of the data is always from MSB to LSB, regardless of the endianness.

Notes

var1 4 bytes 0x0 0x03 0x01234567 Because the byte swapper is turned on when data is transferred from
a big-endian host to a a little-endian agent, var1 is restored and
there is no need for software intervention.

var2 8 bytes 0x04 0x0B 0x5566778811223344 This is not the original interpretation of var2 in the big-endian host
(see Table 1). Even though the byte swapper is turned on when data
is transferred from a big-endian host to a little-endian agent, the data
interpretation of var2 is not restored.

var3 1 byte 0x0F 0x0F — Endianness does not affect data that is only a single byte wide, so the
data interpretation of var3 is restored. However, software should be
aware that the byte swapper has moved var3 from address 0x0C to
address 0x0F.

var4 2 bytes 0x0D 0x0E 0xBBCC Because the byte swapper is turned on when data is transferred from
a big-endian host to a little-endian agent, var4 is restored and there
is no need for software intervention. Note that the value for var4 is
restored only because it straddles the 2-byte (halfword) boundary. If
var4 were at big-endian address 0x0C, it would be byte swapped to
the little-endian address of 0x0E.

Table 2. Example Data Structure Frame on PCI Bus (Little-Endian)

Table 3. with Byte Swapper Turned On (continued)

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

Freescale Semiconductor 7

Hardware Byte Swapper

Figure 4 shows an example of a 4-byte write to PCI memory when the hardware byte swapper (also known
as data invariance) is enabled.

Figure 4. Four-Byte Transfer to PCI Memory Space With Hardware Byte Swapper Enabled

Note that when the byte swapper is enabled, the MSB on the internal peripheral logic bus, D0, is placed
on byte lane 3(AD[31–24]) on the PCI bus. This occurs so D0 appears at address 0xnnnn_nn03 and not at
address 0xnnnn_nn00 in the PCI space.

CPU Core

0000

0 1 2 3 4 5 6 7

D0 D1 D2 D3 xx xx xx xx

0123

D3D2D1D0

0x00

0x04

PCI Little-Endian Memory Space

Byte lanes

PCI byte lanes (C/BE[3–0] asserted)

0000AD[3–0]
During address phase
(AD[1–0] = 0b00 for memory space access)

Outbound Window

PCI data bus
(AD[31–24], AD[23–16], AD[15–8], and AD[7–0]
during data phase)

A[28–31]

Internal peripheral logic data bus

Hardware Byte Swapper

D3D2D1D0

MSB LSB

LSBMSB

0123

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

8 Freescale Semiconductor

Conclusion

5 Conclusion
This application note demonstrates that when multiple data types occur in a single data structure, the use
of a byte swapper does not maintain data interpretation across devices with different endian characteristics.
In an ideal case, when all variables in the data structure are words, turning on the byte swapper restores
data interpretation. Therefore, when the endianness of the host and agent differs, a software solution at the
destination end is the most efficient solution to restore data interpretation.

6 Revision History
Table 5 provides a revision history of this application note.

Table 5. Revision History

 Revision Date Substantive Changes

2.2 3/2008 Converted PowerPC to Power Architecture
Minor formatting changes

2.1 11/2007 Put trademark after first mention of PowerQUICC II Pro and PowerQUICC III.
Minor formatting changes

2 6/2006 Overhaul of most sections.
Added section on invariance
Various formatting
Internal Release

1 5/2006 Formatting Changes
Altered Fallacy Section to cover the Byte Swapper Feature more in-depth
Added Figure 4
Added Section 7and 8

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

Freescale Semiconductor 9

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

10 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Data Movement Between Big-Endian and Little-Endian Devices, Rev. 2.2

Freescale Semiconductor 11

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN2285
Rev. 2.2
3/2008

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 CPU Bus Versus PCI Bus Data Interpretation
	2 Data Movement: Big-Endian Host to Little-Endian Agent
	2.1 Big-Endian Host Interpretation of Data
	2.2 Little-Endian Agent Interpretation of Data
	2.3 Restoration of Reversed Data

	3 Address and Data Invariance
	3.1 Address Invariance
	3.2 Data Invariance

	4 Hardware Byte Swapper
	4.1 Common Misconception
	4.2 Byte Swapper Usage

	5 Conclusion
	6 Revision History

