
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Freescale Semiconductor
Application Note

This document describes the required equipment and physical 
set-up for demonstrating the features and performance of the PCI 
bridge of the following PowerQUICC II™ microprocessors: 
MPC8250, MPC8265, MPC8266, MPC8270, and MPC8280.

AN2431
Rev. 1, 05/2005

Contents
1. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
2. Data Flow Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  2
3. Hardware Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .  4
4. Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
5. File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
6. Important Routines . . . . . . . . . . . . . . . . . . . . . . . . . .  16
7. Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

PowerQUICC II™ PCI 
Example Software
by NCSD Applications

Freescale Semiconductor, Inc.
Austin, TX



PowerQUICC II™ PCI Example Software, Rev. 1

2 Freescale Semiconductor

References

1 References
Users are encouraged to be familiar with the reference materials shown in Table 1, which are available at 
www.freescale.com:

2 Data Flow Overview
This example demonstrates the PCI features of the PowerQUICC II™ (PQII) processors. The host or the 
motherboard (MB) prepares four buffers (block 1 in Figure 1) each with predefined data patterns. Then the PCI 
DMA Engine 1 of the motherboard transfers the four buffers to the add-in (AI) 60x bus. After the DMA transfer is 
over, the host sends an inbound message to the agent to inform that four buffers in block 1 have been transferred to 
block 3. 

Figure 1. Data Flow Diagram

Table 1. Relevant Reference Materials

Document Identification Number

MPC8260 PowerQUICC II™ User’s Manual MPC8260UM

MPC8260 PowerQUICC II™ User’s Manual Errata MPC8260UMAD

MPC8280 PowerQUICC II™ Family Reference Manual MPC8280RM

Errata to the MPC8280 PowerQUICC II™ Family Reference Manual MPC8280RMAD

MPC8260 PowerQUICC II™ Family Device Errata MPC8260CE

MPC8280 PowerQUICC II™ Family Device Errata MPC8280CE

CPU
Comparing the

Tx and Rx
Buffer

3

4

1

2

6

6
Block2 on 60x

5

Block4 on 60x

Block1 on 60x Block3 on 60x

Host Agent

PCI Bus



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 3

Data Flow Overview

At this time, the agent receives the PCI interrupt and processes the inbound message. Now the agent knows that it 
received four buffers of data (block 3 in Figure 1) from the host. The agent’s CPU copies block 3 to block 4. Note 
that at this point block 1, block 3, and block 4 all have the same data content. 

Finally, the agent would transfer data content of block 4 to block 2 using the PCI DMA engine. Therefore, block 2 
data content should be the same as block 1. After the DMA transaction is over the agent sends an outbound message 
to the host. This creates an /INTA interrupt on the PCI bus which eventually gets mapped to the /IRQ6 of the 
motherboard. 

At this time, IRQ6 interrupt is invoked on the motherboard. Now the motherboard knows the block 2 data content 
has been filled by the agent. Finally, CPU on the motherboard compares block 1 and block 2. If they are identical, 
the test passes; otherwise it fails.

Software contains different mechanisms for sending messages between the host and the agent. Also, the agent’s 
software contains some flags to synchronize some of the activities. Enough comments are provided in the code to 
understand the sequential flow of the data. 

In Figure 2, the execution of the example code is described in a sequential manner. The numbers correspond to the 
numbers in Figure 1. 

Figure 2. Execution of Example Code

2

• From DMA interrupt, MB informs the agent about the DMA
transfer by sending an inbound message to the agent.

• Agent’s PCI handler is invoked as a consequence.
• From this, handler sets a flag so that CPU of agent can start

copying Block3 to Block4.

1
• Motherboard programs PCI DMA Engine 1.
• Transfers data of Block1 to Block3.
• DMA interrupt is invoked on the MB.

3
• Data content of Block3 is copied to Block4 using the AI’s CPU.
• CPU sets a flag so that agent can initiate DMA transaction.

• PCI DMA Engine 1 of agent transfers the content of Block4
to Block2.

• DMA interrupt is generated after the completion of DMA
transaction.

• This handler sends an outbound message to the host.

4

• An outbound message is sent to host.
• It generates /INTA interrupt on the PCI bus which finally

gets rerouted to /IRQ6 on the MB.
• Thus, host gets interrupted.

5

6
• /IRQ6 handler is invoked.
• This handler compares Block1 and Block2 of the MB.
• If the blocks are equal, the test passes. Otherwise fails.

.



PowerQUICC II™ PCI Example Software, Rev. 1

4 Freescale Semiconductor

Hardware Overview

3 Hardware Overview

3.1 Requirements
• MPC8266ADS-PCI or PQ2FADS-ZU board 

• MPC8266ADS-PCI-AI board

• Two wigglers (Applied Microsystems WireTap was used for development)

• Two host development systems

• Metrowerks CodeWarrior for Embedded PowerPC v. 8.1

• Two parallel port cables

• Two serial port cables

3.2 Hardware Set-Up
Before running the demo the dip switches and jumpers of the motherboard and the add-in should be set correctly. 
Only a few jumpers/dip-switches need additional settings; all the other remaining jumpers/dip-switches take the 
factory default settings. Make sure the following settings are done on the boards. Note that Figure 3 shows the 8266 
motherboard set-up but is also relevant for the PQ2FADS-ZU. One additional setting that must be checked on the 
PQ2FADS-ZU is to ensure that JP9 is set to select PCI and not local bus SDRAM.

Figure 3. Motherboard and Add-in Jumper Settings

One host development system/desktop is connected to the motherboard JTAG port—one end of the parallel cable 
goes to the parallel port of the desktop, the other end of the cable is connected to the wiretap, and the wiretap JTAG 
connector is connected to the JTAG connector of the motherboard.

To view the output from the motherboard, connect a straight serial cable from the upper serial port of the 
motherboard to the serial port of the desktop. Open a terminal program and set it up to match these settings:

• Baud Rate: 57600

• Data Bits: 8

• Parity: None

• Stop Bits: 1

• Flow Control: None 

MPC8266 PCI Motherboard clock settings
(‘0’ means ON; ‘1’ means OFF):

MODCKH0
MODCKH1
MODCKH2
MODCKH3
PCIMODCK
MODCK0
MODCK1
MODCK2

0
1
0
1
0
0
0
1

PQ2PCI-AI ADS clock settings
(‘0’ means ON; ‘1’ means OFF):

MODCK1
MODCK2
MODCK3
PCIMODCK
MODCKH0
MODCKH1
MODCKH2
MODCKH3

0
0
1
0
0
0
0
0

Move the CFGSRC on the Add-In board to FLASH



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 5

Software Overview

Another desktop is connected to the add-in card JTAG port—one end of the parallel cable goes to the parallel port 
of the desktop and the other end of the cable is connected to the Wiretap, and the Wiretap JTAG connector is 
connected to the JTAG connector of the MPC8266ADS-PCI-AI.

To view the output from the add-in, connect a straight serial cable from the serial port on the side of the add-in board 
to another COM port in the computer. Open a terminal program and set it up to match these settings:

• Baud Rate: 57600

• Data Bits: 8

• Parity: None

• Stop Bits: 1

• Flow Control: None 

4 Software Overview
It is clear from Figure 1 that in the demo data is moved from motherboard 60x memory to add-in 60x memory and 
vice-versa across the PCI interface. The general guideline for moving data across the PCI interface is as follows:

1. Determine the source (motherboard/add-in) of the data 
2. Create an outbound window on the source noticing the fact that writing to the outbound window results in 

putting the data in the PCI bus in transaction form
3. Create an inbound window on the destination so that the transaction created in Step 2 can be claimed by the 

destination. Note that the translation address for the outbound window (Step 2) should be the same as the 
base address of the inbound window created at the destination.

4.1 Debugger Configuration Files
There are no assembly initialization files for this project. The boards — the motherboard and the add-in — are 
initialized by the configuration files:

• 8266MB_ADS_init_dbg.cfg 

• PQ2_FADS_ZU_init_66MHz_PCI_MB.cfg 

• 8266AI_ADS_init_dbg.cfg 

These files are part of the motherboard and add-in projects. Please refer to these files in order to understand how and 
what the debugger is initializing before jumping to the main routine. The following sections provide only the 
highlights of what these configuration files initialize. 

4.1.1 Motherboard Debugger Configuration Files: 
=>PQ2_FADS_ZU_init_66MHz_PCI_MB.cfg or 8266MB_ADS_init_dbg.cfg

• Programs these registers: IMMR, SCCR, SYPCR, RMR, MPTPR, BCR, PSRT, BCR, SIUMCR, TESCR1

• Programs chip select registers: CS1, CS2, CS0, CS4, CS8

• Programs 60x priority related registers: PPC_ACR, PPC_ALRH

• Programs special purpose registers: MSR, HID0

• Programs the SDRAM

• Programs PCI related registers:

— PCI General Control Register. Soft PCI Reset = l (This brings the add-in card out of reset)

— PCIMSK0 = 0xff800000 



PowerQUICC II™ PCI Example Software, Rev. 1

6 Freescale Semiconductor

Software Overview

— PCIBR0 = 0x04800001 

— PCIMSK1 = 0xc0000000 

— PCIBR1 = 0x80000001   

— PICMR1 = 0xf0ff0fe0 

— PICMR0 = 0xf0ff0fe0

4.1.2 Add-in Debugger Configuration Files—8266AI_ADS_init_dbg.cfg
• Programs these registers – IMMR, SCCR, SYPCR, RMR, MPTPR, BCR, PSRT, BCR, SIUMCR, TESCR1 

• Programs chip select registers –CS1, CS2, CS0, CS4, CS8

• Programs 60x priority related registers - PPC_ACR, PPC_ALRH

• Programs special purpose registers - MSR, HID0

• Programs the SDRAM

• Programs PCI related registers

— PCI General Control Register. Soft PCI Reset = l

— PCIMSK0 = 0xff800000 

— PCIBR0 = 0x04800001 

— PCIMSK1 = 0xc0000000 

— PCIBR1 = 0x80000001   

— PICMR1 = 0xf0ff0fe0 

— PICMR0 = 0xf0ff0fe0

4.2 Motherboard Program (pci_mb.mcp)

4.2.1 Initialization of the Motherboard and Add-In

4.2.1.1 Initialization of the Motherboard—[PCI_ConfigHost() in pci.c file]
The motherboard performs the initialization of its own configuration space, programming the following 
configuration registers: the PCI bus internal memory-mapped registers base address register (PIMMRBAR), the 
GPLA base address register 0 (GPLABAR0), the GPLA base address register 1 (GPLABAR1), and the PCI bus 
command register. These registers should be programmed as directed in Table 2. For more information on these 
registers, please see the appropriate reference manual from the list in Table 1.



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 7

Software Overview

Table 2. Initialization of the Motherboard

Register Value Description

PIMMRBAR 0x8A000000 Any remote agent that wants to access the internal memory-mapped registers of the 
motherboard would consider PCI address 0x8A000000 as the base of the internal memory map 
of the motherboard. For example, if a remote agent wants to read the motherboard’s SIUMCR 
register, then it would generate a PCI read access, and the address for this read transaction 
would be 0x8A010000 (=0x8A00000 + 0x10000). Also note that the size of PIMMRBAR window 
is fixed at 128KB, which is actually the size of the internal memory map of PowerQUICC II. 

GPLABAR0 0x00000000 The size of this window is programmable and can be between 4KB and 1MB. If the user 
programs the PICMR0[CM] field (the PCI inbound comparison mask register 0 [comparison 
mask] field), then the size is defined for this window. In the cfg file for the motherboard, the 
following line appears: 

writemem.l 0x047108f8 0xf0ff0fe0

The address 0x047108f8 is for PICMR0. Byte swapping 0xf0ff0fe0 yields 0xe00ffff0. Therefore, 
PICMR0.CM=0xffff0, which means that the size of this window is 64MB (32 -16 = 16; 2^16 = 
64MB).

The debugger initialization file sets the size of the motherboard’s GPLABAR0 to 64MB. In the 
software only the base address of GPLABAR0 is programmed as 0x00000000 (please see the 
code in pci.c file which shows how to program a configuration register in the configuration 
space). Therefore, the window starts at 0x00000000 and ends at 0x0000ffff. Any PCI transaction 
with an address in the range, 0x00000000–0x0000ffff, will be claimed by the motherboard. 

GPLABAR1 0x00010000 The size of this window is programmable and can be between 4KB and 1MB. If the user 
programs the comparison mask (CM) field of the PCI inbound comparison mask register 1 
(PICMR1), then the size is defined for this window. In the cfg file for the motherboard, the 
following line appears:

writemem.l 0x047108e0 0xf0ff0fe0
The address 0x047108e0 is for PICMR1. Byte swapping 0xf0ff0fe0 yields 0xe00ffff0. Therefore, 
PICMR1.CM = 0xffff0, which means that the size of this window is 64MB (32 -16 = 16; 2^16 = 
64MB).

The debugger initialization file sets the size of the motherboard’s GPLA1BAR to be 64MB. In the 
software, only the base address of GPLABAR1 is programmed as 0x00010000. Therefore, the 
window starts at 0x00010000 and ends at 0x0000ffff. Any PCI transaction with an address in the 
range, 0x00010000–0x0001ffff, will be claimed by the motherboard. 

PCI Bus 
Command 
Register

The following fields of the PCI bus command register are programmed:

 • SERR (bit 8): This bit is set which enables the /SERR driver
 • Parity error response (bit 6): This bit is set. Action is taken on a parity error.
 • Bus Master (bit 2): This bit is set. Enables the PCI bridge to behave as a PCI bus master.
 • Memory space (bit 1): This bit is set. The PCI bridge responds to PCI memory space 

accesses.



PowerQUICC II™ PCI Example Software, Rev. 1

8 Freescale Semiconductor

Software Overview

4.2.2 Initialization of the Add-In [PCI_ConfigAgent() in pci.c file]
The PowerQUICC II agent can program its own configuration space. For that reason the motherboard initialization 
routine contains initialization of the add-in configuration space. The motherboard software programs the following 
configuration registers of the add-in, shown in Table 3. For more information on these registers, please see the 
appropriate reference manual from the list in Table 1.

Table 3. Initialization of the Add-In

Register Value Description

PIMMRBAR 0x8A020000 Any remote host that wants to access the internal memory-mapped registers of the add-in would 
consider PCI address 0x8A020000 as the base of the internal memory map of the motherboard. 
For example, if the motherboard host wants to read the add-in’s SIUMCR register, then it would 
generate a PCI read access. The address for this read transaction would be 0x8A030000 
(=0x8A02000 + 0x10000). Also note that the size of the PIMMRBAR window is fixed at 128KB, 
which is actually the size of the internal memory map of PowerQUICC II. 

GPLABAR0 0x00020000 The size of this window is programmable and can be between 4KB and 1MB. If the user 
programs the comparison mask (CM) field of the PCI inbound comparison mask register 0 
(PICMR0), the size is defined for this window. In 8266AI_ADS_init_dbg.cfg, the following line 
appears:

writemem.l 0x047108f8 0xf0ff0fe0   

The address 0x047108f8 is for PICMR0 of the add-in. Byte swapping 0xf0ff0fe0 yields 0xe00ffff0. 
Therefore, PICMR0.CM=0xffff0 which means that the size of this window is 64MB (32 -16 =16; 
2^16 = 64MB).

The debugger initialization file sets the size of the add-in’s GPLABAR0 to 64MB. In the software, 
only the base address of the add-in’s GPLABAR0 is programmed (please see the code in pci.c 
file which shows how to program a configuration register in the configuration space) as 
0x00020000. Therefore, the window starts at 0x00020000 and ends at 0x0002ffff. Any PCI 
transaction with an address in the range, 0x00020000–0x0002ffff, will be claimed by the add-in. 

GPLABAR1 0x00030000 The size of this window is programmable and can be between 4KB and 1MB. If the user 
programs the comparison mask (CM) field of the PCI inbound comparison mask register 0 
(PICMR1)1, the size is defined for this window (note that in this case the PICMR0 should be the 
register on the add-in internal memory space). The motherboard host can program any internal 
memory-mapped register of the add-in using the PIMMRBAR of the add-in). In 
8266AI_ADS_init_dbg.cfg, the following line appears:

writemem.l 0x047108e0 0xf0ff0fe0

The address 0x047108f8 is for PICMR0 of the add-in. Byte swapping 0xf0ff0fe0 yields 0xe00ffff0. 
Therefore, PICMR1.CM = 0xffff0, which means that the size of this window is 64MB (32 -16 =16; 
2^16 = 64MB).

The debugger initialization file sets the size of the add-in’s GPLABAR1 to 64MB. In the software, 
only the base address of the add-in’s GPLABAR1 is programmed as 0x00030000 (please see 
the code in pci.c file which shows how to program a configuration register in the configuration 
space). Therefore, the window starts at 0x00030000 and ends at 0x0003ffff. Any PCI transaction 
with an address in the range, 0x00030000–0x0003ffff, will be claimed by the add-in. 

PCI Bus 
Command 
Register

 • The following fields of the PCI bus command register of the add-in are programmed by the 
motherboard host:
SERR (bit 8): This bit is set which enables the /SERR driver.

 • Parity error response (bit 6): This bit is set. Action is taken on a parity error.
 • Bus Master (bit 2): This bit is set. Enables the PCI bridge to behave as a PCI bus master.
 • Memory space (bit 1): This bit is set. The PCI bridge responds to PCI memory space 

accesses.



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 9

Software Overview

4.2.2.1 Creation of PCI Blocks 
PCI blocks are created by the motherboard cfg file and not by the software. The following lines in the motherboard 
cfg file create the two PCI blocks as shown in Figure 4: 

writemem.l 0x047101c4 0xff800000 

writemem.l 0x047101ac 0x04800001 

writemem.l 0x047101c8 0xc0000000 

writemem.l 0x047101b0 0x80000001 

Figure 4. PCI Blocks

4.2.3 Creation of Windows on the Motherboard 
[Create_Inbound_Outbound_Windows() in pci.c file]

The motherboard program, by making use of PIMMRBAR of the add-in, can access any memory-mapped registers 
of the add-in. Therefore, creation of the add-in windows is performed by the motherboard program (see the pci.c file 
of the motherboard project for details). The following windows are created on the add-in. 

4.2.3.1 Outbound Window 0
• POBAR0 = 0x00080000

• POTAR0 = 0x00000030

• POCMR0 = 0x800ffffe

Figure 5 shows the motherboard outbound window.

Figure 5. Motherboard Outbound Window

2MB

0x04800000

0x049fffff

1GB

0x80000000

0xbfffffff

0x80000000 0x30000

8KB 8KB

MB 60x Bus PCI Bus



PowerQUICC II™ PCI Example Software, Rev. 1

10 Freescale Semiconductor

Software Overview

4.2.3.2 Inbound Window 1 
• PIBAR1—The base address of the inbound window is already created because the motherboard programs 

GPLABAR1 with a value of 0x10000 (see Section 4.4.1.1, “Inbound Message Register). Note that 
programming GPLABAR1 affects PIBAR1 and vice-versa. So programming in one place would suffice. In 
this case we programmed GPLABAR1. 

• PITAR1 = 0x00000D00

• PICMR1 =0x800ffffe

Figure 6 shows the motherboard inbound window.

Figure 6. Motherboard Inbound Window

The size of the inbound window has been redefined as 8KB instead of 64KB, which is done by the debugger 
configuration file. 

4.2.4 Creation of Windows on Add-In by the Motherboard Program
[Create_Inbound_Outbound_Windows() in pci.c file]

One outbound window (OB#0, size 8KB), which starts at 0x80000000, has been programmed. Also, note that one 
PCI block of size 1GB is defined by the debugger scripts starting at 0x80000000. Therefore, the outbound window 
falls within the PCI block of the add-in. The programming details of the outbound window are provided below (also 
see the pci.c file to see how the windows are programmed):

4.2.4.1 Outbound Window 0
• POBAR0 = 0x00080000

• POTAR0 = 0x00000010

• POCMR0 = 0x800ffffe

Figure 7 shows the add-in outbound window.

Figure 7. Add-In Outbound Window

0x100000xD00000

8KB8KB

PCI BusMB 60x Bus

0x80000000 0x10000

8KB 8KB

AI 60x Bus PCI Bus



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 11

Software Overview

4.2.4.2 Inbound Window 1 
• PIBAR1 —Base address of the inbound window is already created because the motherboard programs 

GPLABAR1 of the agent with a value of 0x30000 (see Section 4.4.1.1, “Inbound Message Register). One 
thing to note is that programming GPLABAR1 affects PIBAR1 and vice-versa. So programming in one 
place would suffice. In this case GPLABAR1 was programmed. 

• PITAR1 = 0x00000C00

• PICMR1 

Figure 8 shows the add-in inbound window.

Figure 8. Add-In Inbound Window

The size of the inbound window is redefined by the debugger configuration file as 8KB instead of 64KB.

4.2.5 Programming the DMA Engine in DMA-Direct/Chaining
Before describing how the PCI DMA Engines on the motherboard and add-in accomplish data movement from the 
motherboard to the add-in and vice-versa, observe Figure 9 and Figure 10, which give pictorial representation of the 
programming. 

Figure 9. Data Movement from the Motherboard to the Add-In

0x300000xC00000

8KB8KB

PCI BusMB 60x Bus

0xc00000 0x80000000 0x30000 0xc00000

0xc00800 0x80000800 0x30800 0xc00800

0xc01000 0x80001000 0x31000 0xc01000

0xc01800 0x80001800 0x31800 0xc01800

MB 60x Buffers
(Source for PCI
DMA Engine)

MB 60x
(Destination for PCI

DMA Engine)

PCI Memory AI 60x Buffers

Movement
Accomplished by

MB PCI DMA

Movement
Accomplished by
MB’s Outbound

Window 0

Movement
Accomplished by

AI’s Inbound
Window 0



PowerQUICC II™ PCI Example Software, Rev. 1

12 Freescale Semiconductor

Software Overview

4.2.5.1 Motherboard DMA Programming
Motherboard DMA programming would move the data from the motherboard 60x memory to the add-in 60x 
memory. There are two modes of DMA operation provided in the software. Either of these two modes can be 
selected by a definition in the pci.h file. The two modes are direct mode and chaining mode. 

In the direct mode source address register (SAR), destination address register (DAR) and byte count register (BCR) 
would be programmed four times. Each time when the three registers are programmed and the DMA engine is 
started, data will be moved from the 60x bus to the PCI bus. For instance, the first buffer located at 0xc0000 (blocks 
at the left-most end of Figure 7a) which is the source for DMA will be moved to destination 0x80000000 on the 
same motherboard’s 60x bus. But address 0x80000000 is the starting address of an outbound window on the 
motherboard. Therefore, the outbound window is touched, as a consequence of which a PCI write transaction is 
generated on the PCI bus. The address for this write transaction would be the translated address for the outbound 
window; in this case it is PCI address 0x30000. This transaction is claimed by the add-in because PCI address 
0x30000 falls within the Base address of its inbound window. Since this inbound window is touched, the PCI bridge 
on the add-in would translate this address to its translated 60x space- which is 0xc00000 (the rightmost block in 
Figure 7a). Thus data written into the motherboard’s 60x address, 0xc00000, ends up in the add-in’s 60x address, 
0xc00000. In a similar fashion, all the data is moved from the motherboard’s 60x space to the add-in’s 60x space. 

DMA direct mode is used to move data. Since there are four buffers, this method is used four times. Each time the 
source and the destination addresses are different. For example, in order to move the first buffer 0xc00000 to 
0x80000000, the source address is programmed 0xc00000 in SAR (source address register of PCI DMA Engine 1) 
and the destination address is programmed 0x80000000 in DAR (destination address register of PCI DMA Engine 
1). After this transfer is over, the second buffer is moved from 0xC08000 to 0x80000800. In this case the source 
address is programmed to 0xc00800 in SAR (source address register of PCI DMA Engine 1) and the destination 
address is programmed to 0x80000800 in DAR (destination address register of PCI DMA Engine 1). Likewise, the 
third and fourth buffers are moved. Note that for each DMA transfer the block length for transfer is 0x800 or 8KB. 

In the chaining mode the data transfer concept is identical. The only difference between direct and chaining modes 
is the fact that in the chaining mode the descriptor structure has to be defined, which allows the simultaneous transfer 
of multiple blocks of data. 

4.3 Add-In Program (pci_ai.mcp)
The add-in program is smaller than the motherboard program because it does not contain the initialization of the PCI 
bridge, which is already done by the motherboard’s software. This program contains the DMA routines to do the 
data transfer from the add-in’s 60x space to the motherboard’s 60x space. Also, there are handlers that receive a 
message from and send a message to PCI. 



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 13

Software Overview

4.3.1 Add-In DMA Programming
The add-in DMA programming would move the data from the add-in to the motherboard. The DMA programming 
on the add-in is exactly like the DMA programming done on the motherboard. Observe Figure 10 carefully to 
understand the add-in–to–motherboard data flow. Also refer to Section 4.2.3, “Creation of Windows on the 
Motherboard [Create_Inbound_Outbound_Windows() in pci.c file],” and Section 4.2.4, “Creation of Windows on 
Add-In by the Motherboard Program [Create_Inbound_Outbound_Windows() in pci.c file],” which describe 
window creation. 

Figure 10. Data Movement from the Add-In to the Motherboard

4.4 Message Passing Mechanism between the Motherboard and 
the Add-in 

4.4.1 Message Passing from Motherboard to Add-In
A message is sent from the motherboard to the add-in once the DMA data movement from the motherboard’s 60x 
space to the add-in’s 60x space is completed. This completion leads to PCI (DMA) interrupt generation. From the 
motherboard’s PCI_Handler() a message is sent to the add-in in the following two ways. 

4.4.1.1 Inbound Message Register
Message passing occurs in the following sequence:

• Motherboard’s CPU writes to the inbound message register 0 (IMR0) of the add-in, using the PIMMRBAR 
window of the add-in.

• This causes an 0x500 interrupt to the add-in’s CPU

• Add-in’s PCI_Handler is invoked and the interrupt is serviced

• In the add-in’s IMISR register, IM0I bit is cleared, which clears the status

0xd00000 0x80000000 0x10000 0xd00000

0xd00800 0x80000800 0x10800 0xd00800

0xd01000 0x80001000 0x11000 0xd01000

0xd01800 0x80001800 0x11800 0xd01800

AI 60x Buffers
(Source for PCI

DMA Engine in AI)

AI 60x
(Destination for PCI

DMA Engine)

PCI Memory MB 60x Buffers

Movement
Accomplished by

AI PCI DMA

Movement
Accomplished by

AI’s Outbound
Window 0

Movement
Accomplished by

MB’s Inbound
Window 0



PowerQUICC II™ PCI Example Software, Rev. 1

14 Freescale Semiconductor

File Structure

4.4.1.2 Inbound Doorbell Register
Message passing occurs in the following sequence:

• Motherboard’s CPU writes 1 to bit 30 of the inbound door bell register (IDBR) of the add-in using the 
PIMMRBAR window of the add-in.

• This causes a 0x500 interrupt to the add-in’s CPU.

• Add-in’s PCI_Handler is invoked and the interrupt is serviced.

• Add-in’s CPU writes 1 to bit 30 of the inbound door bell register (IDBR), which clears the interrupt status.

4.4.2 Message Passing from the Add-in to the Motherboard
Message is sent from the add-in to the motherboard once the DMA data movement from the add-in’s 60x space to 
the motherboard’s 60x space is completed. This completion leads to PCI (DMA) interrupt generation. From the 
add-in’s PCI_Handler() a message is sent to the motherboard in the following two ways. 

4.4.2.1 Outbound Message Register
Message passing occurs by the following sequence:

• Add-in’s CPU writes to its outbound message register 0 (OMR0).

• This causes /INTA interrupt generation in the PCI interface.

• Motherboard’s PCI Interrupt Controller maps this /INTA interrupt to its /IRQ6 interrupt.

• Motherboard’s IRQ6_Handler() is invoked and the interrupt is serviced.

• Motherboard’s CPU writes 1 to OM0I bit of the add-in’s outbound message interrupt status register 
(OMISR) using the add-in’s PIMMRBAR window. This clears the status of the interrupt. 

The add-in’s CPU writes 1 to bit 28 of the inbound door bell register (IDBR), which clears the interrupt status.

4.4.2.2 Outbound Doorbell Register
Message passing occurs by the following sequence:

• Add-in’s CPU writes 1 to bit 28 of its outbound door bell register (ODBR)

• This causes /INTA interrupt generation in the PCI interface

• Motherboard’s PCI interrupt controller maps this /INTA interrupt to its /IRQ6 interrupt

• Motherboard’s IRQ6_Handler() is invoked and the interrupt is serviced

• Motherboard’s CPU writes 1 to bit 28 of the add-in’s outbound door bell register (ODBR), which clears the 
interrupt status

5 File Structure
The software consists of two projects, one for the motherboard (pci_mb.mcp) and the other one for the add-in 
(pci_ai.mcp).



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 15

File Structure

5.1 File Structure for the Motherboard Program
Table 4, Table 5, and Table 6 show the source, header, and support files respectively for the motherboard program.

Table 4. Source Files

Source Files Description

pci_mb.mcp Metrowerks motherboard project

main.c Main program file. Main() sets up the exception vector table, and calls PCI routine which initiates 
DMA data transfer.

pci.c This file contains all the routines that would initialize the PCI bridge of the motherboard and the 
add-in and create all the windows in the motherboard and add-in. It also contains the DMA routines 
to perform data movement from the motherboard to the add-in. 

pci_api.c This file contains convenient API routines that are used by routines in pci.c file.

8260_vads_init.c This is the Metrowerks PQII initialization routine. Note that the software does not make use of this 
file. Instead, the software takes the initialization from the debugger configuration file. 

intr_PQII_cw.s This is the lower-level implementation of the interrupt handlers.

Table 5. Header Files

Header Files Description

MMapPCI.h Defines all pci internal memory-mapped registers.

PramPq2Cpm.h Data structure of PQII Parameter RAM

MmapPq2Cpm.h CPM memory map

std.h Standard typedefs and definitions for various objects

MMapPQII.h PowerQUICC II Internal Memory map

dflags_pci_mb.h Defines all compiling flags.

comm._def.h Contains definitions pertaining to the PQII Interrupt Controller. Also, contains the definition of internal 
memory map. 

Table 6. Support Files

Metrowerks Support Files Description

__ppc_eabi_init.c  Needed to build libmw.a

MSL_C.PPCEABI.BARE.S.a Needed to build libmw.a

Runtime.PPCEABI.S.a Needed to build libmw.a

UART1_MOT_8260_ADS.a Metrowerks printf() uses SCC1 and RS232-1 on the 8260ADS.



PowerQUICC II™ PCI Example Software, Rev. 1

16 Freescale Semiconductor

Important Routines

5.2 File Structure for the Add-In Program
The file structure of the add-in is almost identical and therefore is not described here. 

6 Important Routines 

6.1 Motherbboard Routines
Table 7 shows the motherboard routines.

Table 7. Motherboard Routines

Routine Description

main() This routine sets up the exception vector table. It also calls the PCI_Init() to 
initialize the PCI bridges of the motherobard and add-in and subsequently 
perform PCI DMA data movement from the motherboard 60x memory to the 
add-in 60x memory

XX_SetExceptionTable() Called by the main() routine to install the 0x500 (external), 0x200 (machine 
check) and 0x900 (decrementer) handlers. The lower level of the handlers 
are defined in this file:intr_PQII_cw.s.

Intr_PQII() Handler for 0x500 which calls the ExtHandler().

Mcp_PQII() Handler for 0x200. 

ExtIntHandler() Called by Intr_PQII() when an external interrupt occurs. This routine reads 
the SIU Interrupt Vector register to find out the sources of interrupt and 
jumps accordingly to the specific handler routines. 

IRQ6_Handler() IRQ6 interrupt is invoked on the motherboard only when a message is sent 
from the add-in. The add-in could send a message using the outbound 
message/door bell register. The handler also compares the source and 
destination data and indicates the success/failure status of the program.

PCI_Handler() This handler is invoked when the motherboard completes the DMA data 
movement to the add-in. From this handler, a message is sent to the add-in 
using the add-in’s inbound message/door bell register. 

PCI_Init() This is the major PCI routine called by the main(). It calls all other PCI 
routines described below in a sequential manner. 

PCI_ConfigHost() Configures the motherboard’s PCI bridge by defining all the windows of the 
configuration space. It also programs the PCI bus command register, latency 
timer register, and cache-line register in the configuration space.

PCI_ConfigAgentPresent() Configures the add-in’s PCI bridge in a similar fashion to the motherboard’s 
PCI bridge. 

Create_Inbound_Outbound_Windows() This routine creates all the necessary outbound and inbound windows both 
in the motherboard and in the add-in. 



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 17

Test Results

6.2 Add-In Routines
The add-in project is very similar to the motherboard project. The project file structure is identical with the exception 
that the pci.c file in this case only contains the DMA routines. The main() routine uses flags to synchronize some of 
the activities. 

7 Test Results

7.1 Software Preparation
Open up the add-in project (pci_ai.mcp) in one desktop (call it DESKTOP1) and the motherboard project 
(pci_mb.mcp) in another desktop (call it DESKTOP2). Follow the instructions described in Section 3.2, “Hardware 
Set-Up to prepare the hardware. Then do the following:

• Download the motherboard code for DESKTOP1.

• Download the add-in code for DESKTOP2.

• Run the add-in code. In the associated hyperterminal the user will see the following message: “Starting AI 
program…”

• Run the motherboard code. If the programs are run without making any modifications in the code, the 
following messages will appear in the hyperterminals of DESKTOP1 and DESKTOP2 as described below.

7.2 Results

7.2.1 Hyperterminal Message
After successful running of the software, the following message in the DESKTOP1 hyperterminal should appear:

Starting the demo...

Direct;last block;Mesg 0 to Agent

End of DMA direct

PCI demo over...

Agent sent OB mesg mail

test successful...

In the DESKTOP2 hyperterminal, the following message should appear:

Starting AI program…

DmaDirectTansfer() Prepares data; programs source, destination, and byte-count registers of the 
DMA engine 1. Also, programs the DMA mode register to indicate that it is 
in direct mode and finally starts the DMA engine. 

DmaChainingMode() This routine prepares data, builds the descriptor chain in the motherboard’s 
external 60x space, and finally starts the DMA transaction. Generates PCI 
interrupt (0x500) after all the four blocks are transferred.

Table 7. Motherboard Routines (continued)

Routine Description



PowerQUICC II™ PCI Example Software, Rev. 1

18 Freescale Semiconductor

Revision History

got correct mesg via IB mesg reg…

Direct;last block;OB mesg to Host

Note that if the values are changed for DMA_DIRECT and/or MESG_REGISTER in the pci.h file both in the 
motherboard and add-in projects, the user will see a different hyperterminal message.

7.2.2 Checking the Memory Content 
In the motherboard project, check the memories located at 0xd00000, 0xd00800, 0xd01000 and 0xd01800. The user 
should see 0xd00000-0xd007ff filled with 0x01; 0xd0800-0xd00fff filled with 0x02; 0xd01000-0xd017ff filled with 
0x03; and 0xd01800-0xd01fff filled with 0x04.

In the add-in project, check the memories located at 0xd00000, 0xd00800, 0xd01000 and 0xd01800. The user should 
see 0xd00000-0xd007ff filled with 0x01; 0xd0800-0xd00fff filled with 0x02; 0xd01000-0xd017ff filled with 0x03; 
and 0xd01800-0xd01fff filled with 0x04. 

8 Revision History 
Table 8 provides a revision history for this application note. Note that this revision history table reflects 
the changes to this application note template, but can also be used for the application note revision history.

Table 8. Document Revision History

Revision
Number

Date Substantive Change

1 05/17/2005 Added references to PQ2FADS-ZU.

0 12/20/2002 Initial release



PowerQUICC II™ PCI Example Software, Rev. 1

Freescale Semiconductor 19

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK



AN2431
Rev. 1
05/2005

How to Reach Us:

Home Page: 
www.freescale.com 

email: 
support@freescale.com

USA/Europe or Locations Not Listed: 
Freescale Semiconductor 
Technical Information Center, CH370
1300 N. Alma School Road 
Chandler, Arizona 85224 
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English) 
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French) 
support@freescale.com

Japan: 
Freescale Semiconductor Japan Ltd. 
Technical Information Center 
3-20-1, Minami-Azabu, Minato-ku 
Tokyo 106-0047 Japan 
0120 191014
+81 3 3440 3569
support.japan@freescale.com

Asia/Pacific: 
Freescale Semiconductor Hong Kong Ltd. 
Technical Information Center
2 Dai King Street 
Tai Po Industrial Estate, 
Tai Po, N.T., Hong Kong 
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor 
Literature Distribution Center 
P.O. Box 5405
Denver, Colorado 80217 
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@

hibbertgroup.com

 

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The 
described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. 
and used under license. All other product or service names are the property of their respective 
owners.

© Freescale Semiconductor, Inc. 2005.

Information in this document is provided solely to enable system and software implementers to 

use Freescale Semiconductor products. There are no express or implied copyright licenses 

granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the 

information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any 

products herein. Freescale Semiconductor makes no warranty, representation or guarantee 

regarding the suitability of its products for any particular purpose, nor does Freescale 

Semiconductor assume any liability arising out of the application or use of any product or circuit, 

and specifically disclaims any and all liability, including without limitation consequential or 

incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor 

data sheets and/or specifications can and do vary in different applications and actual performance 

may vary over time. All operating parameters, including “Typicals” must be validated for each 

customer application by customer’s technical experts. Freescale Semiconductor does not convey 

any license under its patent rights nor the rights of others. Freescale Semiconductor products are 

not designed, intended, or authorized for use as components in systems intended for surgical 

implant into the body, or other applications intended to support or sustain life, or for any other 

application in which the failure of the Freescale Semiconductor product could create a situation 

where personal injury or death may occur. Should Buyer purchase or use Freescale 

Semiconductor products for any such unintended or unauthorized application, Buyer shall 

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, 

and distributors harmless against all claims, costs, damages, and expenses, and reasonable 

attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated 

with such unintended or unauthorized use, even if such claim alleges that Freescale 

Semiconductor was negligent regarding the design or manufacture of the part.


	PowerQUICC II™ PCI Example Software
	1 References
	Table 1. Relevant Reference Materials

	2 Data Flow Overview
	Figure 1. Data Flow Diagram
	Figure 2. Execution of Example Code

	3 Hardware Overview
	3.1 Requirements
	3.2 Hardware Set-Up
	Figure 3. Motherboard and Add-in Jumper Settings


	4 Software Overview
	4.1 Debugger Configuration Files
	4.1.1 Motherboard Debugger Configuration Files: =>PQ2_FADS_ZU_init_66MHz_PCI_MB.cfg or 8266MB_ADS_init_dbg.cfg
	4.1.2 Add-in Debugger Configuration Files-8266AI_ADS_init_dbg.cfg

	4.2 Motherboard Program (pci_mb.mcp)
	4.2.1 Initialization of the Motherboard and Add-In
	Table 2. Initialization of the Motherboard

	4.2.2 Initialization of the Add-In [PCI_ConfigAgent() in pci.c file]
	Table 3. Initialization of the Add-In
	Figure 4. PCI Blocks

	4.2.3 Creation of Windows on the Motherboard [Create_Inbound_Outbound_Windows() in pci.c file]
	Figure 5. Motherboard Outbound Window
	Figure 6. Motherboard Inbound Window

	4.2.4 Creation of Windows on Add-In by the Motherboard Program [Create_Inbound_Outbound_Windows() in pci.c file]
	Figure 7. Add-In Outbound Window
	Figure 8. Add-In Inbound Window

	4.2.5 Programming the DMA Engine in DMA-Direct/Chaining
	Figure 9. Data Movement from the Motherboard to the Add-In


	4.3 Add-In Program (pci_ai.mcp)
	4.3.1 Add-In DMA Programming
	Figure 10. Data Movement from the Add-In to the Motherboard


	4.4 Message Passing Mechanism between the Motherboard and the Add-in
	4.4.1 Message Passing from Motherboard to Add-In
	4.4.2 Message Passing from the Add-in to the Motherboard


	5 File Structure
	5.1 File Structure for the Motherboard Program
	Table 4. Source Files
	Table 5. Header Files
	Table 6. Support Files

	5.2 File Structure for the Add-In Program

	6 Important Routines
	6.1 Motherbboard Routines
	Table 7. Motherboard Routines

	6.2 Add-In Routines

	7 Test Results
	7.1 Software Preparation
	7.2 Results
	7.2.1 Hyperterminal Message
	7.2.2 Checking the Memory Content


	8 Revision History
	Table 8. Document Revision History


