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1.0 Introduction
The main purpose of this application note is to show 
one way to implement a closed-loop control position 
servo motor application which utilizes the Local 
Interconnect Network (LIN) to allow a series of 
similar motors to be connected together and 
controlled from a central LIN master controller. The 
application note explains a basic design which uses 
a DC brush motor, feedback potentiometer, a 
Freescale M68HC08 microcontroller, and 
SmartMOS power components. The software 
design and messaging strategy are explained step 
by step to aid in the development of an entire LIN 
subnetwork of servo motors, complete with full 
hardware diagnostics capability.
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1.1 What is the Distinction Between Open-Loop and Closed-Loop 
Control?

Without getting into a detailed explanation of the specifics of control theory, it is possible to make 
a simple distinction between open-loop and closed-loop systems.

An open-loop system operates with no feedback from the object being controlled. This is sort of 
a �fire and forget� approach to control. An input stimulus is provided and the controller commands 
the system to go to a particular location, speed, whatever, and hopes that the system responds 
accordingly. There is no information from the system under control to indicate that it even 
received the command, much less acted upon it.

The key to a closed-loop control system is the introduction of feedback. If speed is being 
controlled, a measure of the current speed is provided back to the controller, allowing it to adjust 
its commands as the system responds to the commands. Likewise is true with position. Think of 
a gymnast on a balance beam. They are constantly commanding their muscles to adjust the 
pressure and position of their feet to maintain a set position. This is done based on inputs from 
vision, sense of balance, and even tactile feedback from contact with the beam itself. This is a 
perfect example of a closed-loop system.

The performance of a closed-loop system is partially a function of the speed at which the 
feedback is returned to the controller. This closing of the loop will always take a set amount of 
time, and the longer that time is the less responsive the controller will be to fast changing 
conditions. For example, if the gymnasts are very tired they are not able to perform as adeptly 
due to slow response to the feedback received and as conditions change more rapidly they are 
more likely to fall off the bar.

Depending on the performance requirements of the application, either a closed-loop or 
open-loop control system can be used to control motor position, speed, or other similar 
application.

1.2 What is a Servo Motor?
Motors come in many different varieties for different applications. The term �servo motor� doesn�t 
really apply to the motor itself, but rather the way in which the motor is used and controlled. In a 
position servo motor application (henceforth just �servo motor�), the idea is to hold the target load 
(generally attached to the motor shaft through a series of gears for speed and torque adjustment) 
in a given position.

To accomplish a servo motor function, positioning information must be obtained from the output 
of the motor to provide feedback for the control system. This can be in the form of a potentiometer 
attached somewhere in the gear train, a hall effect sensor monitoring passing teeth on a metal 
gear, an encoder (optical or magnetic) mounted directly to the motor, or any other such sensor 
which can provide position feedback of the motor shaft or connected portion of the gear train.

It is also possible to determine motor shaft position by counting the commutation pulses on the 
terminals of the motor. Freescale SMARTMOS H-Bridge drivers do have current re-copy 
capability, which allows a fraction of the load current to be output through a reference resistor 
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and measured with an analog-to-digital converter (ADC). In this way, it might be possible to 
monitor the load current and detect variations in the load current which correspond with the 
commutation of the brushes in the motor. However, this method requires additional software and 
hardware complexity which do not justify their inclusion, given that encoders are just as effective 
and much simpler to implement. This modification allows streamlining of the logic needed at the 
load to drive it.

1.3 Where would I use a DC Brush Position Servo Motor?
DC brush position servo motors can be used in many different applications. A partial list of 
possible applications includes:

� Automotive Market:
� Power mirror positioning
� Power seats positioning motors
� Power door and trunk lock mechanisms
� Windshield wiper motors
� Heating, Ventilation, and Air Conditioning (HVAC) vent controls
� Power sliding door, sunroof, and convertible top actuators
� Headlight positioning and levelling actuators

� Industrial and Consumer Markets:
� Proportioning valves for gasses and liquids
� Paper and materials handling equipment
� HVAC ventilation control
� Entertainment equipment (powered, remotely controlled volume controls for audio 

receivers and mixers)

1.4 How Much Control do I Need?
Most automotive body electronics servo motor applications are extremely slow by control 
systems standards. Response times are often measured in seconds rather than milliseconds, 
which means that the demands on the control loop are relatively light. Complex 
high-performance control algorithms such as

Proportional, Integral, Differential (PID) control algorithms are not generally necessary in these 
types of systems. For more information on digital implementation of PID control algorithms, refer 
to 16-Bit DSP Servo Control With the MC68HC16Z1 (Freescale document order number 
AN1213).

Since a simple control algorithm should work, it is best to begin with the simplest solution 
possible and then add complexity only if needed. In the case of a simple position servo motor in 
a body system, polling a simple position feedback sensor (potentiometer, encoder, etc.) until the 
desired position is reached should suffice, provided the polling is fast enough to prevent 
overshooting the targeted value.



Servo Motor Control Application on a Local Interconnect Network (LIN), Rev. 1.0
4 Freescale Semiconductor

Introduction

1.5 Where do I Close the Loop? (Network or Local)
Depending on the performance requirements of your system and the performance of your 
network, you can �close the loop� of feedback at either the load itself, or through the network 
itself. This means that you either locate the control algorithms locally, at the servo motor, or you 
pass all the command and feedback data remotely through the network to a central controller 
module.

Ultimately, the choice of closing the control loop locally or over the network is a function of many 
variables, including required performance of the servo motor, network speed and architecture, 
system level cost of the solution, and the number of motors to be controlled over the network.

1.6 How would Network Speed and Protocol Affect Control 
Performance?

Consider the case of closing the loop through the network. By inserting the network into the 
control and feedback loops, time delay is introduced. Depending on the speed and nature of the 
network used, the time delays introduced can become quite significant and could result in 
destabilization of or oscillatory behavior in the system.

The use of networks which have faster data throughput allows the sampling frequency of the 
control to increase. Faster updates of the feedback data through the network allow faster 
sampling rates and therefore increased system response time.

Simply choosing a network with a higher baud rate will not always achieve faster data throughput. 
The protocol used is a large determining factor. The real issue is how much and how fast that 
data can be passed between the controlling node and the node being controlled. In the case of 
a protocol like Controller Area Network (CAN), message identifiers indicate the priority of a 
message and dictate bus arbitration. Higher priority messages take precedence on the bus and 
prevent or delay lower priority messages from being transmitted. Without careful choice of 
identifiers (often not even an option for automotive system suppliers), this could result in delays 
or prevention of reception of valuable command input or feedback information. Unpredictability 
of time delays will result in error in the accuracy and dependability of the feedback data. The 
longer the delay that is introduced, the �older� the feedback reading becomes, and therefore it 
becomes much less reliable in a dynamic system.

The effects of bus arbitration can be reduced (but not eliminated) by increasing the speed of the 
network. If the choice to use a higher-level protocol such as CAN has been made, a CAN capable 
microcontroller unit (MCU) is required at the motor to provide the communications and could 
likely handle the motor control as well.

Consider using a network like the Local Interconnect Network (LIN). LIN, albeit much slower than 
CAN (20 kbps maximum), does provide a time deterministic method of data transfer. LIN also 
does not require advanced silicon to implement, such as dedicated CAN hardware. It is even 
possible to implement LIN communication using very simple state machine devices. If the motor 
control functions can be handled by a central node in the network (the master node in a LIN 
network), then the only job required at the motor slave node is to decode the network messages, 
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drive the motor according to this data, and provide the feedback data back out to the network 
when requested.

Using LIN will definitely limit the data throughput of the network, due to its slower speeds, but the 
resulting simplification of the silicon required at the motors opens up new possibilities for lower 
performance control architectures. The problem is that as more motors are added to the system, 
the performance demands on the network change dramatically.

1.7 How would I Choose and Configure the Right Network?
A great many factors affect the choice of a network to communicate between electronic control 
units (ECU). One factor might simply be the physical location of the ECUs. Very distant nodes 
might not be well suited to a network requiring a single wire transmission medium. The long wire 
runs would be more susceptible to signal degradation and noise due to increased resistance and 
capacitance of the wires.

If the network is located in a hazardous environment, such as inside a tank of explosive or 
flammable materials, perhaps opto-isolation is called for, using optical fiber and light to transmit 
data rather than wire.

Another consideration with respect to physical transmission medium is the operating 
environment of the network. If the network is to be located in an automobile, for instance, 
ElectroMagnetic Compatibility (EMC) is extremely important. The wiring that serves to pass 
network messages around the car also serves as a radiating antenna, as well as a receiving 
antenna to pick up any noise which might be in the air.

EMC is a way to measure how much electromagnetic energy is emitted by the components. If 
the network is emitting noise in the wrong frequency spectra, it can even interfere with reception 
of AM/FM radio reception. Customers don�t respond well to a �buzzing� noise while in the middle 
of listening to their favorite tunes, so auto makers are keenly aware of EMC issues. The physical 
medium of transmission, as well as how the data is encoded on that medium affect the amount 
of EMI generated.

Susceptibility measures how well the components deal with noise injected into the system from 
outside influences. In a gasoline powered car, this can be considerable due to the spark noise 
from the ignition system.

Safety critical systems need to take the above into account, but also might require extremely 
good data error checking, such as the Cyclical Redundancy Check (CRC) found in Controller 
Area Network (CAN). Even better data integrity measures might be required in safety systems, 
such as redundant wiring and components, as well as time-triggered mechanisms which ensure 
timely delivery of information in the system.

As the title of this document suggests, LIN will be the network of choice for this application. But 
why?



Servo Motor Control Application on a Local Interconnect Network (LIN), Rev. 1.0
6 Freescale Semiconductor

Introduction

The most straightforward target application for many simple position servo motors in an 
automotive environment is the heating, ventilation, and air conditioning (HVAC) system. The 
actuators used to control airflow in the vehicle are sometimes extremely basic, serving the 
function of a �switch� for the air stream with only an on and off type control. Other, more complex 
actuators have positioning feedback and can be adjusted to precise positions, allowing 
proportioning of airflow, such as controlling the relative amounts of air from the hot and cold air 
supplies.

In an HVAC system, the response times required by the actuators are typically extremely long, 
allowing the designer to implement very basic control algorithms. Keeping the controls and 
actuators simple allows the cost of the actuators to be kept to a minimum. These factors make 
LIN an optimum network choice for this system, as it is designed to be an open standard, 
inexpensive sensor/actuator network which can be implemented using existing silicon solutions.

1.8 Again, where do I Close the Loop (Network or Local)?
In light of each specific application, it is necessary to revisit the question of where to close the 
control loop. Taking the application of an HVAC system, the first response is to think that it would 
be best to close the loop through the network. After all, the actuator response times are already 
slow and it would greatly simplify the complexity of each actuator design. The problem with 
closing the loop here lies in the problems introduced to the system design.

Consider the position of an automobile maker, who might have three, four, or perhaps more 
levels of system complexity for the HVAC system. For each vehicle platform the manufacturer 
produces, there could be different options in complexity of the HVAC system. The higher end 
vehicles will have more sophisticated features, such as automatic temperature controls, 
oscillating vent outputs, instant-on heater, and multiple zone controls for different parts of the 
passenger compartment.

So what effect does this have on the question at hand? It means that if the control loop is closed 
through the network, it introduces two distinct problems for the system designer.

First, the response times for each node will increase as more nodes, hence more network 
communications, are added to the system. It can be seen that if sufficient numbers of nodes are 
added to the system that require constant control, it is possible that the response times can 
become unacceptably slow. This also means that messaging might have to be custom tailored 
for each configuration of the system, requiring a great number of variations in implementations. 
This leads to the second point, which relates to cross platform compatibility and standardization 
for the auto maker.

A great deal of money is spent by automotive manufacturers to maintain multiple versions of 
essentially the same system. If the control loops for HVAC actuators are closed through the 
network and different messaging and programming is required for each system in each vehicle 
platform, inventories must be kept of all the different variations, software must be maintained for 
each of these different variations, etc. In contrast, if the loop is closed locally at each actuator 
node, the network architecture can be standardized not only through the different option levels 
with many different numbers of nodes, but also across vehicle platforms, allowing the car maker 
to use one strategy for all their vehicle lines.
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With locally closed control loops, the HVAC system becomes completely modularized and 
standardized. To increase the complexity of the system, it is only needed that the necessary 
components be added to the network and perhaps the master node software changed to reflect 
the new hardware addition (e.g., adding a temperature sensor to the network to facilitate 
automatic temperature control). For these reasons, the control loops in this system will be closed 
locally at each actuator device.

1.9 Are There Other Factors that Affect the Control System?
There are other factors to consider in designing the control system for a position servo motor 
application that are worth mentioning. For the sake of brevity, these will not be discussed in detail 
here, but are mentioned for consideration.

The first factor is sticking friction of the actuator. When the actuator is at rest, extra force is 
required to initiate motion. Once the actuator begins to move, it is also possible that it may jump 
suddenly, depending on how tight the mechanical tolerances are on the actuator. This rapid rate 
of change should be considered when determining response times required of the control 
system.

The ratio of output movement to feedback data acquisition is another consideration which greatly 
affects the accuracy and response of the control system. For example, in a basic actuator the 
motor and output shaft may be joined by a series of gears and the feedback mechanism might 
be a potentiometer connected to another gear in the system. The ratio of movement of the output 
shaft to the movement of the potentiometer shaft is required to relate rate of change of the 
actuator output to the rate of change of the feedback.

1.10 How do I Choose a Logical Messaging Strategy � Extend the 
Control Method?

There are many schools of thought on how to design/devise a messaging strategy for a LIN 
system. Since the HVAC system is relatively simple and self-contained, it may seem simple at 
first glance to define a messaging strategy. Defining a message strategy that works isn�t the real 
challenge here; the challenge is defining a messaging strategy that works while allowing the 
system costs and complexity to be reduced without compromising system flexibility.

The key to reducing system costs is the reduction of slave node cost. In any given LIN system, 
there is only one master and up to 15 slave devices. The master node must be an MCU with a 
crystal or other very stable time base, so costs can only be cut so far at the master node. The 
slave devices; however, can have much lower tolerances on clocking and are simple enough to 
implement in a variety of simple mechatronic and small microcontroller solutions.

In order to use these types of very simple devices at slave nodes, the messaging should be as 
simple and straightforward as possible. In the case of this application, we are looking at one 
specific type of slave device, a position servo motor.
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The first step in determining the messaging strategy is to determine what information must flow 
into and out of each slave device (in this case only one slave device). The main messaging 
functions for the position servo application can be defined as:

� Input Command � master to slave only:
� Target position (8-bit value), which corresponds to the potentiometer reading which will 

be read when the servo has reached its desired position.
� Node Status Request � master sends ID, node responds with:

� Current position (8-bit value)
� Current command being acted upon
� SMOS load diagnostics
� LIN messaging error codes (refer to LIN Protocol Specification)

� NVM Programming (upload) command � master to slave only:
� Node address (uniquely identifies each node), index to data field of input command � 

gives �slot number� to node.
� Input command IDs to recognize

Now that we have laid out the basic information flow, we must lock down specific identifiers, bits, 
etc. of these messages to truly define the messages themselves. Refer to Appendix A � LIN 
HVAC System Demonstration Messaging Strategy and Appendix B � LIN HVAC System 
Demonstration Messaging Strategy � Configuration Language Description File for details 
on the complete messaging strategy.

1.11 How do I use a LIN to Control a DC Brush Position Servo Motor?
Now that most of the major issues have been discussed regarding how to control a DC brush 
position servo motor, it is time to actually design this control system.

The hardware for this example was created and designed by another company, so the physical 
constraints of the mechanics were fixed from the beginning. These constraints can be adjusted 
to suit most any similar system. Simply, the actuator to be controlled consists of a DC brush 
motor whose output is connected to a gear train. The output shaft of the actuator is about 950 
times slower than the motor shaft. Position feedback is obtained from a 10 kohm potentiometer, 
with a gear that engages the output shaft with a 2:1 gear ratio.

The control hardware used is the X05 Medium Power demonstration unit from Freescale�s 
Mechatronics group. The X05 is a member of Freescale�s Smartconnector Family combining a 
high performance 8-bit HC08 microcontroller with a SmarTMOS power technology. It includes all 
the necessary features to meet the requirements for LIN applications. This includes features like 
an RC oscillator with ±2% accuracy, an enhanced SCI module to allow 13-bit break detection 
capability, FLASH technology, and the appropriate power stages to drive loads (e.g., lamps, 
stepper motor, DC motors�). It also provides the necessary inputs for reading the status of Hall 
sensors or potentiometers. The power H-Bridge stages have protection and diagnostics 
capabilities.
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The control code from this application note could easily be ported to another microcontroller with 
a suitable power stage and LIN physical interface (such as the MC33399), but the X05 provides 
a quick and easy platform for developing the algorithm without getting into hardware details 
which are beyond the scope of this paper.

Figure 1 shows a simplified version of the hardware to provide a reference of the basic 
components of the hardware.

Figure 1. Hardware Connection Block Diagram

To begin designing the application code, it�s necessary to create a basic state machine to show 
the various stages of the application operation. This exercise gives a high level view of what the 
actuator can and cannot do. Refer to Figure 2.

One example of what the control system can do is to move to the �MOTOR CLOCKWISE� state 
from the �MOTOR STOP� state. This makes sense, as the motor should be able to be started in 
either direction from a stopped condition.

However, if the command is to reverse the direction of the motor, it is highly inadvisable to 
immediately reverse the voltage on a motor to attempt to drive it in the opposite direction. The 
inductive properties of a DC brush motor mean that the motor is still trying to drive current in the 
previous direction. Very large reverse voltages can form (usually called �back EMF�) which can 
cause permanent damage to components in the system. Notice that in the state diagram, it is 
impossible to go from the �MOTOR CLOCKWISE� state to the �MOTOR COUNTER- 
CLOCKWISE� state or vice-versa, without first stopping the motor. In this way, the state diagram 
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forces the control system to avoid the potentially dangerous state change of reversing the motor 
without stopping.

Figure 2. Closed-Loop Control Actuator State Diagram

State transition timing will dictate performance parameters of the system. For example, the 
speed with which the control system is able to move from a motor stopped state to a motor 
rotating state governs how fast the actual motor transitions from one state to another. In the 
application code, these state transitions could simply be placed in a continuously updating loop. 
This would result in variations in state transitions based on central processor unit (CPU) activity 
and CPU base clock speed. In order to better regulate the timing of these state transitions, a state 
clock will be implemented, based on a timer interrupt, which will ensure that state transitions 
occur on a predictable time base. This is identical to the way in which hardware based state 
machines operate.

It is necessary to describe specifically what occurs in each state, in order that the behavior of that 
state is fully understood. SMOS errors are checked for in all states and do not result in a state 
change, only an update of LIN messaging and a sometimes a difference in behavior of the state. 
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the SMOS component automatically cuts power to the load. No change of state is needed, but 
the errors are reported through LIN messaging.

The following is a detailed description of each state:
� START_INIT � The controller defaults to this state upon power-up and will send the 

motor counter-clockwise to its home (or zero) location. Lacking any input from the LIN 
network, the motor will remain in this location.

� MOTOR_STOP � The controller cuts power to the motor. If the motor was previously 
turning, then a delay is inserted before continued processing in order to allow the energy 
in the motor to be dissipated. For this reason, this state must be entered when reversing 
the motor direction.

� MOTOR_CW � The controller turns on the H-bridges to turn the motor clockwise. If the 
motor is approaching the end of the range of travel, the power to the H-bridges is reduced 
to minimize the force potentially applied to the physical stop. This has the added effect of 
decelerating the motor near the stop. Certain SMOS errors will automatically cut power to 
the H-bridges (e.g., over temperature, over voltage) to prevent damage to components, 
which might result in the failure of the motor to turn. The controller will remain in this state, 
but will indicate the fault in LIN messaging and the motor will not turn.

� MOTOR_CCW � Same as MOTOR_CW, but opposite direction of rotation and power 
reduction is still performed, but at other end of range of motion.

� SLEEP_MODE (unimplemented) � Puts the controller into low-power sleep mode upon 
reception of the correct LIN message.

� OPEN_LOOP (unimplemented) � If a physical fault is introduced to the feedback loop, 
such as a discontinuity in the feedback potentiometer, the controller would enter this state. 
The controller then simply responds to clockwise or counterclockwise commands, and 
reports whatever value it does see on the potentiometer to the LIN master. This allows the 
motor to be controlled remotely over the LIN network, albeit at reduced response rates 
governed by the speed of LIN messaging.

� NVM_PROG (unimplemented) � This state is reserved for a bootloader type function, 
since Freescale FLASH microcontrollers have the ability to be reprogrammed while in the 
vehicle, this state could be utilized to update the software in a node without removing it 
from the vehicle.

� TERM_FAULT (unimplemented) � This state is reserved for cases when a node has 
become damaged or faulted to the point that it can no longer function properly and must 
be shut down.

Now that the basic states are understood, greater detail can be examined on specifically how the 
control algorithm works, how it moves from state to state, what information is stored, etc.

The state machine is switched based on a timer routine which fires periodically and based on the 
current state, checks inputs and conditions to determine the next state of the controller. The main 
program processes the current state, updating messaging, and outputs as needed. To maintain 
mutual exclusion (often called MUTEX in operating system terminology) of variables, especially 
the state variable, a blocking semaphore is used to tell the software that the current state is being 
processed. The next state change can only take effect between cycles of the main routine which 
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is processing the current state. The update rate of the state machine can be controlled by 
changing the frequency of the timer routine, limited only by the worst case execution time of the 
loop which processes the current state in main.

As a next step, consider the data flow of the application. This is a description of where information 
is stored and how it is moved around in the application software. Data flow diagrams are 
extremely useful in understanding how different portions of the software interact, as well as 
defining all the specific data storage areas needed to create the application. To facilitate this, the 
naming conventions to be used in your coding should also be followed when drafting the data 
flow diagram. The data flow diagram for this application is shown in Figure 3. Much of the 
storage for this application revolves around the LIN messages which control incoming 
commands and outgoing status messages. This diagram does not concern itself with what 
occurs in these processes, only the information which enters and leaves them and where that 
information is stored.

The cloud bubbles indicate some process which manipulates or generates the data in the 
system. Data storage locations are indicated by text with horizontal lines above and below and 
as was mentioned use the exact names of the data storage structures used in the code itself 
(e.g., MOTOR_DIAG_SET). In some cases, these storage areas are simply registers in the MCU 
memory map, in others, they are the LIN message buffers created in RAM for sending and 
receiving LIN messages. Data flow is shown as arrows with accompanying text to explain what 
data is being moved. All text shown in the COURIER font corresponds to a variable or constant 
name used in the C code.

The control flow must allow all of the state changes shown Figure 2, and prevent any changes 
in state which are not shown. The basic control algorithm is shown in Figure 4. This diagram 
gives some insight into more of the specifics of what occurs to process a given state, updating 
variables, etc. It is really secondary to the state diagram and data flow diagram in importance.



Servo Motor Control Application on a Local Interconnect Network (LIN), Rev. 1.0
Freescale Semiconductor 13

Introduction

Figure 3. Closed-Loop Control Actuator Data Flow Diagram
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Figure 4. Closed-Loop Control DC Brush Position Servo Motor LIN
Slave Node � Software Control Flow Diagram
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Throughout the software, certain assumptions have been made:
� Master node will park motor prior to entering sleep mode
� Master node handles all fault conditions, slave node simply reports conditions and fails 

safe
� Sufficient delay is inserted after turning off H-bridge to allow current to dissipate and avoid 

back EMF issues
� H-bridge is self-protecting and cannot be activated when error conditions such as 

insufficient supply voltage exist.

A few details of variables in the control flow diagram need to be explained further. ON_LIMIT and 
OFF_LIMIT are hysteresis limits on position feedback which allow the user to set boundaries for 
what is considered �close enough� to the target position to not activate the motor. These serve 
to prevent oscillation and overshoot if set high enough and can be adjusted to suit the needs of 
the application. Faster responding systems might need a wider �OFF_LIMIT� to prevent 
overshoot problems from causing oscillations around the target position, for example.

Similarly, GLITCH_LIMIT is a threshold to limit the amount that the value of the feedback can 
change between samples. If the limit is exceeded, the algorithm throws a flag and after updating 
status variables enters open-loop control, where only full-open (0x00) or full-closed (0xFF) 
commands are accepted. All other position inputs are considered invalid and the motor does not 
move. In the case where the master node fails to recognize that a slave has entered open-loop 
mode, the slave will then only respond to full-open (0x00) or full-closed (0xFF) commands. The 
master node must decide how to handle these situations. The information is present for the 
master node to actually control the motor through the network, but the response is now limited 
to the speed of input updates obtained through the LIN network.

In order to simplify additional slave state machines, this module can be used for either open-loop 
or closed-loop systems. By setting GLITCH_LIMIT to 0x00, the user can force the module to 
always be in open-loop control mode. The limit could also be set to full scale to allow faster 
changes in feedback input for faster responding systems. GLITCH_LIMIT has not been 
implemented in the current version of the software.

1.12 What are the Unimplemented Features?
As mentioned earlier, some features have not been implemented at this time and are left as an 
exercise for the reader. Among these are:

1. Implement sleep, NVM programming, and terminal fault shutdown states
2. LIN communications error checking
3. Open-load indication flag
4. GLITCH_LIMIT checking of feedback to check for faults in feedback data
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2.0 Improvements, Lessons Learned, and Suggestions
As with all designs, there is always room for improvement. Some improvements are for better 
performance, some might be to simplify the design or to make it more generic. Some of the ways 
in which this controller could be improved might be:

� Characterize a wide selection of feedback potentiometers to ensure that the translation 
from ADC reading to real position is accurate. This could even be implemented in a lookup 
table or piecewise defined equation, depending on available ROM space.

� Initialization sequence to test full range of motion � this feature would allow the dynamic 
characterization of the feedback potentiometer and set boundary conditions appropriately. 
This allows the software to be more generic and reusable with multiple different actuators 
without reprogramming.

� Lock down current limitation for motor used and dial-in parameters to avoid oscillations � 
by characterizing the motors used, it is possible to fine tune the software parameters more 
closely to match production systems.

� Back EMF delay based on zero current � rather than using a delay of fixed time to allow 
the motor current to dissipate while in MOTOR_STOP state, it is possible with Freescale 
SMOS to measure the current through the low-side switches. If the motor braking is 
achieved by shorting LS switches, then the delay need only be long enough to ensure that 
the current drops to zero. This would improve response time when reversing the motor.

� Acceleration/deceleration profiling to improve smoothness of motor operation.
� Memory positions � add programmable locations so that the motor could go to a series 

of memorized positions. This is especially useful for automotive applications, when 
multiple drivers might have different preferences of seat position, HVAC settings, etc. For 
example, in this way a single command could be issued to all motors to go to the position 
for driver 1. With the current implementation, the memory positions could easily be stored 
in the master and appropriate inputs sent to each motor. Each method has benefits and 
detriments.

3.0 Conclusion
This application note is intended to show one way to implement a closed-loop controlled servo 
motor application, which can be controlled over a LIN subnetwork. This application can be 
adapted to suit many different applications. The basic LIN messaging strategy and application 
code listed here can easily be adapted and modified to suit each application.

This information is also not limited to mechatronics components. The code listed in this 
application can be adapted to easily work on most M68HC08, M68HC12, or M68HCS12 
microcontrollers, depending on the requirements of the application. Additionally, the SMOS 
H-bridge driver component is available as a separate component that can be driven with 
essentially the same code from this application note.
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4.0 Appendix A � LIN HVAC System Demonstration 
Messaging Strategy

For ease of use, the LIN HVAC System Demonstration Messaging Strategy documentation is 
contained in a downloadable spreadsheet format (LIN_HVAC_messaging_strategy_1_00.xls) 
and can be downloaded from the associated archive file AN2396.zip at:

http://freescale.com/semiconductors/

5.0 Appendix B � LIN HVAC System Demonstration 
Messaging Strategy � Configuration Language 
Description File

For LIN standardization and integration with standard LIN tools, the LIN HVAC System 
Demonstration Messaging Strategy has also been captured in the following LIN Configuration 
Language Description File (LIN_HVAC_messaging_strategy_1_00.ldf), which can be 
downloaded from the associated archive file AN2396.zip at:

http://freescale.com/semiconductors/

And, is also shown on the following pages.

6.0 Appendix C � Closed-Loop Control HVAC Actuator 
Source Code

Source code for this application note can be downloaded from the associated archive file 
AN2396.zip at:

http://freescale.com/semiconductors/
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/******************************************************************************

              Copyright (c) Freescale 2003

File Name : LIN_HVAC_messaging_strategy_1_00.ldf

Engineer : Matt Ruff

Location : OHT

Date Created : 17 September 2001

Current Revision : 1.00 - 2 Mar 2003

0.87 - 6 Feb 2002

0.86 - 30 Jan 2002

Notes : LIN HVAC system demo - LIN Description File

*******************************************************************************

Freescale reserves the right to make changes without further notice to any 
product herein to improve reliability, function or design. Freescale does not 
assume any liability arising out of the application or use of any product, 
circuit, or software described herein; neither does it convey any license 
under its patent rights nor the rights of others. Freescale products are not 
designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support life, 
or for any other application in which the failure of the Freescale product 
could create a situation where personal injury or death may occur. Should 
Buyer purchase or use Freescale products for any such unintended or 
unauthorized application, Buyer shall idemnify and hold Freescale and its 
officers, employees, subsidiaries, affiliates, and distributors harmless 
against all claims costs, damages, and expenses, and reasonable attorney fees 
arising out of, directly or indirectly, any claim of personal injury or death 
associated with such unintended or unauthorized use, even if such claim alleges 
that Freescale was negligent regarding the design or manufacture of the part. 
Freescale and the Freescale logo* are registered trademarks of Freescale 
Ltd.******************************************************************************/

LIN_description_file; 
LIN_protocol_version = 1.3; 
LIN_language_version = 1.3; 
LIN_speed = 9.615 kbps;

Nodes 
{ 
Master: HVAC_CTL, 1 ms, 0.1 ms; 
Slaves: MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 
}

/*___________________________________________________________________Signal Definitions___*/

Signals { 
/* Name Size Init Sender Receiver(s) */ 
/* ---- ---- ---- ------ ----------- */

MOTOR_0_INPUT: 8, 0,HVAC_CTL, MOTOR_0; 
MOTOR_1_INPUT: 8, 0,HVAC_CTL, MOTOR_1; 
MOTOR_2_INPUT: 8, 0,HVAC_CTL, MOTOR_2; 
MOTOR_3_INPUT: 8, 0,HVAC_CTL, MOTOR_3;
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MOTOR_4_INPUT: 8, 0,HVAC_CTL, MOTOR_4; 
MOTOR_5_INPUT: 8, 0,HVAC_CTL, MOTOR_5; 
MOTOR_6_INPUT: 8, 0,HVAC_CTL, MOTOR_6; 
MOTOR_7_INPUT: 8, 0,HVAC_CTL, MOTOR_7;

/* ------------- MOTOR_0 signals ----------------*/

MOTOR_0_POS: 8, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_CMD: 2, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_LIN_ERR: 3, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_CTL: 1, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_SMOS: 1, 0, MOTOR_0, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_0, HVAC_CTL*/ 
MOTOR_0_OVR_TMP: 1, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_OVR_VLT: 1, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_LOW_VLT: 1, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_OVR_CUR: 1, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_OPN_LD: 1, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_STALL: 1, 0, MOTOR_0, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_0, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_0, HVAC_CTL*/

MOTOR_0_CUR: 8, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_TEMP: 8, 0, MOTOR_0, HVAC_CTL; 
MOTOR_0_VOLT: 8, 0, MOTOR_0, HVAC_CTL;

/* ------------- MOTOR_1 signals ----------------*/

MOTOR_1_POS: 8, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_CMD: 2, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_LIN_ERR: 3, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_CTL: 1, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_SMOS: 1, 0, MOTOR_1, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_1, HVAC_CTL*/ 
MOTOR_1_OVR_TMP: 1, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_OVR_VLT: 1, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_LOW_VLT: 1, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_OVR_CUR: 1, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_OPN_LD: 1, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_STALL: 1, 0, MOTOR_1, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_1, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_1, HVAC_CTL*/

MOTOR_1_CUR: 8, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_TEMP: 8, 0, MOTOR_1, HVAC_CTL; 
MOTOR_1_VOLT: 8, 0, MOTOR_1, HVAC_CTL;

/* SYSSTAT: 8, 0, MOTOR_1, HVAC_CTL;// X05 TEST GUI Signals 
HASTAT: 8, 0, MOTOR_1, HVAC_CTL; 
HB1_Current: 8, 0, MOTOR_1, HVAC_CTL; 
HB2_Current: 8, 0, MOTOR_1, HVAC_CTL; 
HB3_Current: 8, 0, MOTOR_1, HVAC_CTL; 
HB4_Current: 8, 0, MOTOR_1, HVAC_CTL; 
VSUP: 8, 0, MOTOR_1, HVAC_CTL; 
CHIP: 8, 0, MOTOR_1, HVAC_CTL;// --------------------
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*/

/* ------------- MOTOR_2 signals ----------------*/

MOTOR_2_POS: 8, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_CMD: 2, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_LIN_ERR: 3, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_CTL: 1, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_SMOS: 1, 0, MOTOR_2, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_2, HVAC_CTL*/ 
MOTOR_2_OVR_TMP: 1, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_OVR_VLT: 1, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_LOW_VLT: 1, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_OVR_CUR: 1, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_OPN_LD: 1, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_STALL: 1, 0, MOTOR_2, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_2, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_2, HVAC_CTL*/

MOTOR_2_CUR: 8, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_TEMP: 8, 0, MOTOR_2, HVAC_CTL; 
MOTOR_2_VOLT: 8, 0, MOTOR_2, HVAC_CTL;

/* ------------- MOTOR_3 signals ----------------*/

MOTOR_3_POS: 8, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_CMD: 2, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_LIN_ERR: 3, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_CTL: 1, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_SMOS: 1, 0, MOTOR_3, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_3, HVAC_CTL*/ 
MOTOR_3_OVR_TMP: 1, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_OVR_VLT: 1, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_LOW_VLT: 1, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_OVR_CUR: 1, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_OPN_LD: 1, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_STALL: 1, 0, MOTOR_3, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_3, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_3, HVAC_CTL*/

MOTOR_3_CUR: 8, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_TEMP: 8, 0, MOTOR_3, HVAC_CTL; 
MOTOR_3_VOLT: 8, 0, MOTOR_3, HVAC_CTL;

/* ------------- MOTOR_4 signals ----------------*/

MOTOR_4_POS: 8, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_CMD: 2, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_LIN_ERR: 3, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_CTL: 1, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_SMOS: 1, 0, MOTOR_4, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_4, HVAC_CTL*/ 
MOTOR_4_OVR_TMP: 1, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_OVR_VLT: 1, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_LOW_VLT: 1, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_OVR_CUR: 1, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_OPN_LD: 1, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_STALL: 1, 0, MOTOR_4, HVAC_CTL; 
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/* <RESERVED> 1, 0, MOTOR_4, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_4, HVAC_CTL*/

MOTOR_4_CUR: 8, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_TEMP: 8, 0, MOTOR_4, HVAC_CTL; 
MOTOR_4_VOLT: 8, 0, MOTOR_4, HVAC_CTL;

/* ------------- MOTOR_5 signals ----------------*/

MOTOR_5_POS: 8, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_CMD: 2, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_LIN_ERR: 3, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_CTL: 1, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_SMOS: 1, 0, MOTOR_5, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_5, HVAC_CTL*/ 
MOTOR_5_OVR_TMP: 1, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_OVR_VLT: 1, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_LOW_VLT: 1, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_OVR_CUR: 1, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_OPN_LD: 1, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_STALL: 1, 0, MOTOR_5, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_5, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_5, HVAC_CTL*/

MOTOR_5_CUR: 8, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_TEMP: 8, 0, MOTOR_5, HVAC_CTL; 
MOTOR_5_VOLT: 8, 0, MOTOR_5, HVAC_CTL;

/* ------------- MOTOR_6 signals ----------------*/

MOTOR_6_POS: 8, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_CMD: 2, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_LIN_ERR: 3, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_CTL: 1, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_SMOS: 1, 0, MOTOR_6, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_6, HVAC_CTL*/ 
MOTOR_6_OVR_TMP: 1, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_OVR_VLT: 1, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_LOW_VLT: 1, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_OVR_CUR: 1, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_OPN_LD: 1, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_STALL: 1, 0, MOTOR_6, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_6, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_6, HVAC_CTL*/

MOTOR_6_CUR: 8, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_TEMP: 8, 0, MOTOR_6, HVAC_CTL; 
MOTOR_6_VOLT: 8, 0, MOTOR_6, HVAC_CTL;

/* ------------- MOTOR_7 signals ----------------*/

MOTOR_7_POS: 8, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_CMD: 2, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_LIN_ERR: 3, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_CTL: 1, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_SMOS: 1, 0, MOTOR_7, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_7, HVAC_CTL*/ 
MOTOR_7_OVR_TMP: 1, 0, MOTOR_7, HVAC_CTL; 
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MOTOR_7_OVR_VLT: 1, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_LOW_VLT: 1, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_OVR_CUR: 1, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_OPN_LD: 1, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_STALL: 1, 0, MOTOR_7, HVAC_CTL; 

/* <RESERVED> 1, 0, MOTOR_7, HVAC_CTL*/ 
/* <RESERVED> 1, 0, MOTOR_7, HVAC_CTL*/

MOTOR_7_CUR: 8, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_TEMP: 8, 0, MOTOR_7, HVAC_CTL; 
MOTOR_7_VOLT: 8, 0, MOTOR_7, HVAC_CTL;

MOTOR_0_SET_A 8, 0, HVAC_CTL, MOTOR_0; 
MOTOR_0_SET_B 8, 0, HVAC_CTL, MOTOR_0;

MOTOR_1_SET_A 8, 0, HVAC_CTL, MOTOR_1; 
MOTOR_1_SET_B 8, 0, HVAC_CTL, MOTOR_1;

MOTOR_2_SET_A 8, 0, HVAC_CTL, MOTOR_2; 
MOTOR_2_SET_B 8, 0, HVAC_CTL, MOTOR_2; 
MOTOR_3_SET_A 8, 0, HVAC_CTL, MOTOR_3; 
MOTOR_3_SET_B 8, 0, HVAC_CTL, MOTOR_3;

/*-- SPECIAL CASE: <subscribed_by> of next 8 signals depends on who's powered on bus at time 

---*/

MOTOR_NODE_ADDR 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_CMD_ID 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_STAT_ID 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_VAR_1 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_VAR_2 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_VAR_3 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_VAR_4 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 

MOTOR_VAR_5 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN;

/*-- end SPECIAL CASE ---*/

MOTOR_0_STALL_LMT8, 0, HVAC_CTL, MOTOR_0; 
MOTOR_1_STALL_LMT8, 0, HVAC_CTL, MOTOR_1; 
MOTOR_2_STALL_LMT8, 0, HVAC_CTL, MOTOR_2; 
MOTOR_3_STALL_LMT8, 0, HVAC_CTL, MOTOR_3; 
MOTOR_4_STALL_LMT8, 0, HVAC_CTL, MOTOR_4; 
MOTOR_5_STALL_LMT8, 0, HVAC_CTL, MOTOR_5; 
MOTOR_6_STALL_LMT8, 0, HVAC_CTL, MOTOR_6; 
MOTOR_7_STALL_LMT8, 0, HVAC_CTL, MOTOR_7;

// SYS_SLEEP 8, 0, HVAC_CTL, 
MOTOR_0,MOTOR_1,MOTOR_2,MOTOR_3,MOTOR_4,MOTOR_5,MOTOR_6,MOTOR_7,BLOWER,TEMP_SEN; 
}
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/*___________________________________________________________________Frame Definitions____*/

Frames { 
   /* FrameName  Id Sender */ 
   /* ---------      -- ------ */

MOTOR_POS_A:   58, HVAC_CTL, 8 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_0_INPUT, 0; 
MOTOR_1_INPUT, 8; 
MOTOR_2_INPUT, 16; 
MOTOR_3_INPUT,24; 
MOTOR_4_INPUT,32; 
MOTOR_5_INPUT,40; 
MOTOR_6_INPUT,48; 
MOTOR_7_INPUT,56; 
}

MOTOR_0_STAT_REQ:0x10, MOTOR_0, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_0_POS, 0; 
MOTOR_0_CMD, 8; 
MOTOR_0_LIN_ERR,10; 
MOTOR_0_CTL, 13; 
MOTOR_0_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_0_OVR_TMP,16; 
MOTOR_0_OVR_VLT,17; 
MOTOR_0_LOW_VLT,18; 
MOTOR_0_OVR_CUR,19; 
MOTOR_0_OPN_LD, 20; 
MOTOR_0_STALL, 21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_0_DIAG_REQ:0x20, MOTOR_0, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_0_CUR, 0; 
MOTOR_0_TEMP, 8; 
MOTOR_0_VOLT,16; 
}

MOTOR_1_STAT_REQ:0x11, MOTOR_1, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_1_POS, 0; 
MOTOR_1_CMD, 8; 
MOTOR_1_LIN_ERR,10; 
MOTOR_1_CTL, 13; 
MOTOR_1_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_1_OVR_TMP,16; 
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MOTOR_1_OVR_VLT,17; 
MOTOR_1_LOW_VLT,18; 
MOTOR_1_OVR_CUR,19; 
MOTOR_1_OPN_LD, 20; 
MOTOR_1_STALL, 21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_1_DIAG_REQ:0x21, MOTOR_1, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_1_CUR, 0; 
MOTOR_1_TEMP, 8; 
MOTOR_1_VOLT,16; 
}

MOTOR_2_STAT_REQ:0x12, MOTOR_2, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_2_POS, 0; 
MOTOR_2_CMD, 8; 
MOTOR_2_LIN_ERR,10; 
MOTOR_2_CTL, 13; 
MOTOR_2_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_2_OVR_TMP,16; 
MOTOR_2_OVR_VLT,17; 
MOTOR_2_LOW_VLT,18; 
MOTOR_2_OVR_CUR,19; 
MOTOR_2_OPN_LD, 20; 
MOTOR_2_STALL, 21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_2_DIAG_REQ:0x22, MOTOR_2, 3 {

/* Signal Offset */

/* ------ ------ */

MOTOR_2_CUR, 0;

MOTOR_2_TEMP, 8;

MOTOR_2_VOLT,16;

}

MOTOR_3_STAT_REQ:0x13, MOTOR_3, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_3_POS, 0; 
MOTOR_3_CMD, 8; 
MOTOR_3_LIN_ERR,10; 
MOTOR_3_CTL, 13; 
MOTOR_3_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_3_OVR_TMP,16; 
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MOTOR_3_OVR_VLT,17; 
MOTOR_3_LOW_VLT,18; 
MOTOR_3_OVR_CUR,19; 
MOTOR_3_OPN_LD, 20; 
MOTOR_3_STALL, 21; 

/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_3_DIAG_REQ:0x23, MOTOR_3, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_3_CUR, 0; 
MOTOR_3_TEMP, 8; 
MOTOR_3_VOLT,16; 
}

MOTOR_4_STAT_REQ:0x14, MOTOR_4, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_4_POS, 0; 
MOTOR_4_CMD, 8; 
MOTOR_4_LIN_ERR,10; 
MOTOR_4_CTL, 13; 
MOTOR_4_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_4_OVR_TMP,16; 
MOTOR_4_OVR_VLT,17; 
MOTOR_4_LOW_VLT,18; 
MOTOR_4_OVR_CUR,19; 
MOTOR_4_OPN_LD, 20; 
MOTOR_4_STALL, 21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_4_DIAG_REQ:0x24, MOTOR_4, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_4_CUR, 0; 
MOTOR_4_TEMP, 8; 
MOTOR_4_VOLT,16; 
}

MOTOR_5_STAT_REQ:0x35, MOTOR_5, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_5_POS, 0; 
MOTOR_5_CMD, 8; 
MOTOR_5_LIN_ERR,10; 
MOTOR_5_CTL, 13; 
MOTOR_5_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_5_OVR_TMP,16; 
MOTOR_5_OVR_VLT,17; 
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MOTOR_5_LOW_VLT,18; 
MOTOR_5_OVR_CUR,19; 
MOTOR_5_OPN_LD,20; 
MOTOR_5_STALL,21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_5_DIAG_REQ:0x25, MOTOR_5, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_5_CUR, 0; 
MOTOR_5_TEMP, 8; 
MOTOR_5_VOLT,16; 
}

MOTOR_6_STAT_REQ:0x36, MOTOR_6, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_6_POS, 0; 
MOTOR_6_CMD, 8; 
MOTOR_6_LIN_ERR,10; 
MOTOR_6_CTL, 13; 
MOTOR_6_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_6_OVR_TMP,16; 
MOTOR_6_OVR_VLT,17; 
MOTOR_6_LOW_VLT,18; 
MOTOR_6_OVR_CUR,19; 
MOTOR_6_OPN_LD, 20; 
MOTOR_6_STALL, 21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_6_DIAG_REQ:0x26, MOTOR_6, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_6_CUR, 0; 
MOTOR_6_TEMP, 8; 
MOTOR_6_VOLT,16; 
}

MOTOR_7_STAT_REQ:0x37, MOTOR_7, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_7_POS, 0; 
MOTOR_7_CMD, 8; 
MOTOR_7_LIN_ERR,10; 
MOTOR_7_CTL, 13; 
MOTOR_7_SMOS, 14; 
/*<reserved><reserved>1 15 */ 
MOTOR_7_OVR_TMP,16; 
MOTOR_7_OVR_VLT,17; 
MOTOR_7_LOW_VLT,18; 
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MOTOR_7_OVR_CUR,19; 
MOTOR_7_OPN_LD, 20; 
MOTOR_7_STALL, 21; 
/* <reserved>SMOS diag1 22 */ 
/* <reserved>SMOS diag1 23 */ 
}

MOTOR_7_DIAG_REQ:0x27, MOTOR_7, 3 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_7_CUR, 0; 
MOTOR_7_TEMP, 8; 
MOTOR_7_VOLT,16; 
}

MOTOR_DIAG_SET: 0x1A, HVAC_CTL, 8 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_0_SET_A, 0; 
MOTOR_0_SET_B, 8; 
MOTOR_1_SET_A,16; 
MOTOR_1_SET_B,24; 
MOTOR_2_SET_A,32; 
MOTOR_2_SET_B,40; 
MOTOR_3_SET_A,48; 
MOTOR_3_SET_B,56; 
}

MOTOR_NVM_PROG: 0x3B, HVAC_CTL, 8 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_NODE_ADDR, 0; 
MOTOR_CMD_ID, 8; 
MOTOR_STAT_ID,16; 
MOTOR_VAR_1,24; 
MOTOR_VAR_2,32; 
MOTOR_VAR_3,40; 
MOTOR_VAR_4,48; 
MOTOR_VAR_5,56; 
}

MOTOR_STALL_A: 0x09, HVAC_CTL, 8 { 
/* Signal Offset */ 
/* ------ ------ */

MOTOR_0_STALL_LMT 0; 
MOTOR_1_STALL_LMT 8; 
MOTOR_2_STALL_LMT16; 
MOTOR_3_STALL_LMT24; 
MOTOR_4_STALL_LMT32; 
MOTOR_5_STALL_LMT40; 
MOTOR_6_STALL_LMT48; 
MOTOR_7_STALL_LMT56; 
}
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// MasterReq: 0x3C, HVAC_CTL {

//  /* Signal Offset */

//  /* ------ ------ */

//      SYS_SLEEP,   0; 
// }

/* SlaveResp:      0x3D */ 
/* <reserved>      0x3E */

/* <LIN reserved>  0x3F */ 
}

/*__________________________________________________________Schedule Table Definitions____*/ 
Schedule_tables {

DEMO_SCHED { 
MOTOR_POS_A delay 20.00 ms; 
MOTOR_0_STAT_REQdelay13.00 ms; 
MOTOR_0_DIAG_REQdelay13.00 ms; 
MOTOR_1_STAT_REQdelay13.00 ms; 
MOTOR_1_DIAG_REQdelay13.00 ms; 
MOTOR_2_STAT_REQdelay13.00 ms; 
MOTOR_2_DIAG_REQdelay13.00 ms; 
MOTOR_3_STAT_REQdelay13.00 ms; 
MOTOR_3_DIAG_REQdelay13.00 ms; 
MOTOR_POS_A delay 20.00 ms; 
MOTOR_4_STAT_REQdelay13.00 ms; 
MOTOR_4_DIAG_REQdelay13.00 ms; 
MOTOR_5_STAT_REQdelay13.00 ms; 
MOTOR_5_DIAG_REQdelay13.00 ms; 
MOTOR_6_STAT_REQdelay13.00 ms; 
MOTOR_6_DIAG_REQdelay13.00 ms; 
MOTOR_7_STAT_REQdelay13.00 ms; 
MOTOR_7_DIAG_REQdelay13.00 ms; 
MOTOR_STALL_A delay 20.00ms; 
//MOTOR_DIAG_SET_Adelay20.00 ms; 

}

FAST_SCHED {

MOTOR_POS_A delay 20.00 ms; 
MOTOR_0_STAT_REQdelay13.00 ms; 
MOTOR_1_STAT_REQdelay13.00 ms; 
MOTOR_POS_A delay 20.00 ms; 
MOTOR_2_STAT_REQdelay13.00 ms; 
MOTOR_3_STAT_REQdelay13.00 ms; 
MOTOR_POS_A delay 20.00 ms; 
MOTOR_4_STAT_REQdelay13.00 ms; 
MOTOR_5_STAT_REQdelay13.00 ms; 
MOTOR_POS_A delay 20.00 ms; 
MOTOR_6_STAT_REQdelay13.00 ms; 
MOTOR_7_STAT_REQdelay13.00 ms; 

}

BASIC_SCHED{ 
MOTOR_POS_A delay 20.00 ms; 
MOTOR_0_STAT_REQdelay13.00 ms; 
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MOTOR_1_STAT_REQdelay13.00 ms; 
MOTOR_2_STAT_REQdelay13.00 ms; 
MOTOR_3_STAT_REQdelay13.00 ms; 
MOTOR_4_STAT_REQdelay13.00 ms; 
MOTOR_5_STAT_REQdelay13.00 ms; 
MOTOR_6_STAT_REQdelay13.00 ms; 
MOTOR_7_STAT_REQdelay13.00 ms; 

}

MOTOR_1_SCHED{

MOTOR_POS_A delay 20.00 ms; 
MOTOR_1_STAT_REQdelay13.00 ms; 
MOTOR_1_DIAG_REQdelay13.00 ms; 

} 
}

/*__________________________________________________________Signal Encoding Types_________*/ 
Signal_encoding_types { 
  Boolean    {

logical_value, 0, "False"; 
logical_value, 1, " True"; 

}

Position  { 
physical_value, 0, 255, 1.00, 0, " degree"; 

}

Command  { 
logical_value, 0, "Not Moving"; 
logical_value, 1, "Rotating CW"; 
logical_value, 2, "Rotating CCW"; 
logical_value, 3, "SMOS Error"; 

}

LIN_Error { 
logical_value, 0, "No Error"; 
logical_value, 1, "Bit-Error"; 
logical_value, 2, "Checksum-Err"; 
logical_value, 3, "ID-Parity-Error"; 
logical_value, 4, "Slave-Not-Resp"; 
logical_value, 5, "Inconsist-Syn-Fld"; 
logical_value, 6, "No-Bus-Activity"; 
logical_value, 7, "UNDEFINED"; 

}

Control_Method { 
logical_value, 0, "OPEN LOOP"; 
logical_value, 1, "CLOSED LOOP"; 

}

SMOS_Type { 
logical_value, 0, "MUX3"; 
logical_value, 1, "X05"; 

}
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Current { 
physical_value, 0, 255, 0.0019607, 0, " amps"; 

}

Temperature { 
physical_value, 0, 255, 1.435, -98.14, " deg. C"; 

}

Voltage { 
physical_value, 0, 255, 0.1064, 0, " volts"; 

}

System_Messages { 
logical_value, 0, "System Sleep"; 
physical_value, 1, 127, 1, 0, " RESERVED"; 
physical_value, 128, 255, 1, 0, " USER DEFINED"; 

} 
}

Signal_representation {

Boolean: MOTOR_0_OVR_TMP, MOTOR_0_OVR_VLT, MOTOR_0_LOW_VLT, MOTOR_0_OVR_CUR, MOTOR_0_OPN_LD, 
MOTOR_0_STALL, MOTOR_1_OVR_TMP, MOTOR_1_OVR_VLT, MOTOR_1_LOW_VLT, MOTOR_1_OVR_CUR, 
MOTOR_1_OPN_LD, MOTOR_1_STALL, MOTOR_2_OVR_TMP, MOTOR_2_OVR_VLT, MOTOR_2_LOW_VLT, 
MOTOR_2_OVR_CUR, MOTOR_2_OPN_LD, MOTOR_2_STALL, MOTOR_3_OVR_TMP, MOTOR_3_OVR_VLT, 
MOTOR_3_LOW_VLT, MOTOR_3_OVR_CUR, MOTOR_3_OPN_LD, MOTOR_3_STALL, MOTOR_4_OVR_TMP, 
MOTOR_4_OVR_VLT, MOTOR_4_LOW_VLT, MOTOR_4_OVR_CUR, MOTOR_4_OPN_LD, MOTOR_4_STALL, 
MOTOR_5_OVR_TMP, MOTOR_5_OVR_VLT, MOTOR_5_LOW_VLT, MOTOR_5_OVR_CUR, MOTOR_5_OPN_LD, 
MOTOR_5_STALL, MOTOR_6_OVR_TMP, MOTOR_6_OVR_VLT, MOTOR_6_LOW_VLT, MOTOR_6_OVR_CUR, 
MOTOR_6_OPN_LD, MOTOR_6_STALL, MOTOR_7_OVR_TMP, MOTOR_7_OVR_VLT, MOTOR_7_LOW_VLT, 
MOTOR_7_OVR_CUR, MOTOR_7_OPN_LD, MOTOR_7_STALL;

Position:MOTOR_0_INPUT, MOTOR_1_INPUT, MOTOR_2_INPUT, MOTOR_3_INPUT, MOTOR_4_INPUT, 
MOTOR_5_INPUT, MOTOR_6_INPUT, MOTOR_7_INPUT, MOTOR_0_POS, MOTOR_1_POS, MOTOR_2_POS, 
MOTOR_3_POS, MOTOR_4_POS, MOTOR_5_POS, MOTOR_6_POS, MOTOR_7_POS;

Command:MOTOR_0_CMD, MOTOR_1_CMD, MOTOR_2_CMD, MOTOR_3_CMD, MOTOR_4_CMD, MOTOR_5_CMD, 
MOTOR_6_CMD, MOTOR_7_CMD;

LIN_Error:MOTOR_0_LIN_ERR, MOTOR_1_LIN_ERR, MOTOR_2_LIN_ERR, MOTOR_3_LIN_ERR, MOTOR_4_LIN_ERR, 
MOTOR_5_LIN_ERR, MOTOR_6_LIN_ERR, MOTOR_7_LIN_ERR;

Control_Method: MOTOR_0_CTL, MOTOR_1_CTL, MOTOR_2_CTL, MOTOR_3_CTL, MOTOR_4_CTL, MOTOR_5_CTL, 
MOTOR_6_CTL, MOTOR_7_CTL;

SMOS_Type: MOTOR_0_SMOS, MOTOR_1_SMOS, MOTOR_2_SMOS, MOTOR_3_SMOS, MOTOR_4_SMOS, MOTOR_5_SMOS, 
MOTOR_6_SMOS, MOTOR_7_SMOS;

Current: MOTOR_0_CUR, MOTOR_1_CUR, MOTOR_2_CUR, MOTOR_3_CUR, MOTOR_4_CUR, MOTOR_5_CUR, 
MOTOR_6_CUR, MOTOR_7_CUR;

Temperature: MOTOR_0_TEMP, MOTOR_1_TEMP, MOTOR_2_TEMP, MOTOR_3_TEMP, MOTOR_4_TEMP, 
MOTOR_5_TEMP, MOTOR_6_TEMP, MOTOR_7_TEMP;

Voltage: MOTOR_0_VOLT, MOTOR_1_VOLT, MOTOR_2_VOLT, MOTOR_3_VOLT, MOTOR_4_VOLT, MOTOR_5_VOLT, 
MOTOR_6_VOLT, MOTOR_7_VOLT;

// System_Messages: SYS_SLEEP;

}
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