
AN2504/D
10/2003

On-Chip FLASH
Programming API for
CodeWarrior Software

Application Note

Introductio

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

By Mauricio Capistrán-Garza
Application Engineer
Freescale

 Guadalajara, Mexico

n
This application note presents an easy-to-use C-language API for using
FLASH1-programming routines that are stored in ROM in the
MC68HC908GR8, MC68HC908KX8, MC68HC908JL3, MC68HC908JK3 and
MC68HC908JB8 microcontrollers (MCUs)2. These ROM-resident routines can
be used to program, erase, and verify FLASH memory as well as to
communicate serially.

The CodeWarrior API for ROM-resident routines was written in C language. By
using this API, the programmer takes advantage of these benefits:

• There is no need to know the absolute address of routines

• Changing from one MCU to another is easy; minimum code changes are
needed

• Code is easy to understand and follow

• No in-depth knowledge of the routines is needed

• Enhancement of ROM-resident routines

• Shorter development time

When using the API, take into consideration that your code may be larger and
the available RAM might decrease. Techniques can be used to avoid
decreasing the available RAM. For more information, refer to the Techniques
section.

In addition to describing how to call the API functions (parameters needed and
return values), this document includes example software with typical API calls
to better illustrate the procedure.

1. This product incorporates SuperFlash technology licensed from SST.

2. These routines are accessible in both user mode and monitor mode in all listed devices except
the MC68HC908GR8. This device allows access to these routines in monitor mode only.

© Motorola, Inc., 2003
 For More Information On This Product,

 Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FLASH Overview

The ROM-resident routines that the API manages are found on devices that do
not have enough RAM to allow for this functionality in a RAM routine. The type
of FLASH for which these routines are applicable is called split-gate FLASH
because of the type of technology used.

Split-gate FLASH has significant advantages:

• Faster programming time — It takes 30 to 40 µs to program each byte,
which translates to a little more than a quarter second of programming
time to program an entire 8-Kbyte array.

• Better endurance — This type of FLASH is specified to withstand at least
10,000 program/erase cycles. Older technologies provided only about
100 program/erase cycles.

• Simpler programming algorithm — The programming algorithm for split-
gate FLASH is a simple process of turning on high voltage, applying it to
the row to be programmed, then writing values to each byte to be
programmed. This differs from past technology which required an
iterative process of turning on high voltage and applying it to a page,
writing values to each byte in the page, checking all bytes for valid
values in a “margin” read condition, and then repeating the
program/verify process until all bytes are verified correctly.

Split-gate FLASH generally is programmed on a row basis and erased
on a page basis. Also, the entire array can be mass erased. A page
always contains two rows, but the size of the page can vary from one
device to another. A typical page size is 64 or 128 bytes. Before
reprogramming a byte in one row that is currently programmed with a
different value, the entire page must be erased and reprogrammed.
Refer to the applicable data sheet for the proper program and erase
procedure for this FLASH.

ROM-Resident Routines

The API manages four ROM-resident routines:

• GETBYTE — used to serially receive a byte

• RDVRRNG — used to read and verify a range of FLASH

• PRGRNGE — used to program a range of FLASH

• ERARNGE — used to erase a range of FLASH
2 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
ROM-Resident Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following ROM-resident routine is not managed by this API. For
information about this routine, refer to Using MC68HC908 On-Chip FLASH
Programming Routines, Freescale document order number AN1831/D.

DELNUS — a delay of n µs

ROM-resident routines have different numbers of parameters. Most of them
use a section of RAM to receive parameters or output results. Consequently,
usage of RAM must be done carefully to avoid interfering with these routines;
some sections of RAM can not be used to allocate variables.

ROM-resident routines are located in different sections of FLASH depending
on the MCU. Table 1 shows the absolute address of these routines for each
microcontroller discussed in this application note.

These routines use ROM-resident subroutines, which will not be covered in this
document. For a complete understanding of these ROM-resident routines,
refer to AN1831/D.

Table 1. Address of Routines

Routine MC68HC908GR8 MC68HC908KX8 MC68HC908JL3/JK3 MC68HC908JB8

GETBYTE 0x1C00 0x1000 0xFC00 0xFC00

RDVRRNG 0x1C03 0x1003 0xFC03 0xFC03

PRGRNGE 0x1C09 0x1009 0xFC09 0xFC09

ERARNGE 0x1C06 0x1006 0xFC06 0xFC06

DELNUS 0x1C0C 0x100C 0xFC0C 0xFC0C
On-Chip FLASH Programming API for CodeWarrior Software 3

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Defined Constants

Table 2 lists all constants used within the FLASH-programming API. Since the
FLASH-programming API serves a variety of microcontrollers, the constants
are device specific.

Virtual Registers

As mentioned before, ROM-resident routines use sections of RAM to receive
parameters and output results. Extra care is needed when handling these
sections. For this reason, virtual registers have been created. The FLASH-
programming API uses this location in RAM for registers to configure ROM-
resident routines. There are different ways of assuring these virtual registers
work properly. Two ways of doing this are described here:

• In the [MY_PROJECT].prm file included in the project, change RAM
start to address RAM + 76 bytes. (For example, in HC908JL3 RAM
starts at address 0x80. Change it to 0x80 + 76 = 0xCC.) Doing this
assures that the virtual registers will be untouched by RAM variables,
though they are still susceptible to modification by the stack. Another
problem is that the RAM size is reduced by 76 bytes.

• Place all variables manually. When declaring variables you can specify
the address at which you want to allocate them. Do not overlap any
variable with the virtual registers. This reduces the available RAM by 68
bytes.

Both of these methods reduce the size of available RAM. There are other ways
of ensuring the integrity of the virtual registers without compromising RAM size
(refer to the Techniques section).

Table 2. Constants

Constant Name Description 908GR8 908KX8 908JL3/JK3 908JB8

RAM Start address of RAM 0x40 0x40 0x80 0x40

COMMPORT Communication port PTA0 PTA0 PTB0 PTA0

FLBPR
FLASH block protect register

address
0xFF7E 0xFF7E 0xFE09 0xFE09

FLCR FLASH control register address 0xFE08 0xFE08 0xFE08 0xFE08

Get_Bit
Address of routine to get a bit

on the communication port
0xFED2 0xFECE 0xFF00 0xFF00
4 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
Coding Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The virtual registers and their descriptions are listed in Table 3.

Virtual register DATA is of variable length (from 1 to 64 bytes long), depending
on the range over which the function will actuate.

Coding Conventions

This application note follows the following coding conventions.

Table 3. Virtual Registers

Virtual
Register

Name Function Address

CTRLBYT
Used in erasing procedures for indicating a

single PAGE erase or MASS erase
RAM + 0x08

CPUSPD CPU speed passed as fop x 4 RAM + 0x09

LADDRH Last address of a range (high byte) RAM + 0x0A

LADDRL Last address of a range (low byte) RAM + 0x0B

DATA
Buffer that stores the data to be programmed or

receives the data read
RAM + 0x0C

Table 4. Coding Conventions

Structure Convention Example

Macros
All macros are written in all

UPPER CASE
#Define DATA_END 0xCC

Functions
The first letter of each word of the

function’s name is capitalized
Byte ReadByte (void)

Local variables
All local variables are in lower

case letters preceded by an
underscore

Byte _cancel_buttons.

Assembly
labels

All assembly labels are written in
all capital letters preceded by an
underscore

_RECEIVE_BYTE:
On-Chip FLASH Programming API for CodeWarrior Software 5

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Hardware Needed for Communication

The API functions that provide serial communication need external hardware to
couple with RS-232 standards. The hardware is very simple, and it is the same
as described in the monitor ROM section of the data sheet.

Figure 1 shows a schematic of the hardware for a MC68HC908JL3 where the
communication port is PTB0.

Figure 1. Communication Hardware

FLASH-Programming API

Before using API functions the user must provide the following information:

1. MCU used — The MCU used must be defined before including the API.
The definition must be one of the following:

#define MCU68HC908JL3

#define MCU68HC908KX8

#define MCU68HC908GR8

#define MCU68HC908JB

If no MCU is defined, the API will use the MCU68HC908JL3 as the default.

VDD

OSC1

OSC2

PTB3

PTB0

PTB1

PTB2

8

7
DB9

2

3

5

16

15

2

6

10

9

VDD

1 µF

MAX232

V+

V–

VDD

1 µF
+

1

2 3 4

56
74HC125

74HC125
10 kΩ

C1+

C1–

5

4

1 µF

C2+

C2–

+

3

1

1 µF
+ +

+
1 µF
6 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
FLASH-Programming API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2. Frequency of operation — The frequency of operation must be defined.
This is very important because the API functions use it. If this frequency
is defined incorrectly, the API functions won’t work. The frequency of
operation must be defined as the rounded product of four times the
actual internal operating frequency. So, if the internal operating
frequency is 1.2288 MHz, the value defined should be
5 (4 × 1.2288 = 4.9152 ≈ 5). The frequency of operation must be
defined as follows:

#define OSC 5

If no OSC is defined, the API will assign a frequency of operation equal to four
as the default (OSC = 4).

ReadByte The ReadByte function receives a byte serially through the communication port
and returns it to the function caller. This routine expects the same non-return-
to-zero (NRZ) communication protocol and baud rate that is used in monitor
mode1. The monitor uses a similar routine but unlike the monitor routine,
ReadByte only receives a character while the monitor routine also re-transmits
each character after it is received.

The communication port is different from one microcontroller to another.
However, function ReadByte automatically uses the communication port for the
microcontroller used. Table 2 provides the communication port for each
microcontroller.

1. The baud rate will be fOP/256 for all but the MC68HC908JB8. In this device, the bit rate for
this routine as well as for the monitor mode send/receive routines have been changed to
accommodate a “standard” fOP for this device considering it is a USB part. The bit rate for the
MC68HC908JB8 is fOP/313.

Table 5. ReadByte

Prototype Byte ReadByte (Void)

Parameters None

Entry Conditions None

Exit Conditions None

Return Value Byte read

Remarks

The program will enter an infinite loop until a byte is
received.

Communications at the MCU port pin use CMOS logic
levels while a PC serial port requires RS-232 voltage
levels. Therefore, an RS-232 level shifter device such
as the MAX232 is required to interface the MCU to a
PC serial port. Refer to Hardware Needed for
Communication.
On-Chip FLASH Programming API for CodeWarrior Software 7

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TransmitByte The TransmitByte function sends a byte through the communication port. This
function uses the same NRZ communication protocol and baud rate that is
used in monitor mode1.

The communication port is different from one microcontroller to another.
However, the function TransmitByte automatically chooses the communication
port for the microcontroller used. Table 2 provides the communication port for
each microcontroller.

1. Techniques can be used to avoid decreasing the available RAM. Refer to the Techniques
section.

Table 6. TransmitByte

Prototype Void TransmitByte (Byte _data)

Parameters _data: the byte to be transmitted

Entry Conditions None

Exit Conditions None

Return Value None

Remarks

TransmitByte will try to transmit the _data with no
handshake. If the receiver is not ready the transmitted
_data will be lost.

Communications at the MCU port pin use CMOS logic
levels while a PC serial port requires RS-232 voltage
levels. Therefore, an RS-232 level shifter device such
as the MAX232 is required to interface the MCU to a
PC serial port. Refer to Hardware Needed for
Communication.
8 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
FLASH-Programming API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TransmitRange TransmitRange is a variation of VerifyRange and ReadRange. The same
procedure is followed except instead of FLASH data overwriting RAM data,
FLASH data is transmitted out through the communication port. This routine
transmits with the NRZ communication protocol and baud rate that is used in
monitor mode1.

The communication port is different from one microcontroller to another.
However, the function TransmitRange automatically chooses the
communication port of the microcontroller. Table 2 provides the
communication port for each microcontroller.

1. Techniques can be used to avoid decreasing the available RAM. Refer to the Techniques
section.

Table 7. TransmitRange

Prototype Byte TransmitRange (Word *_ini, Byte _num)

Parameters
_ini: the absolute address of the first location in FLASH

to start transmitting
_num: number of bytes to transmit

Entry Conditions None

Exit Conditions The checksum is stored in _ini;

Return Value SUCCESS or FAIL

Remarks

_num must be less than or equal to 64
The communication is done in TTL values; A TTL to RS-

232 converter is needed in order to interact with a PC
serial port. Refer to Hardware Needed for
Communication.
On-Chip FLASH Programming API for CodeWarrior Software 9

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ProgramRange ProgramRange programs a range of FLASH memory with the contents of RAM.
This routine doesn’t verify whether the range to be programmed is already
blank. Programming new data to a location that is not blank is not legal. The
resulting value in the FLASH location after such an illegal programming attempt
will be incorrect or unreliable.

ProgramRangeX ProgramRangeX is the enhanced version of ProgramRange. This function
programs a range of FLASH memory with the contents of RAM. Before
programming, it verifies that the range to be programmed is blank. If the range
is not blank, the function doesn’t attempt to program it (maintaining the integrity
of the range) and returns an error code.

Table 8. ProgramRange

Prototype Void ProgramRange (Word *_ini, Byte _num)

Parameters
_ini: the absolute address of the first location in FLASH

to be programmed
_num: number of bytes to program

Entry Conditions DATA contains the data to be programmed

Exit Conditions None

Return value None

Remarks _num must be less than or equal to 64

Table 9. ProgramRangeX

Prototype Byte ProgramRangeX (Word *_ini, Byte _num)

Parameters
_ini: the absolute address of the first location in FLASH

to be programmed.
_num: number of bytes to program.

Entry Conditions DATA contains the data to be programmed.

Exit Conditions None

Return value SUCCESS or FAIL

Remarks _num must be less than or equal to 64
10 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
FLASH-Programming API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VerifyRange and
ReadRange

VerifyRange and ReadRange are names for the same function that either
verifies a range of FLASH memory against data in RAM or reads a range of
FLASH memory. When using this function, choose the name that most
accurately describes the purpose of the function.

This function compares a range of FLASH memory against a range (the same
length) of RAM. When FLASH data does not match RAM data, the RAM data
is replaced with FLASH data. If all bytes compared are equal then SUCCESS
is returned; otherwise FAIL is returned. This function also returns the checksum
of the data read. (The checksum is the LSB of the sum of all bytes in the entire
data collection.)

ErasePage ErasePage erases a page of FLASH. The length of a page depends on the
MCU. In most cases a page is 32 bytes long; however, on the
MCU68HC908JL3/JK3 a page is 64 bytes long.

Table 10. VerifyRange andReadRange

Prototype Byte VerifyRange (Word *_ini, Byte _num)
Byte ReadRange (Word *_ini, Byte _num)

Parameters
_ini: the absolute address of the first location in FLASH

to start reading/verifying
_num: number of bytes to read/verify

Entry Conditions DATA contains the data to be verified

Exit Conditions
DATA is overwritten with contents of FLASH
The checksum is stored in _ini;

Return value SUCCESS or FAIL

Remarks _num must be less than or equal to 64

Table 11. ErasePage

Prototype void ErasePage (Word *_page)

Parameters
_page: the absolute address of any of the locations

within the PAGE to be erased.

Entry Conditions None

Exit Conditions Interrupts are disabled.

Return value None

Remarks All bytes within that PAGE will be driven to 0xFF.
On-Chip FLASH Programming API for CodeWarrior Software 11

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ErasePageX ErasePageX is the enhanced version of ErasePage. It erases a PAGE of
FLASH.

EraseFlash EraseFlash erases the entire FLASH.

Table 12. ErasePageX

Prototype void ErasePageX (Word *_page)

Parameters
_page: the absolute address of any of the locations

within the PAGE to be erased.

Entry Conditions None

Exit Conditions None

Return value None

Remarks

All bytes within that PAGE will be driven to 0xFF.
Interrupts are disabled during the erasing of the FLASH,

but are restored to their original states before exiting
the function.

Table 13. EraseFlash

Prototype void EraseFlash (void)

Parameters None

Entry Conditions None

Exit Conditions None

Return value None

Remarks
All bytes will be driven to 0xFF. No code in FLASH will be

executed after this function has been called.
12 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
Techniques

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Techniques

ReadByte As mentioned above, the routine ReadByte enters an infinite loop if no byte is
received. There is a way to make ReadByte exit the infinite loop. The procedure
is as follows:

1. Clear a flag before calling ReadByte (a flag indicating the successful
reception of a byte.

2. Set up the timer to interrupt at a given time (the time to wait before
exiting ReadByte).

3. Call ReadByte()

4. If a byte is received, set the flag previously cleared.

5. If a byte is not received, the Timer ISR will execute. Inside the Timer ISR
verify the state of the flag. If it is cleared (no byte has been received),
two actions can be taken:

a. Change manually the PC stored in the stack (so when the ISR
returns, it returns out of function ReadByte).

b. Cause a software reset.

This technique has some disadvantages, including the time overhead needed
to verify the flag on each timer ISR.

Virtual Registers Virtual registers limit the available RAM. However these registers are only used
when FLASH-programming API is called. This means that most of the time
these registers are only wasting RAM space. A work-around for this problem
can be achieved as follows:

1. Define global variables through all RAM space (not reserving the virtual
registers bytes).

2. Define a section in FLASH memory 64 bytes long called
BACKUP_RAM. In this section no code will be allocated.

3. When the need of using the FLASH-programming API arises, before
doing anything do the following:

a. Push into the stack (this must be done in assembly) the first four
bytes of the virtual registers (from RAM+0x08 to RAM+0x0B).

b. Call API function ErasePage() to erase the section BACKUP_RAM.
c. Call API function ProgramRange() to backup the DATA virtual

register (from RAM+0x0C to RAM+0x4C).
d. Use the FLASH-programming API for whatever needed.
e. Before ending call API function ReadFlash() to restore the data from

BACKUP_RAM to RAM.
f. Finally, pop the first four bytes of the virtual registers (from

RAM+0x08 to RAM+0x0B).
On-Chip FLASH Programming API for CodeWarrior Software 13

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Typical API Calls

The following software performs typical FLASH-programming API calls:

/*==*
 *
 * Copyright (c) 2002, * Freescale Application Note
 *
 * File name : flash_test.c
 * Author : Mauricio Capistran-Garza
 * Department : Guadalajara - SPS
 *
 * Description : This is a sample program that shows how
 * ROM-resident routines can be used through
 * the use of a simple C-language API
 *
 * History :
 *
 ==/

/**
 INCLUDES
 **/
//#include "jl3.h"
#include <MC68HC908JL3.h> // Include Peripheral declarations
#include <hidef.h>
#include <stdtypes.h>
#include "flash_api.h"

/**
 DEFINES
 **/
#define MY_INFO_ADDRESS 0xFB00
#define MY_INFO_SIZE 8
#define MY_TRANSMISION_ADDRESS 0xFB08
#define MY_TRANSMISION_SIZE 29
#define FLASH_TEST_ADDRESS 0xFB40
#define DATA_START 0x008C
#define DATA_END 0x00CC

/***
 TABLES
 ***/
#pragma CONST_SEG MY_INFO
volatile const Byte TABLE1[8] = {'M','o','t','o','r','o','l','a'};

#pragma CONST_SEG MY_TRANSMISION
volatile const Byte TABLE2[29] = {
'T','r','a','n','s','m','i','t',' ','R','a','n','g','e',' ',
'w','a','s',' ','s','u','c','c','e','s','s','f','u','l' };

#pragma CONST_SEG DEFAULT

/**
 ISR
 **/
/* These ISR are written to show a possible work-around to
 avoid routine ReadByte from entering into an infinite loop.
 */
14 On-Chip FLASH Programming API for CodeWarrior Software
For More Information On This Product,

 Go to: www.freescale.com

AN2504/D
Typical API Calls

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/*
interrupt 6 void Timer(void) {

 TASC=TASC;
 TASC &= TOF; // If a timer interrupt happens
 __asm swi; // call the Software Interrupt
}

interrupt 2 void SWI(void) { // Software Interrupt ISR
 DisableInterrupts; // may include user-supplied code.
 while (-1) { // The stack can be reset and
 TransmitByte ('X'); // the whole program started again.
 }
}
*/
/**
 MAIN
 **/
void main(void) {
 Byte temp;
 Byte size;
 Word address;

/* System configuration */

 CONFIG2 = 0x80; /* 10000000b;
 ||||||||_________ Reserved
 |||||____________ LVIT
 ||| _____________ Reserved
 |________________ IRQ Internal Pull-Up */

 CONFIG1 = 0x11; /* 00010001b;
 ||||||||_________ COP disabled
 |||||||__________ STOP as illegal opcode
 ||||||___________ Short Stop Recovery Bit
 |||||____________ Reserved
 ||||_____________ LVI enabled
 |||______________ Reserved
 |________________ COP reset period */

/* Configure the timer if wanted */

/*
 TMODH = 0x4C; // Interrupt every 16 ms
 TMODL = 0xCD;

 TSC = 0x40; // 01000000b;
 // ||||||||_________ Timer Prescaled by 1
 // ||||| Int Bus Clk = 1.2288MHz
 // ||||| 1229 counts,
 // ||||| error = 0.58 sec/hour
 // |||||____________ Unimplemented
 // ||||_____________ Reset Bit = 0 -> No effect
 // |||______________ Stop Bit: Start Counter
 // ||_______________ TIM Overflow ints enabled
 // |________________ TIM Overflow Flag
*/
 temp = TABLE1[0];
 size = TABLE2[0];
On-Chip FLASH Programming API for CodeWarrior Software 15

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/*
 * Receive one byte and echo it. This shows a typical usage
 * of API functions GetByte and Transmit Byte.
 * This functions can not be debugged with the In-Circuit
 * Debugger (ICD) since the Communication Port is used by the ICD.
 */
 temp = ReadByte();
 TransmitByte(temp);
 DATA(0) = temp; // this is a way of accessing DATA,
 // however it is very space-consuming
 // when it gets translated into assembly

 size = 1; // One byte is ready to be programmed

/*
 * Erase a PAGE of flash named FLASH_TEST. Notice how Interrupts
 * will be automatically disabled.
 */
 address = FLASH_TEST_ADDRESS;
 EnableInterrupts;
 ErasePage(&address);

/*
 * Program FLASH_TEST with the received Byte.
 */
 ProgramRange(&address, size);

/*
 * Verify that the programming was successful.
 */
 temp = VerifyRange(&address, size); // Now temp will be set to
 // SUCCESS or FAIL, and address
 // will be set with the checksum
 // the data verified
 if (temp == SUCCESS) {
 temp = temp + 1; // Do anything wanted
 }

/*
 * Read a section in FLASH named MY_INFO. In this section
 * it is stored the message "Freescale". Notice how
 * the DATA (RAM_START + 0x0C) will be replaced with FLASH data.
*/
 address = MY_INFO_ADDRESS;
 size = MY_INFO_SIZE;
 temp = ReadRange(&address, size);

/*
 * Transmit a range of FLASH named MY_TRANSMISION. In this
 * sections it's stored the message "TransmitRange was successful".
 * Notice how the DATA (RAM_START + 0x0C) will NOT be replaced
 * with the data transmitted.
 */
 address = MY_TRANSMISION_ADDRESS;
 size = MY_TRANSMISION_SIZE;
 temp = TransmitRange(&address, size);

/*
 * Fill out manually 60 bytes of DATA (RAM_START + 0x0C).
 */

/* for (i=0; i<64; i++) { // This is a way of filling out DATA
 DATA_STR(i) = 'm'; // but it is very space-consuming
 } // Next, another way to do it:
*/
16 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 __asm LDHX #DATA_START; // Where DATA begins
 __asm LDA #122;
 __asm _FILL_RAM: STA ,X; // save the received byte
 __asm INCX; // point to next location in RAM
 __asm DECA;
 __asm CPX #DATA_END; // if DATA_END reached exit loop
 __asm BNE _FILL_RAM;

/*
 * Try to program again the section FLASH_TEST with ProgramRangeX
 * It is going to fail since this section is not blank.
 */
 address = FLASH_TEST_ADDRESS;
 size = 10;
 temp = ProgramRangeX(&address, size);
 if (temp == FAIL) {
 temp = temp + 1; // Do anything wanted
 }

/*
 * Erase section FLASH_TEST. Notice how interrupts won't be disabled.
 */
 EnableInterrupts;
 ErasePageX(&address);

/*
 * Program section FLASH_TEST with ProgramRangeX.
 * This time ProgramRangeX is going to succeed.
 */
 temp = ProgramRangeX(&address, size);
 if (temp == FAIL) {
 temp = temp + 1; // Do anything wanted
 }

/*
 * Finally Erase the entire FLASH.
 */
 EraseFlash();
 for (;;);
}

API Source Code
/*==*
 *
 * Copyright (c) 2002,
 * Freescale Application Note
 *
 * File name : MCU_constants.h
 * Author : Mauricio Capistran-Garza
 * Department : Guadalajara - SPS
 *
 * Description : It contains the defines needed for all constants
 * used in flash_api.c for the following MCUs:
 * MC68HC908GR8,
 * MC68HC908KX8,
 * MC68HC908JL3,
 * MC68HC908JK3,
 * MC68HC908JB8.
 *
 * History :
 *
 ==/
On-Chip FLASH Programming API for CodeWarrior Software 17

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#ifndef __MCU_CONSTANTS_H__
#define __MCU_CONSTANTS_H__

#include <MC68HC908JL3.h>

/* API Configuration */

#define MASSBIT 0x06 // CTRLBYT MASS ERASE BIT = 6
#ifndef FLCR
 #define FLCR 0xFE08 // FLASH CONTROL REGISTER
#endif

#ifdef MC68HC908GR8
 /* Communication Port Constants */
 #define COMMPORT PTA
 #define COMMPORT_DIR DDRA
 #define COMMPORT_ADDR 0x00

 /* FLASH Constants */
// #define FLASH_START 0xEC00
 #define PAGE_SIZE 32

 /* RAM Constants */
 #define RAMSTART 0x40
 #define CTRLBYT (*(volatile unsigned char*)(0x48))
 #define CPUSPD (*(volatile unsigned char*)(0x49))
 #define LADDRH (*(volatile unsigned char*)(0x4A))
 #define LADDRL (*(volatile unsigned char*)(0x4B))
 #define DATA(X) (*(volatile unsigned char*)(0x4C + X))
 /* ROM-resident Routines Constants */
 #define GETBYTE() {__asm jsr 0x1C00;}
 #define RDVRRNG() {__asm jsr 0x1C03;}
 #define ERARNGE() {__asm jsr 0x1D06;}
 #define PRGRNGE() {__asm jsr 0x1C09;}
 #define DELNUS() {__asm jsr 0x1D0C;}
 #define GET_BIT() {__asm jsr 0xFED2;}
 #define PUT_BYTE() {__asm jsr 0xFEAE;}
#endif // MC68HC908GR8

#ifdef MC68HC908KX8
 /* Communication Port Constants */
 #define COMMPORT PTA
 #define COMMPORT_DIR DDRA
 #define COMMPORT_ADDR 0x00

 /* FLASH Constants */
// #define FLASH_START 0xEC00
 #define PAGE_SIZE 32

 /* RAM Constants */
 #define RAMSTART 0x40
 #define CTRLBYT (*(volatile unsigned char*)(0x48))
 #define CPUSPD (*(volatile unsigned char*)(0x49))
 #define LADDRH (*(volatile unsigned char*)(0x4A))
 #define LADDRL (*(volatile unsigned char*)(0x4B))
 #define DATA(X) (*(volatile unsigned char*)(0x4C + X))
18 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 /* ROM-resident Routines Constants */
 #define GETBYTE() {__asm jsr 0x1000;}
 #define RDVRRNG() {__asm jsr 0x1003;}
 #define ERARNGE() {__asm jsr 0x1006;}
 #define PRGRNGE() {__asm jsr 0x1009;}
 #define DELNUS() {__asm jsr 0x100C;}
 #define GET_BIT() {__asm jsr 0xFECE;}
 #define PUT_BYTE() {__asm jsr 0xFEAA;}
#endif // MC68HC908KX8

#ifdef MC68HC908JL3 // || MC68HC908JK3
 /* Communication Port Constants */
 #define COMMPORT PTB
 #define COMMPORT_DIR DDRB
 #define COMMPORT_ADDR 0x01

 /* FLASH Constants */
 #define FLASH_START 0xEC00
 #define PAGE_SIZE 32

 /* RAM Constants */
 #define RAMSTART 0x80
 #define CTRLBYT (*(volatile unsigned char*)(0x88))
 #define CPUSPD (*(volatile unsigned char*)(0x89))
 #define LADDRH (*(volatile unsigned char*)(0x8A))
 #define LADDRL (*(volatile unsigned char*)(0x8B))
 #define DATA(X) (*(volatile unsigned char*)(0x8C + X))

 /* ROM-resident Routines Constants */
 #define GETBYTE() {__asm jsr 0xFC00;}
 #define RDVRRNG() {__asm jsr 0xFC03;}
 #define ERARNGE() {__asm jsr 0xFC06;}
 #define PRGRNGE() {__asm jsr 0xFC09;}
 #define DELNUS() {__asm jsr 0xFC0C;}
 #define GET_BIT() {__asm jsr 0xFF00;}
 #define PUT_BYTE() {__asm jsr 0xFED0;}
#endif // MC68HC908JL3 || MC68HC908JK3

#ifdef MC68HC908JB8
 /* Communication Port Constants */
 #define COMMPORT PTA
 #define COMMPORT_DIR DDRA
 #define COMMPORT_ADDR 0x00

 /* FLASH Constants */
// #define FLASH_START 0xEC00
 #define PAGE_SIZE 64

 /* RAM Constants */
 #define RAMSTART 0x40
 #define CTRLBYT (*(volatile unsigned char*)(0x48))
 #define CPUSPD (*(volatile unsigned char*)(0x49))
 #define LADDRH (*(volatile unsigned char*)(0x4A))
 #define LADDRL (*(volatile unsigned char*)(0x4B))
 #define DATA(X) (*(volatile unsigned char*)(0x4C + X))

 /* ROM-resident Routines Constants */
 #define GETBYTE() {__asm jsr 0xFC00;}
 #define RDVRRNG() {__asm jsr 0xFC03;}
 #define ERARNGE() {__asm jsr 0xFC06;}
 #define PRGRNGE() {__asm jsr 0xFC09;}
 #define DELNUS() {__asm jsr 0xFC0C;}
 #define GET_BIT() {__asm jsr 0xFF00;}
 #define PUT_BYTE() {__asm jsr 0xFED5;}
#endif // MC68HC908JB8

#endif //__MCU_CONSTANTS_H__
On-Chip FLASH Programming API for CodeWarrior Software 19

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/*==*
 *
 * Copyright (c) 2002,
 * Freescale Application Note
 *
 * File name : flash_api.h
 * Author : Mauricio Capistran-Garza
 * Department : Guadalajara - SPS
 *
 * Description : It contains all API function declarations.
 *
 * History :
 *
 ==/

#ifndef __FLASH_API_H__
#define __FLASH_API_H__

/**
 DEFINES
 **/
/* MCU used */
#ifndef MC68HC908JL3
 #ifndef MC68HC908GR8
 #ifndef MC68HC908KX8
 #ifndef MC68HC908JB8
 #define MC68HC908JL3 /* Default MCU used */
 #endif
 #endif
 #endif
#endif

/* Frequency of operation */
#ifndef OSC
 #define OSC 0x04 /* Default freqnency op = 1Mhz */
#endif

#define ReadRange VerifyRange

#define FAIL 0x00
#define SUCCESS 0x01

#include "MCU_constants.h" // This file contains the defines
 // for all the MCUHC908 used
 // in this API.

/**
 FUNCTION PROTOTYPES
 **/

/**
 * ReadByte: It reads a byte from the communication port
 * and returns it.
 *
 * Parameters: None.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: The byte received.
 *
 * Remarks: The function will not exit until a byte
 * is received.
 */

Byte ReadByte(void);
20 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * TransmitByte: It sends a byte out the communication port.
 *
 * Parameters: _data: the byte to be sent.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: The byte received.
 *
 * Remarks: The function will not exit until a byte
 * is received.
 */

void TransmitByte(Byte _data);

/**
 * TransmitRange: It reads a range of FLASH memory and sends
 * it out the communication port
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: number of bytes to transmit.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: The checksum is stored in _ini;
 *
 * Return: SUCCESS or FAIL
 *
 * Remarks: _num must be less to or equal to 64
 */

Byte TransmitRange(Word *_ini, Byte _num);

/**
 * ProgramRange: Programs a range of FLASH.
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: length of the range.
 *
 * Entry Conditions: DATA contains the data to be programmed
 *
 * Exit Conditions: None.
 *
 * Return: None.
 *
 * Remarks: _num must be less to or equal to 64
 */

void ProgramRange(Word *_ini, Byte _num);
On-Chip FLASH Programming API for CodeWarrior Software 21

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * ProgramRangeX: Programs a range of FLASH after verifying
 * the range is blank. If it isn't blank it
 * doesn't programs and returns FAIL.
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: length of the range.
 *
 * Entry Conditions: DATA contains the data to be programmed
 *
 * Exit Conditions: None.
 *
 * Return: SUCCESS or FAIL.
 *
 * Remarks: _num must be less to or equal to 64
 */

 Byte ProgramRangeX(Word *_ini, Byte _num);

/**
 * VerifyRange: Verifies a range of FLASH against the data
 * contained in DATA. It can also be used to
 * read a range of FLASH into RAM.
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: length of the range.
 *
 * Entry Conditions: DATA contains the data to be verified.
 *
 * Exit Conditions: DATA is overwritten with contents of FLASH.
 * The checksum is stored in _ini;
 *
 * Return: The byte received.
 *
 * Remarks: _num must be less to or equal to 64
 */

Byte VerifyRange(Word *_ini, Byte _num);

/**
 * ErasePage: It erases a PAGE of FLASH
 *
 * Parameters: *_page: pointer to any address within
 * * the PAGE to be erased.
 * Entry Conditions: None.
 *
 * Exit Conditions: Interrupts are disabled.
 *
 * Return: None.
 *
 * Remarks: All bytes within that PAGE will be driven
 * to 0xFF
 */

void ErasePage(Word *_page);
22 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * ErasePageX: It erases a PAGE of FLASH but leaves the state
 * of the interrupts as it was before calling it.
 *
 * Parameters: *_page: pointer to any address within
 * the PAGE to be erased.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: None.
 *
 * Remarks: All bytes within that PAGE will be driven
 * to 0xFF.
 * Interrupts are disabled during the erasing
 * of the flash, but are restored to its
 * original state before exiting the function.
 */

void ErasePageX (Word *_page);

/**
 * EraseFlash: It erases the entire FLASH.
 *
 * Parameters: None.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: None.
 *
 * Remarks: All bytes will be driven to 0xFF.
 * No code in FLASH will be executed after
 * this function has been called.
 */

void EraseFlash(void);

#endif // __FLASH_API_H__

/*==*
 *
 * Copyright (c) 2002,
 * Freescale Application Note
 *
 * File name : flash_api.c
 * Author : Mauricio Capistran-Garza
 * Department : Guadalajara - SPS
 *
 * Description : This files contains the API functions definition.
 *
 * History :
 *
 ==/

#include <stdtypes.h>
#include "flash_api.h"
On-Chip FLASH Programming API for CodeWarrior Software 23

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * ReadByte: It reads a byte from the communication port
 * and returns it.
 *
 * Parameters: None.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: The byte received.
 *
 * Remarks: The function will not exit until a byte
 * is received.
 */

Byte ReadByte(void) {
 Byte _backup1, _backup2;
 Byte _data;

 _backup1 = COMMPORT; // Backup port values.
 _backup2 = COMMPORT_DIR;
 COMMPORT_DIR &= 0xFE; // Configure COMMPORT as input.
 COMMPORT &= 0xFE;
 GETBYTE(); // Call ROM-resident routine.
 __asm sta _data;
 COMMPORT = _backup1; // Restore port values.
 COMMPORT_DIR = _backup2;
 return _data;
}

/**
 * TransmitByte: It sends a byte out the communication port.
 *
 * Parameters: _data: the byte to be sent.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: The byte received.
 *
 * Remarks: The function will not exit until a byte
 * is received.
 */

void TransmitByte(Byte _data) {
 Byte _backup1, _backup2;

 _backup1 = COMMPORT; // Backup port values.
 _backup2 = COMMPORT_DIR;
 COMMPORT_DIR &= 0xFE; // Configure COMMPORT as input.
 COMMPORT &= 0xFE;
 __asm LDA _data;
 PUT_BYTE(); // Call ROM-resident routine.
 COMMPORT = _backup1; // Restore port values.
 COMMPORT_DIR = _backup2;
 return;
}

24 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * TransmitRange: It reads a range of FLASH memory and sends
 * it out the communication port
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: number of bytes to transmit.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: The checksum is stored in _ini;
 *
 * Return: SUCCESS or FAIL
 *
 * Remarks: _num must be less to or equal to 64
 */

Byte TransmitRange(Word *_ini, Byte _num) {
 Byte _backup1, _backup2, _backup3;
 Byte _status = 0;
 Word _first;

 _first = *_ini;
 _backup1 = COMMPORT; // Backup port values.
 _backup2 = COMMPORT_DIR;
 COMMPORT &= 0xFE; // Configure COMMPORT as input.
 COMMPORT_DIR &= 0xFE;

 // Define Last Address High & Low
 LADDRH = ((_first + _num - 1) & 0xFF00) >> 8;
 LADDRL = ((_first + _num - 1) & 0x00FF);

 __asm ldhx _first; // Define first address.
 __asm lda #0x00; // Configure RDVRRNG() to transmit.
 RDVRRNG(); // Call ROM-resident routine.
 __asm sta _backup3; // Store checksum.
 __asm clra;
 __asm adc #0;
 __asm sta _status; // Store status.
 *_ini = _backup3;
 COMMPORT = _backup1; // Restore port values.
 COMMPORT_DIR = _backup2;
 return _status;
}

On-Chip FLASH Programming API for CodeWarrior Software 25

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * ProgramRange: Programs a range of FLASH.
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: length of the range.
 *
 * Entry Conditions: DATA contains the data to be programmed
 *
 * Exit Conditions: None.
 *
 * Return: None.
 *
 * Remarks: _num must be less to or equal to 64
 */

void ProgramRange(Word *_ini, Byte _num) {
 Word _first;

 _first = *_ini;
 FLBPR = 0xFF; // Disables write protection.
 CPUSPD = OSC; // Set Clock Bus Operation speed.

 // Define Last Address High & Low
 LADDRH = ((_first + _num - 1) & 0xFF00) >> 8;
 LADDRL = ((_first + _num - 1) & 0x00FF);

 __asm ldhx _first; // Define first address.
 PRGRNGE(); // Call ROM-resident routine.
 FLBPR = 0x00; // Enables write protection.
 return;
}

26 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * ProgramRangeX: Programs a range of FLASH after verifying
 * the range is blank. If it isn't blank it
 * doesn't programs and returns FAIL.
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: length of the range.
 *
 * Entry Conditions: DATA contains the data to be programmed
 *
 * Exit Conditions: None.
 *
 * Return: SUCCESS or FAIL.
 *
 * Remarks: _num must be less to or equal to 64
 */

Byte ProgramRangeX(Word *_ini, Byte _num) {
 Byte _test;
 Byte _i;
 Word _first;

 for (_i=0; _i < _num; _i++) {
 _test = (*(Byte*)(*_ini + _i));
 if (_test != 0xFF) {
 return FAIL;
 }
 }
 _first = *_ini;
 FLBPR = 0xFF; // Disables write protection.
 CPUSPD = OSC; // Set Clock Bus Operation speed.

 // Define Last Address High & Low
 LADDRH = ((_first + _num - 1) & 0xFF00) >> 8;
 LADDRL = ((_first + _num - 1) & 0x00FF);

 __asm ldhx _first; // Define first address.
 PRGRNGE(); // Call ROM-resident routine.
 FLBPR = 0x00; // Enables write protection.
 return SUCCESS;
}

On-Chip FLASH Programming API for CodeWarrior Software 27

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * VerifyRange: Verifies a range of FLASH against the data
 * contained in DATA. It can also be used to
 * read a range of FLASH into RAM.
 *
 * Parameters: _*ini: pointer to the starting address
 * of the range.
 * _num: length of the range.
 *
 * Entry Conditions: DATA contains the data to be verified.
 *
 * Exit Conditions: DATA is overwritten with contents of FLASH.
 * The checksum is stored in _ini;
 *
 * Return: The byte received.
 *
 * Remarks: _num must be less to or equal to 64
 */

Byte VerifyRange(Word *_ini, Byte _num) {
 Byte _backup1;
 Byte _status = 0;
 Word _first;

 _first = *_ini;

 // Define Last Address High & Low
 LADDRH = ((_first + _num - 1) & 0xFF00) >> 8;
 LADDRL = ((_first + _num - 1) & 0x00FF);

 __asm ldhx _first; // Define first address.
 __asm lda #0x01; // Config RDVRRNG() to store in RAM.
 RDVRRNG(); // Call ROM-resident routine.
 __asm sta _backup1; // Store checksum.
 __asm clra;
 __asm adc #0;
 __asm sta _status; // Store status.
 *_ini = _backup1;
 return _status;
}

28 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * ErasePage: It erases a PAGE of FLASH
 *
 * Parameters: *_page: pointer to any address within
 * the PAGE to be erased.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: Interrupts are disabled.
 *
 * Return: None.
 *
 * Remarks: All bytes within that PAGE will be driven
 * to 0xFF
 */

void ErasePage(Word *_page) {
 Word _address;

 _address = *_page;
 FLBPR = 0xFF; // Enables erase/write protection.
 CPUSPD = OSC; // Set Clock Bus Operation speed.
 CTRLBYT &= 0xBF; // Clear bit 6 to page erase mode.
 __asm ldhx _address; // Set the page to be erased.
 ERARNGE(); // Call ROM-resident routine.
 return;
}

/**
 * ErasePageX: It erases a PAGE of FLASH but leaves the state
 * of the interrupts as it was before calling it.
 *
 * Parameters: *_page: pointer to any address within
 * the PAGE to be erased.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: None.
 *
 * Remarks: All bytes within that PAGE will be driven
 * to 0xFF.
 * Interrupts are disabled during the erasing
 * of the flash, but are restored to its
 * original state before exiting the function.
 */

void ErasePageX (Word *_page) {
 Byte _backup1;
 Word _address;

 __asm tpa;
 __asm sta _backup1; // Backup Condition Code Register
 _address = *_page;
 FLBPR = 0xFF; // Enables erase/write protection.
 CPUSPD = OSC; // Set Clock Bus Operation speed.
 CTRLBYT &= 0xBF; // Clear bit 6 to page erase mode.
 __asm ldhx _address; // Set the page to be erased.
 ERARNGE(); // Call ROM-resident routine.
 if ((_backup1 & 0x80) != 0x80) { // Restore interrupts state.
 __asm CLI;
 }
 return;
}

On-Chip FLASH Programming API for CodeWarrior Software 29

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
 * EraseFlash: It erases the entire FLASH.
 *
 * Parameters: None.
 *
 * Entry Conditions: None.
 *
 * Exit Conditions: None.
 *
 * Return: None.
 *
 * Remarks: All bytes will be driven to 0xFF.
 * No code in FLASH will be executed after
 * this function has been called.
 */

void EraseFlash(void) {
 FLBPR = 0xFF; // Enables erase/write protection.
 CPUSPD = OSC; // Set Clock Bus Operation speed.
 CTRLBYT |= 0x40; // Set bit 6 to flash erase mode.
 ERARNGE(); // Call ROM-resident routine.
}

30 On-Chip FLASH Programming API for CodeWarrior Software

For More Information On This Product,
 Go to: www.freescale.com

AN2504/D
API Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

On-Chip FLASH Programming API for CodeWarrior Software 31

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2504/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	Introduction
	FLASH Overview
	ROM-Resident Routines
	Defined Constants
	Virtual Registers
	Coding Conventions
	Hardware Needed for Communication
	FLASH-Programming API
	ReadByte
	TransmitByte
	TransmitRange
	ProgramRange
	ProgramRangeX
	VerifyRange and ReadRange
	ErasePage
	ErasePageX
	EraseFlash

	Techniques
	ReadByte
	Virtual Registers

	Typical API Calls
	API Source Code

