
AN2304/D
10/2002

Implementation
of a UDP/IP
(User Datagram
Protocol/Internet
Protocol) Stack on
HCS12 Microcontrollers

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

By: Gerald Kupris, Freescale, Munich
Harald Kreidl, Freescale, Munich
Norbert Gutknecht, Metrowerks, Munich
Dirk Lill, University of Cooperative Education, Lörrach
Nathan Braun, University of Cooperative Education, Lörrach

Connecting Embedded Applications to the Internet

Where the Internet may have been a dedicated network for computer data
exchange in it's infant years, today more and more small (non-PC based)
intelligent "machines" are connected to the Network of Networks. The
prediction is that by 2005, the amount of non-PC users on the Internet will far
exceed the amount of PC's!

Today, a highly integrated microcontroller can handle the functional control of
these machines. To connect the microcontroller to the Internet, one must
implement a protocol stack on the device. To function, this protocol usually
requires a powerful processor, a complete operating system, and a large
amount of memory. In this case, the implementation of a stand-alone Internet
protocol stack could be a solution.

In order to design an embedded system, one must design both the hardware
around a microcontroller and the software. Depending on the target hardware
as well as the complexity of the problem, the developer has to decide whether
to use an operating system. According to market analysis, more than 75% of
the embedded applications use a proprietary or free operating system, about
25% do not use an operating system. Big operating systems usually have
Internet protocols already built-in, whereas deeply embedded systems do not
yet provide a TCP/IP (Transmission Control Protocol/Internet Protocol) stack.

However, a 8- or 16-bit microcontroller may not have enough resources for the
implementation of an operating system. Software implementations without
operating systems can be found in less complex applications often using small
microcontrollers with strict hardware and runtime restrictions. The choice of
writing standalone code is often made because of the need to optimize memory
usage, code size, and run-time behavior. Since the writing of this standalone
code is target specific, it is often not portable to other targets.
© Motorola, Inc., 2002

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Therefore, the described system solution favors a different way forward where
the Internet protocol stack is implemented as a stand-alone stack. But, this
stack is modular, portable, and can also be used together with a scalable
embedded operating system (e.g., Metrowerks®(1) OSEKturbo OS). The stack
was implemented on a Freescale HCS12 derivative (MC9S12DP256), a low-
cost but highly integrated 16-bit microcontroller.

Internet Protocol Standards: The OSI/ISO Communication Model

The Internet is a collection of individual networks, connected by intermediate
networking devices, that function as a single large network. The challenge
when connecting various systems is to support communication between
disparate technologies. For example, different sites may use different types of
media, or they might operate at varying speeds. Network management must
provide centralized support and troubleshooting capabilities. Configuration,
security, performance, and other issues must be adequately addressed for the
inter-network to function smoothly.

The OSI (Open Systems Interconnect) reference model which was introduced
in the seventies and released in 1984 describes how information from a
software application in one node moves through a network medium to a
software application in another node (see Figure 1). The OSI reference model
is a conceptual model composed of seven layers, each specifying particular
network functions. It is now considered the primary architectural model for
inter-device communications.

Figure 1. The OSI/ISO Communication Layer Model

1. Metrowerks is a registered trademark of Metrowerks, Inc., a wholly owned subsidiary of
Freescale Semiconductor, Inc.

LAYER 7: APPLICATION LAYER

LAYER 6: PRESENTATION LAYER

LAYER 5: SESSION LAYER

LAYER 4: TRANSPORT LAYER

LAYER 3: NETWORK LAYER

LAYER 2: DATA LINK LAYER

LAYER 1: PHYSICAL LAYER

DNS

TCP

IP

ARP

ETHERNET IEEE 802.3

SMTP HTTP

PPP

WIRELESS

FTP

SLIP

WAP

UDP

HDLC /SDLC

SERIAL COMMUNICATION

SOCKETS
API

OSI/ISO COMMUNICATION
LAYER MODEL EMAIL WEB BROWSER MOBILE PHONE
2 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Internet Protocol Standards: The OSI/ISO Communication Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The OSI model provides a conceptual framework for communications between
computers, but the model itself is not a method of communication. Actual
communication is made possible by using communication protocols. The
protocol is a formal set of rules and conventions that governs how nodes
exchange information over a network medium. The known Internet
communication protocols do not fully correspond to the OSI model, although
they are very similar to this model. Protocols used in the Internet are:

• Transfer Control Protocol (TCP)

• User Datagram Protocol (UDP)

• Serial communications support SLIP (Serial Line Internet Protocol)

The set of programs used for Internet communication is usually refered to as
the “Internet Protocol Stack” or sometimes “TCP/IP Stack”.

TCP/IP was already established while the ISO networking standards were
evolving. Nevertheless, TCP/IP protocol can be described with the ISO/OSI
model. The principle behind layering is each layer hides its implementation
details from the layer below and the layer above. Each layer on the transmitting
node has a logical peer-to-peer connection with the corresponding layer in the
receiving node. This is accomplished through the use of encapsulation.

Figure 1 shows the TCP/IP stack in terms of the OSI layers. In this illustration,
the stack is shown in a typical LAN (Local Area Network) application. For WAN
(Wide Area Network) or point-to-point applications the lower layers can be
somewhat more complicated. Each layer in a receiving machine gets received
frames from the layer below and transmits sending frames to the layer above.
Similarly each layer in a sending node gets received frames from the layer
above and transmits its frames to the layer below.

Layer 1:
The Physical Layer

The physical layer describes the actual physical transmitting medium
(i.e., radio, fiber-optic cable, coaxial conductor, cable twisted). The physical
layer exhibits the following substantial characteristics:

• Data are treated as being bit streams, whereby no distinction between
"data" is made in the actual sense and control information (e.g., control
of character).

• Standardization concerns information exchange as well as the
representation of concrete signals and physical dimensions. Apart from
electrical parameters, mechanical and/or constructional parameters can
be standardized (e.g., plugs, cables, ect.).

• Signals are designated and defined physically, whereby the meaning
and the co-operation of these signals are described.
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 3

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Important aspects of this layer are the timing of the signals as well as the
permissible tolerances. The physical layer makes connection possible to:

• Existing physical connections (or connections which can be created) like
V.24 (RS232) and X.21 for industrial automation systems

• Ethernet (CSMA/CD)

• Token Ring for LAN applications

The services provided by the physical layer to the data link layer can be divided
according to different criteria. The supported modes of operation are simplex,
half duplex, and full duplex, whereby synchronous and asynchronous
transmission is possible.

The physical layer uses these three services:

• Initialization of the interface as well as definition of the data
communication direction

• Transport of the individual bits respectively (bit stream)

• Dismantling of the physical connection

NOTE: The physical layer implementation is always specific to the type of
transmission.

Layer 2:
The Data Link Layer

The central task of the data link layer is handling data communication supply
to/from secured channels. In contrast to the physical layer, the data link layer
understands the data more as a structured message, in particular the
transmission of a single character. Services which the data link layer makes
available to the network layer provide control of the information flow during the
connection between two nodes.

Error recognition and, if necessary, error correction accomplished in the data
link layer refers only to framing errors. However, the data link layer is not able
to determine errors concerning content or meaning of the data. For this reason,
only an examination takes place to determine if data sent by the transmitter are
identical to data received by the receiver. If necessary, the split of a connection
into several transmission paths also takes place within the data link layer.

PPP has to be implemented according to [RFC1661] with its subprotocols:

• LCP (Link Control Protocol)

• PAP (Password Authentication Protocol)

• IPCP (Internet Protocol Control Protocol)

For future use the possibility of implementing the CHAP (Challengege
Handshake Authentication Protocol) should be provided as well as DHCP
(Dynamic Host Configuration Protocol).
4 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Internet Protocol Standards: The OSI/ISO Communication Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Link Control Protocol accomplishes:

• Establishment of the used package size

• Authorization and monitoring of the transmission quality

Layer 3:
The Network Layer

The tasks of the network layer include identification of the transmission path.
This means the identification of the most favorable way from node A to node B,
assuming that several ways are possible. A further task of the network layer is
flow control (i.e., the control of the package flow by the network).

Additional tasks are:

• Signalling non-correctable errors to the higher layers

• Resetting a connection in the case of an error

• Multiplexing several connections

• Assigning data to certain services

NOTE: The IP (Internet Protocol) belongs to the network layer and includes the IP
addressing scheme.

The implementation of the IP is according to Version 4 (IPV4) described in [4].
To preserve performance and memory of the system it does not have to allow
fragmentation. Checking the header checksum on incoming IP datagrams is an
option that can be switched off.

ICMP communicates error and administrative messages between IP systems
and is an integral part of the IP. It has to be implemented according to [5]. Most
of the 30 messages and queries are used to indicate routing and gateway
problems. Therefore, an ICMP implementation for an embedded device can be
limited to one message type that is an echo reply. An echo reply is a message
sent upon echo request. An echo request can be sent to an embedded device
using the program ping <ip address>. An ICMP echo request can be used
to diagnose the communication link between a computer and the embedded
device on IP level.

Layer 4:
The Transport Layer

The task of the transport layer consists of:

• Structure

• Administration

• Dismantling of logical connections

During the transmission procedure, the transport layer must receive data from
the next higher layer and pass on the packages to the network layer. Therefore,
the data must be segmented into corresponding packages. This procedure is
called message segmentation. Within the transport layer error handling is
accomplished.
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 5

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

On the transport layer there are only two possibilities for data connections, a
reliable data connection (TCP) and an unreliable data connection (UDP). On
this level there are no extensions in the forseeable future. In contrast, the IP
protocol (situated on the network layer in the OSI reference model) might be
extended to the possibility to process Internet Protocol Version 4 (IPv6)
datagrams. Moreover, there is a specification to encrypt IP datagrams known
as IPsec [6].

For the transport layer, the two most common protocols which have to be
implemented in the Internet protocol stack are:

• TCP (Transport Control Protocol)

• UDP (User Datagram Protocol)

Transport Control
Protocol (TCP)

TCP is the most common protocol providing a reliable data connection between
two network partners. It is used for HTTP (HyperText Transfer Protocol), SMTP
(Simple Mail Transport Protocol), FTP (File Transfer Protocol), and other
services. TCP serves as a foundation for such applications as embedded web
server and email client providing a secure data connection between two
network partners. Implementation of a TCP protocol is rather complex and is
not always required in an embedded application.

User Datagram
Protocol (UDP)

UDP is a much simpler protocol but it is not as widely used in traditional internet
services. For example, standard applications which use UDP are:

• TFTP (Trivial File Transfer Protocol, Port 69)

• DNS Name Server (Domain Name System, Port 53)

• RPC (Remote Procedure Call, Port 111)

• SNMP (Simple Network Management Protocol, Port 161)

• LDAP (Lightweight Directory Access Protocol)

In embedded applications, UDP is most likely to be used as a proprietary
network connection. For example, the transfer of small data pieces such as
results of measurements, remote controls, or some user data. See Figure 2.

Layer 5:
The Session Layer

The session layer supports different user application dialogues. Since TCP/IP
only incorporates protocols through the transport layer, all the software above
the transport layer is generally lumped together as networking applications. For
this reason, often the session layer is not differentiable from the application
layer.

NOTE: The Berkley BSD ‘Sockets’ Application Programming Interface (API) is a
commonly used session/presentation layer.
6 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Internet Protocol Standards: The OSI/ISO Communication Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. Use of UDP in an Embedded Application

Layer 6:
The Presentation
Layer

As is the case with the application layer, the user application stands in the
center of the presentation layer. Some services of the presentation layer are:

• Data compression

• Data encryption

NOTE: The presentation layer has no specific role in TCP/IP because TCP/IP is only
implemented from the data link layer through the network layers. Therefore,
any presentation level functionality is often viewed as part of the application
layer.

Layer 7:
The Application
Layer

The application layer is accessible for the user and describes superordinate
applications. Their function relies on the functions of the underlying layers. The
application layer encompasses virtual all applications of TCP/IP networking
including network file systems, web server or browser, and client server
transaction protocols.

Typical Internet applications are:

• FTP (File Transfer Protocol)

• SMTP (Simple Mail Transport Protocol)

• HTTP (HyperText Transfer Protocol)

Also, object exchange methods such as DCOM (Distributed Common Object
Model) and CORBA (Common Object Request Broker Architecture) are
considered part of the application layer. Refer to Figure 3.

MODEM

EMBEDDED APPLICATION WITH
TEMPERATURE SENSOR CALLS
THE ISP ON A REGULAR BASIS

AND TRANSMITS DATA VIA UDP/IP

TELEPHONE
LINE

INTERNET

DIAL-UP SERVER
AT INTERNET SERVICE

PROVIDER (ISP)

PC WITH UDP/IP CLIENT
AND A PROPRIETARY APPLICATION
TO DISPLAY THE MEASURED DATA
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 7

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Transmission of HTTP Information via a Serial Link

As shown in Figure 3, an important fact of Internet communication is that
information does not travel in a continous stream, but in the form of small data
packets. A packet is an information unit whose source and destination are
network-layer entities. A packet is composed of the network-layer header and
possibly a trailer and upper-layer data. The header and trailer contain control
information intended for the network-layer entity in the destination system. Data
from upper-layer entities is encapsulated in the network-layer and trailer. The
advantage of this packet technology is that every packet travels independently
from the others making the whole information transfer resistant against
transmission failures.

A disadvantage of the packet technology is that every protocol layer adds some
information to the data packet. Therefore, it is not very efficient to submit just a
small piece of information because the overhead generated by the various
protocols can be much larger than the transmitted data itself (refer to Figure 3).

The next important fact of Internet communication is that every single device in
the network has its own unique address, called the IP address. In the current
specification the IP address uses four 8-bit numbers. This 32-bit address space
looks like xxx.xxx.xxx.xxx in decimal enumeration. In the early 90s, the first
address shortage crisis hit the Internet technical community. The present
solution will sustain the Internet for a few more years by making more efficient
use of the existing 32-bit address space (Internet protocol V4). For a more
lasting solution, the implementation of the Internet protocol V6 and its 64-bit
address space is necessary.

SOCKETS
API

TCP UDP

WAP FTP DNS SMTP HTTP

IP

ARP SLIP HDLC
IPCP

LCP

ETHERNET SERIAL COMMUNICATION
3 BYTEn BYTE8 BYTE20 BYTE9 BYTE DATA

UDP/IP
FRAME

HEADER TRAILER

USER APPLICATIONS

PPP
8 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Use of UDP in Embedded Applications

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Use of UDP in Embedded Applications

The User Datagram Protocol (UDP) can be used in embedded applications.
Some advantages of the UDP are:

• Small code and memory size

• Small overhead

• Easy to implement

• Fast processing of the packet since no acknowledgement is required

Software Interfaces

The implementation of the four protocols, TCP, UDP, IP, and ICMP form a
package of software that comprises both the transport layer and the network
layer in the OSI reference model and is defined by two interfaces, one to the
application layer and one to the data link layer. See Figure 4.

Figure 4. Main Software Interfaces

Figure 4 shows the two main software interfaces that have to be implemented
and described compared to the OSI reference model.

1. Interface A defines the data exchange between the transport and
session layer in the OSI reference model. There exists a de facto
standard for this interface, the Berkeley Socket API (‘sockets’). Most of
the implementations of TCP/IP stacks use a similar API; therefore, for
compatibility purpose as well as ease of use it is important to provide an
API that is similar to the sockets API. Since the sockets API is a widely
used standard it guarantees the implementation of all current application
level protocols.

2. Interface B interfaces the data link layer and the network layer in the
OSI reference model. On this interface the lower layers, data link,
physical, and media provide IP packets. This interface has to permit a

APPLICATION
PRESENTATION

SESSION

TRANSPORT

NETWORK

DATALINK
PHYSICAL

MEDIA

TCP/IP STACK

NETWORK

OSI REFERENCE MODEL

INTERFACE A

INTERFACE B

TCP UDP

IP ICMP

H
TT

P

SM
TP

FT
P

PO
P

D
N

S

SE
R

IA
L

LI
N

E

lrD
A

W
LA

N

EH
TE

R
N

ET
IE

EE
 8

02
.2

INTERFACE
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 9

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

simultaneous use of multiple network interfaces. Moreover, it has to be
designed independent of the hardware used as the physical link.

The design of interface B does not have to fulfill any convention.
However, it is important that the design allows use of the UDP/IP or
TCP/IP stack with different network interfaces.

Software Structure and Description of the UDP/IP Stack on the HCS12

The implementation of the UDP/IP stack on a HCS12 microcontroller is based
on the work of Rene Trenado [15] and Steven Torres [17]. In difference to the
original solution, several changes were introduced:

• The hardware independence was improved to make the code more
portable to other Freescale architectures. In the current work the code
was ported to a HCS12 derivative.

• The structure of the program modules was modified to improve the
layering (see Figure 5).

• The modularity of the software was improved.

• It is possible to add other network interfaces (for example, Ethernet)

• Documented APIs are used for the communication between the
software layers. The higher layers communicate to the lower layers via
these APIs. The lower layers use a callback function to notify the higher
layer about the presence of an event.

Figure 5. UDP/IP Server Software Layers

APPLICATION
LAYER

TRANSPORT
LAYER

NETWORK
INTERFACE

NETWORK
INTERFACE

LAYER

main.c

timeout.c

debug.c

UDPIP.c

PPP.c

physical.c

drv_modem.c

drv_SCI.c

APPLICATION

UDP/IP
– UDP
– IP
– ICMP

PPP

PHY INTERFACE HANDLER

MODEM

SCI

HARDWARE
10 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Software Structure and Description of the UDP/IP Stack on the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The project itself was created using the Metrowerks CodeWarrior®(1) IDE. A
folder structure has been created, so each Internet communication layer
corresponds to an appropriate folder (see Figure 6).

Figure 6. UDP/IP Server File Structure

The CodeWarrior Project “4 IP UDP ICMP.mcp” is located in the directory “4 IP
UDP ICMP”. The Project itself involves several source and header files (see
Figure 7). A description of the software modules follows.

Application: main.c

This application consists of checking the pins of a digital input port (here
port A), which might be connected to application specific hardware (e.g.,
sensors). When the port pin state changes, a UDP datagram is sent to a
predefined communication port. This datagram contains the port’s state. If
the peer is connected to the correct communication port (here 1080), the
current state is shown by the ‘Peer A’ application

1. Code Warrior is a registered trademark of Metrowerks, Inc., a wholly owned subsidiary of
Freescale Semiconductor, Inc.
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 11

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7. UDP/IP Server Project Structure

UDPIP: UDPIP.c

The UPD/IP functionality is implemented in this file containing the protocols
IP, ICMP, and UDP. The IP protocol is responsible for the correctness of
incoming datagrams, which are then provided to the corresponding protocol
to be manipulated. Furthermore, outgoing datagrams are attributed a
header checksum that gives hints to the correctness of the packets.

In the demonstrated application, the ICMP protocol is responsible for echo
replies. This allows the system’s administrator to check for the online
availability of the microcontroller.
12 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Software Structure and Description of the UDP/IP Stack on the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PPP: PPP.c

The PPP file contains the functions for datagram encapsulation and link
establishment to the Internet service provider or a dial-up computer. Up to
this layer the data stream is interrupt driven by incoming bytes on the serial
interface. From PPP on, this stream is divided into packets containing
datagrams or PPP information.

PHYSICAL: physical.c

This file controls the lowest layer protocols which allow for different
hardware configurations to be combined with the PPP module. For example,
a modem, a null modem cable, or different interface standards (like RS232)
may be utilized for the connection to the host computer. Furthermore, a state
machine is implemented which gives the PPP layer information about its
lower layer status.

MODEM: drv_modem.c
The modem driver file is responsible for the correct communication between
the protocol stack and the modem. On the modem’s side, command strings
are sent establishing the modem’s parameters. The answer strings sent by
the modem are interpreted and handled in interrupt service routines, so that
the modem does not block the microcontroller’s runtime. The dedicated AT
command set is to be modified in the file set_modem.h.

SCI: drv_SCI.c
The SCI file contains drivers for interrupt supported sending and receiving
over the SCI interface. Here, the specified SCI is enabled or disabled. The
parameters of the SCI interfaces are specified in the header file drv_SCI.h.

TIMER: timeout.c
The timer module contains blocking and non-blocking routines for
generating timeouts. The time to wait is given in 10 millisecond steps. The
blocking timeouts (Tot_Delay(xx)) are for short waiting periods and for
debugging purposes (i.e., when the programmer does want the program to
halt its current execution).

DEBUGGING: debug.c
The debugging module provides functions that present information
concerning the protocol state on a second serial interface. The information
may be viewed on a terminal program like HyperTerminal®(1) or Tera
Term™(2). Refer to Figure 8.

1. HyperTerminal is a registered trademark of Hilgraeve, Incorporated.
2. TeraTerm is freeware, for additional information refer to the program home page at

<http://hp.vector.co.jp/authors/VA002416/teraterm.html>
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 13

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 8. Debug Information Received from the MC9S12DP256 SCI1

The UDP/IP stack has to be designed to react on events. Since the
communication is based on a layer model in which every layer has specified
functionality, it is important that the layers communicate with each other over
defined functions. Incoming data arrival events notify higher layer with the use
of callback functions whereas outgoing data is passed from higher layers to
lower layers using interface functions. Normally, there is no data copied but
pointers are passed as function arguments. When no communication is
occurring, event driven communication reduces CPU activity.

The UDP/IP stack was programmed in a non-blocking manner. Managing time-
outs and waiting for certain conditions are implemented by the use of two state
machines: one for the initialization and management of the modem and one for
the Point-to-Point Protocol (PPP). The structure of the modem state machine
is explained in Figure 9.
14 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Software Structure and Description of the UDP/IP Stack on the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9. State Machine Structure for Modem Initialization
and Management

The error codes of the modem are:

• Busy: E_MOD_BUSY

• No Answer: E_MOD_NOANSW

• Carrier Loss: E_MOD_NOCARR

These codes may be treated inside the application or illustrated on a display.

The structure for the state machine for the PPP is explained in Figure 10.

Figure 10. State Machine Structure for Point-to-Point Protocol (PPP)

MOD_NO_INIT

MOD_DATA

MOD_CONNECTING MOD_DIALING

MOD_COMMAND

MOD_OFF_HOOK

SYSTEM ERROR INITIALIZING COMMANDS

CARRIER DETECT BUSY, NO ANSWER GO OFF-HOOK COMMANDS

ESCAPE SEQUENCE,
CARRIER LOSS,

DTR FALLING EDGE

OK DIAL
ISP

FAIL ESTABLISH

CLOSING

AUTHENTICATEFAIL

DOWN

OPENED

SUCCESS/
NO PASSWORD

UP, HERE
MODEM CD

NETWORK

NO NETWORK

DEAD

NETWORK

TERMINATE

CARRIER
LOST
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 15

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In RFC 1661, the PPP state machine is described in a complete manner. In the
presented solution, there are two main states, which are stored in a status
variable. In cases where the NETWORK state is not reached, the LCP handling
routine answers depending on the incoming packets and leaves the
management of the state machine to the other peer.

If possible, the API functions are limited to Init, Open and Close, Read and
Write (see Table 1). These limitations allow an easier implementation of further
protocol files. The return codes of these functions are interpreted in the calling
functions.

Table 1. UDP/IP Stack Application Programming Interfaces

Return
Value

Function
Name

Parameters Description(1)

SBYTE UDPIP_Init
void (*pCallback)
BYTE *cInData

• Initialize UDP and IP layer
• Call PPP_Init

SBYTE UDPIP_Open None
• Call defined interfaces’ open function

(here PPP_Open)

SBYTE UDPIP_Close None
• Call defined interfaces’ close function

(here PPP_Close)

SBYTE UDPIP_Write
WORD uiSourcePort
BYTE *cOutData
WORD uiDataLen

• Store data to be sent
• Invoke datagram building
• Call PPP send function

SBYTE PPP_Init
void (*CallbackIP)(BYTE)
BYTE *cIPAddr

• Initialize PPP
• Call Phy_Init

SBYTE PPP_Open None
• Check Phy_Open
• Open PPP

void PPP_Close None
• Close Phy-layer
• Close PPP

void PPP_Write
BYTE *cData
WORD len

• Create PPP-Header
• Send Packet

WORD PPP_Read None
• Deliver 16bit of data
• Set buffer ready to receive new packets

WORD PPP_InBuf_CpyFrom
BYTE *pData
WORD uiLength

• Copy a sequence of data to destination

void PPP_Entry None
• Check for new packets
• Direct packets to layers

U
D

P
IP

.c
P

P
P

.c
16 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Software Structure and Description of the UDP/IP Stack on the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBYTE Phy_Init
void

(*CBackHigherL)(BYTE)
• Call SCI_Init
• Call modem_Init

SBYTE Phy_Open None • Open ISP connection

void Phy_Close None • Call modem_Close

void Phy_Write BYTE cData • Write char to SCI

SBYTE Modem_Init None • Initializes the modem

SBYTE Modem_Open None
• Open a connection
• Dials the ISP

void Modem_Close None
• Close ISP-connection
• Go on-hook

void Modem_Write BYTE *cData • Send character to SCI

void SCI_Init BYTE SCI_desc • Initialize a specific SCI

BYTE SCI_Enable BYTE SCI_desc
• Enables the specified SCI to send /

receive data

BYTE SCI_Disable BYTE SCI_desc • Disables the specified SCI

BYTE SCI_EnableEvent
BYTE cEvent
BYTE SCI_desc

• Enables the events for a specific SCI
module

BYTE SCI_DisableEvent
BYTE cEvent
BYTE SCI_desc

• Disables the events for a specific SCI

BYTE SCI_RecvChar BYTE *Chr
• Receives a character and returns char’s

address

BYTE SCI_SendChar
BYTE bChr
BYTE SCI_desc

• Sends a character over the specified
SCI module

void SCI_SetCallback
CallbackFunc pFunction
BYTE bCallBackSel

• set func-pointers to routines to be called
upon events

void SCI0_Interrupt None
• check interrupt conditions
• call appropr. callback func.

void SCI1_Interrupt None
• check interrupt conditions
• call appropr. callback func.

1. For details refer to the function header in C file.

Table 1. UDP/IP Stack Application Programming Interfaces (Continued)

Return
Value

Function
Name

Parameters Description(1)

p
h

ys
ic

al
.c

D
rv

_m
o

d
em

.c
D

rv
_S

C
I.c
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 17

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Setup of the Demonstration and Development Environment

The development system and test environment was set up in a way to emulate
the structure of a real world system (see Figure 11).

Figure 11. Structure of a UDP/IP System

The UDP/IP server was implemented on a MC9S12DP256EVB. This
evaluation board was connected via a RS232 line to a Zyxel modem. The
modem was then connected to a telephone exchange which emulates a real
telephone line environment. The telephone exchange was connected to a PC
on which a Windows®(1) dial-up server was installed. For information on how to
set up a dial-up server on a Windows PC, please refer to [18]. This PC is a
representation of the workstation normally located at the Internet service

MODEM
TELEPHONE LINE

(1) ESTABLISH A PPP LINK
(2) PPP/UDP/IP MESSAGE

INTERNET SERVICE
PROVIDER (ISP)

INTERNET

UDP/IP CLIENT
WITH PROPRIETARY

APPLICATION

EMBEDDED HCS12 APPLICATION
WITH BUILT-IN UDP/IP SERVER

a) Real World System

b) Development Environment — Demo Setup

MODEM

DIAL-UP SERVER
AND UDP/IP CLIENT
ON THE SAME PC

TELEPHONE EXCHANGE

PC WITH DEVELOPMENT
SOFTWARE AND DEBUG

INFORMATION
MC9S12DP256EBV

EVALUATION BOARD

1. Windows is a registered trademark of Microsoft Corporation in the U.S. and/or other countries.
18 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Setup of the Demonstration and Development Environment

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

provider. In the test case, the UDP/IP client software was installed on the same
PC as the dial-up server.

In order to use the MC9S12DP256EVB in the demonstration and development
setup, some modifications have to be implemented in the original evaluation
board. The MC9S12DP256 provides two serial communication interfaces:
SCI0 and SCI1:

• SCI0 is used as a modem interface. Since SCI0 delivers only the Tx data
and Rx data signals, PORT A was configured as a general purpose I/O
to receive the signal CD (carrier detect) and to drive the signal DTR (data
terminal ready) for full communication to the modem. An additional
RS232 level shifter circuit was mounted on the evaluation board to drive
SCI0 and provide a fully specified RS232 interface to the modem (see
Figure 12).

• SCI1 is used with the RS232 level shifter which was originally mounted
on the DP256 Evaluation Board. On this SCI, some debug information
is delivered to a standard terminal (see Figure 8). This additional debug
information greatly simplifies the process of software development.

Figure 12. Implementation of an Additional RS232 Driver
to the MC9S12DP25 Port Pins

9

10

7

8

12

11

14

13

PORT S.0

PORT S.1

PORT A.0

PORT A.1

PORT S.2

PORT S.3

MC145407

MC145407

9

10

12

11

SCI0
(MODEM PORT)

SCI1
(DEBUG PORT)

RxD

TxD

DCD

DTR

RxD

TxD

2

3

1

4

2

3

DB9

DB9
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 19

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Furthermore, there are some other things which have to be considered when
porting the application to the MC9S12DP526EVB. They are:

• The timing functions have been adapted to the clock of the evaluation
board.

• All interrupt vectors of the MC9S12DP256 have been pointed to a jump
table in RAM, so that the software could be loaded into RAM and the
FLASH ROM only needs to be programmed once.

• All modem settings and commands have been adjusted to the Zyxel
standard, because this type of modem was used for the example.

The UDP/IP server runs on the HCS12 microcontroller. A proprietary UDP/IP
client application for Windows has been written for bidirectional communication
and tested of the demonstration system (see Figure 13). This UDP/IP client
displays the status of some of the microcontroller’s port pins and allows
switching on and off the LEDs which are located at the MC9S12DP256EVB.

Figure 13. Proprietary Client Application Screen Shot

Figure 14 shows a photo of the real setup of the evaluation and test
environment.
20 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Literature

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 14. Photo of the Development System and Test Environment

Literature

[1] TCP/IP Illustrated Volume 1 – The Protocols; W. Richard Stevens

[2] TCP/IP Illustrated Volume 2 – The Implementation; W. Richard Stevens,
Gary R. Wright

[3] TCP/IP Illustrated Volume 3 – TCP for transactions, HTTP, NNTP; W.
Richard Stevens

[4] RFC 0791 Internet Protocol. J. Postel. Sep-01-1981 (Obsoletes
RFC0760) (Status: STANDARD) IPv4

[5] RFC 0792 Internet Control Message Protocol. J. Postel. Sep-01-1981
(Obsoletes RFC0777) (Updated by RFC0950) (Status: STANDARD)
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 21

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

[6] RFC2401 Security Architecture for the Internet Protocol. S. Kent, R.
Atkinson, (Obsoletes RFC1825), (Status: STANDARD)

[7] RFC 0793 Transmission Control Protocol. J. Postel. Sep-01-1981
(Updated by RFC3168) (Status: STANDARD)

[8] RFC 0950 Internet Standard Subnetting Procedure. J.C. Mogul, J. Postel
Aug-01-1985 (Updates RFC0792) (Status: STANDARD)

[9] RFC 1332 The PPP Internet Protocol Control Protocol (IPCP). G.
McGregor, May 1992. (Obsoletes RFC1172) (Status: PROPOSED
STANDARD)

[10] RFC 1661 The Point-to-Point Protocol (PPP). W. Simpson, Editor.
July 1994 (Obsoletes RFC1548) (Updated by RFC2153) (Status:
STANDARD)

[11] RFC 1662 PPP in HDLC-like Framing. W. Simpson, Editor. July 1994
(Obsoletes RFC1549) (Status: STANDARD)

[11] RFC 1700 Assigned Numbers. J. Reynolds, J. Postel. October 1994.
(Obsoletes RFC1340) (Status: STANDARD)

[13] RFC 2153 PPP Vendor Extensions. W. Simpson. May 1997 (Updates
RFC1661, RFC1962) (Status: INFORMATIONAL)

[14] RFC 3168 The Addition of Explicit Congestion Notification (ECN) to IP. K.
Ramakrishnan, S. Floyd, D. Black. September 2001 (Obsoletes
RFC2481) (Updates RFC2474, RFC2401, RFC0793) (Status:
PROPOSED STANDARD)

[15] Rene Trenado: Connecting an M68HC08 Family Microcontroller to an
Internet Service Provider (ISP) using the Point-to-Point Protocol (PPP).
(Freescale document order number AN2120/D)

[16] MC68HC908GP20 HCMOS Microcontroller Advance Information
(Freescale document order number MC68HC908GP20/D)

[17] Steven Torres: Porting the AN2120 Code to the Avnet Evaluation Board
(Freescale document order number EB390/D)

[18] Harald Kreidl, Gerald Kupris: How to connect small microcontrollers to the
internet - A comparison of different methodologies. ESS2001

[19] Windows Sockets 2 Application Programming Interface
22 Implementation of a UDP/IP Stack on HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D
Appendix

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix

The file AN2304SW.zip can be downloaded from the Freescale Internet. It
contains the Metrowerks CodeWarrior project for the UDP/IP server and an
installation file for a sample UDP client application for a Windows PC.
Implementation of a UDP/IP Stack on HCS12 Microcontrollers 23

For More Information On This Product,
 Go to: www.freescale.com

AN2304/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2304/D
Rev. 0
10/2002

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Connecting Embedded Applications to the Internet
	Internet Protocol Standards: The OSI/ISO Communication Model
	Layer 1: The Physical Layer
	Layer 2: The Data Link Layer
	Layer 3: The Network Layer
	Layer 4: The Transport Layer
	Transport Control Protocol (TCP)
	User Datagram Protocol (UDP)

	Layer 5: The Session Layer
	Layer 6: The Presentation Layer
	Layer 7: The Application Layer

	Use of UDP in Embedded Applications
	Software Interfaces
	Software Structure and Description of the UDP/IP Stack on the HCS12
	Setup of the Demonstration and Development Environment
	Literature
	Appendix

