

Application Note

AN2530/D Rev. 0, 5/2003

Standard Space Vector Modulation with Dead-Time Correction TPU Function Set (svmStdDt)

By Milan Brejl, Ph.D.

Functional Overview

The Standard Space Vector Modulation with Dead-Time Correction TPU function set (svmStdDt) extends the functionality of the Standard Space Vector Modulation TPU function set (svmStd) by the dead-time correction technique. Apart from this the functionality is the same in all aspects.

Freescale Semiconductor, Inc.

The dead-time correction technique requires knowledge of the instantaneous direction of phase currents. In the case of positive phase current the top channel high-time is equal to the calculated high-time and the bottom channel has to control the dead-time. In the case of negative phase current the bottom channel low-time is equal to the calculated high-time and the top channel has to control the dead-time. See Figure 1.

Figure 1. Dead-Time Correction Technique

Freescale Semiconductor, Inc.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

For More Information On This Product, Go to: www.freescale.com

AN2530/D

The function set consists of 5 TPU functions:

- Standard Space Vector Modulation with Dead-Time Correction Top (svmStdDt_top)
- Standard Space Vector Modulation with Dead-Time Correction Bottom (svmStdDt_bottom)
- Synchronization signal for Standard Space Vector Modulation with Dead-Time Correction (svmStdDt_sync)
- Resolver Reference Signal for Standard Space Vector Modulation with Dead-Time Correction (svmStdDt_res)
- Fault Input for Standard Space Vector Modulation with Dead-Time Correction (svmStdDt_fault)

The svmStdDt_top and svmStdDt_bottom TPU functions work together to generate a 6-channel 3-phase center-aligned PWM signal with dead-time between the top and bottom channels. The Synchronization Signal for svmStdDt function can be used to generate one or more adjustable signals for a wide range of uses, that are synchronized to the PWM, and track changes in the PWM period. The Resolver Reference Signal for svmStdDt function can be used to generate one or more 30% duty-cycle adjustable signals that are also synchronized to the PWM. The Fault Input for svmStdDt function is a TPU input function that sets all PWM outputs low when the input signal goes low. See **Figure 2**.

Figure 2. Signals generated by svmStdDt TPU function set

Semiconductor, Inc

reescale

Function Set Configuration

None of the TPU functions in the Standard Space Vector Modulation with Dead-Time Correction TPU function set can be used separately. The svmStdDt top and svmStdDt bottom functions have to be used together. The svmStdDt top is used on 3 channels, the svmStdDt bottom on a further 3 channels, and within each phase, the function svmStdDt_top has to be assigned on a lower TPU channel than the function svmStdDt bottom. This is illustrated in the examples in Table 2 and Table 3. One or more channels running Synchronization Signal for svmStdDt as well as Resolver Reference Signals for svmStdDt functions can be added to the svmStdDt top and svmStdDt bottom functions. They can run with different settings on each channel. The function Fault Input for svmStdDt can also be added to the svmStdDt top and svmStdDt bottom functions. It is recommended to use it on channel 15, and to set the hardware option that disables all TPU output pins when the channel 15 input signal is low (DTPU bit = 1). This ensures that the hardware reacts quickly to a pin fault state. Note that it is not only the PWM channels, but all TPU output channels, including the synchronization signals, that are disabled in this configuration.

 Table 1 shows the configuration options and restrictions.

TPU function	Optional/ Mandatory	How many channels	Assignable channels							
svmStdDt_top	mandatory	3	any 3 channels, within each phase a lower TPU channel than the same phase svmStdDt_bottom							
svmStdDt_bottom	mandatory	3	any 3 channels, within each phase a higher TPU channel than the same phase svmStdDt_top							
svmStdDt_sync	optional	1 or more	any channels							
svmStdDt_res	optional	1 or more	any channels							
svmStdDt_fault	optional	1	any, recommended is 15 and DTPU bit set							

Table 1. svmStdDt TPU function set configuration options and
restrictions

 Table 2 and Table 3 show two examples of configuration.

Table 2	2. Example	of configuration
---------	------------	------------------

Channel	TPU function	Priority
0	svmStdDt_top	high

AN2530/D

Channel	TPU function	Priority
1	svmStdDt_bottom	high
2	svmStdDt_top	high
3	svmStdDt_bottom	high
4	svmStdDt_top	high
5	svmStdDt_bottom	high
10	svmStdDt_sync	low
15	svmStdDt_fault	high

Table 2. Example of configuration

Table	3.	Exam	ple	of	configuration
Table	υ.	LAUIN	pic	U 1	configuration

Channel	TPU function	Priority
0	svmStdDt_top	high
1	svmStdDt_top	high
2	svmStdDt_top	high
3	svmStdDt_bottom	high
4	svmStdDt_bottom	high
5	svmStdDt_bottom	high
10	svmStdDt_sync	low
11	svmStdDt_res	low
15	svmStdDt_fault	high

Table 4 shows the TPU function code sizes.

Table 4. TPU function code sizes

TPU function	Code size
svmStdDt_top	26 μ instructions + 8 entries = 34 long words
svmStdDt_bottom	196 μ instructions + 8 entries = 204 long words
svmStdDt_sync	26 μ instructions + 8 entries = 34 long words
svmStdDt_res	38 μ instructions + 8 entries = 46 long words
svmStdDt_fault	9 μ instructions + 8 entries = 17 long words

Configuration Order

The CPU configures the TPU as follows.

- 1. Disables the channels by clearing the two channel priority bits on each channel used (not necessary after reset).
- 2. Selects the channel functions on all used channels by writing the function numbers to the channel function select bits.
- 3. Initializes function parameters. The parameters *T*, *prescaler*, *DT*, *MPW*, *SQRT3* and *sync_presc_addr* must be set before initialization. If an

svmStdDt_sync channel or an svmStdDt_res channel is used, then also its parameters must be set before initialization.

- Issues an HSR (Host Service Request) type %10 to one of the svmStdDt_bottom channels to initialize all PWM channels. Issues an HSR type %10 to the svmStdDt_sync channels, svmStdDt_res channels and svmStdDt_fault channel, if used.
- 5. Enables servicing by assigning high, middle or low priority to the channel priority bits. All PWM channels must be assigned the same priority to ensure correct operation. The CPU must ensure that the svmStdDt_sync or svmStdDt_res channels are initialized after the initialization of PWM channels:
 - assign a priority to the PWM channels to enable their initialization
 - if a Synchronization Signal or a Resolver Reference Signal channel is used, wait until the HSR bits are cleared to indicate that initialization of the PWM channels has completed and
 - assign a priority to the svmStdDt_sync or svmStdDt_res channels to enable their initialization
- **NOTE:** A CPU routine that configures the TPU can be generated automatically using the MPC500_Quick_Start Graphical Configuration Tool.

Detailed Function Description

Standard Space Vector Modulation with Dead-Time Correction – Top (svmStdDt_top) and Standard Space Vector Modulation with Dead-Time Correction – Bottom (svmStdDt_bottom) The svmStdDt_top and svmStdDt_bottom TPU functions work together to generate a 6-channel, 3-phase PWM signal, with dead-time between the top and bottom channels. In order to charge the bootstrap transistors, the PWM signals start to run 1.6ms after their initialization (at 20MHz TCR1 clock). The functions generate signals corresponding to Reference Voltage Vector Amplitude of 0 (50% duty-cycle) until the first reloaded values are processed.

The CPU controls the PWM output by setting the TPU parameters. The Stator Reference Voltage Vector components $u_{\hat{a}}$ and $u_{\hat{a}}$ have to be adjusted during run time. The PWM period *T* and the *prescaler* – the number of PWM periods per reload of new values – are also read at each reload, so these parameters can be changed during run time. Conversely, dead-time (*DT*) and minimum pulse width (*MPW*) are not supposed to be changed during run time. The phase currents *currentA*, *currentB* and *currentC* are read by the TPU asynchronously to the PWM parameters reload. They are read in the last part of edge-time calculation to reflect the latest state of the phase currents. The CPU notifies the TPU that the new reload values are prepared by setting the LD_OK parameter. The TPU notifies the CPU that the reload values have been read and new values can be written by clearing the LD_OK parameter.

The TPU writes the parameter Sector, which indicates the current Stator Reference Voltage Vector position in sector 1 to 6.

The following figures show the input Stator Reference Voltage Vector components $u_{\hat{a}}$ and $u_{\hat{a}}$, corresponding sectors and output PWM signal duty cycle ratios:

Figure 3. Standard Space Vector Modulation with Dead-Time Correction Technique

The following equations describe how the Space Vector Modulation PWM signal high-times ht_A , ht_B , ht_C and transition times $t_{low-high}$ and $t_{high-low}$ of each channel are calculated:

$$U_{\beta} = T \cdot u_{\beta}$$
$$U_{\alpha} = T \cdot u_{\alpha}$$
$$X = U_{\beta}$$
$$Y = \frac{U_{\beta} + U_{\alpha}\sqrt{3}}{2}$$
$$Z = \frac{U_{\beta} - U_{\alpha}\sqrt{3}}{2}$$

		Y < 0			Y >= 0	
	Z < 0	Z >= 0		Z < 0		Z >= 0
		X <= 0	X > 0	X <= 0	X > 0	
Sector:	٧.	IV.	III.	VI.	Ι.	Π.

Table 5. svmStdDt_top Control Bits

Name	Options						
3 2 1 0 Channel Eurotian Solact	svmStdDt_top function number (Assigned during assembly the						
	DPTRAM code from library TPU functions)						
1 0	00 – Channel Disabled						
Channel Priority	01 – Low Priority						
Channer Honey	10 – Middle Priority						
	11 – High Priority						
1 0	00 – No Host Service Request						
Heat Somilar Bits (HSD)	01 – Not used						
	10 – Not used						
	11 – Not used						
1 0 Host Sequence Bits (HSQ)	xx – Not used						
0 Channel Interrupt Enable	x – Not used						

Table 5. svmStdDt_top Control Bits

Name	Options
3 2 1 0 Channel Function Select	svmStdDt_bottom function number (Assigned during assembly the DPTRAM code from library TPU functions)
1 0 Channel Priority	00 – Channel Disabled 01 – Low Priority 10 – Middle Priority 11 – High Priority
1 0 Host Service Bits (HSR)	00 – No Host Service Request 01 – Not used 10 – Initialization 11 – Stop
1 0 Host Sequence Bits (HSQ)	xx – Not used
0 Channel Interrupt Enable	0 – Channel Interrupt Disabled 1 – Channel Interrupt Enabled
0 Channel Interrupt Status	0 – Interrupt Not Asserted 1 – Interrupt Asserted

Table 6. svmStdDt_bottom Control Bits

TPU function svmStdDt_bottom generates an interrupt when the current values of *Ualfa*, *Ubeta*, *T* and *prescaler* have been read by the TPU and indicates to the CPU that it can write new variables. The CPU program can either wait for this interrupt to occur, or poll the *LD_OK* bit to check it has cleared. The interrupt is generated at each reload by one of the bottom channels. The top channels do not generate any interrupts.

Channel	Parameter	15	14 1	13 12	2 11	10	9	8		7	6	5	4	3	2	1	0
	0		<u> </u>					h	tΑ		<u> </u>	<u> </u>			<u> </u>		<u> </u>
	1						Η	Ltim	ne	_A1	Γ						
A nel	2					k	oott	om_	_C	han	_A						
se / ani	3						(curr	er	ntA							
ch as	4							LD_	_C)K							
d do	5							Se	ct	or							
-	6																
	7						fau	ılt_p	bin	sta	te						
	0						Lŀ	Itim	ne	_AE	3						
ē	1						Η	Ltim	ne	_AE	3						
A UU	2							U	JA								
se /	3							U	JB								
m (4							Ua	alf	а							
D D D D D D D D D D D D D D D D D D D	5							Ub	oet	a							
pc	6							U	A	3							
	7																
	0							h	tB								
	1						Η	Ltim	ne	_B1	Γ						
n le	2					k	oott	om_	_C	han	_B						
se [anr	3						(curr	er	ηtΒ							
has ch	4							SQ	R	T3							
to D	5					S	ync	_pre	es	c_a	add	r					
-	6																
	7																
	0						Lŀ	Itim	ne	_BE	3						
ē	1						Н	Ltim	ne	_BE	3						
a uu	2							T_c	col	ру							
se l	3							d	ec	;							
m e	4								Т								
Diffo P	5						p	res	SCa	aler							
pq	6																
	7																
	0							h	tC								
	1						Н	Ltim	ne	_C1	Γ						
	2					k	oott	om_	C	han	_C						
se (ani	3						(curr	er	ntC							
ch a:	4						р	rsc_	_C	ору	1						
to P	5						Ce	ente	r_	tim	е						
-	6																
	7																

Table 7. svmStdDt_top and svmStdDt_bottom Parameter RAM

Channel	Parameter	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0		LHtime_CB														
ē	1		HLtime_CB														
	2								min	_ht							
se (3								max	<_h	t						
has m	4								D	Т							
D D D	5								MF	PW							
ğ	6																
	7																

Table 7. svmStdDt_top and svmStdDt_bottom Parameter RAM

Table 8. svmStdDt_top and svmStdDt_bottom parameter description

Format	Description					
Parameters written by	CPU					
16-bit fractional	Stator Reference Voltage Vector					
	components					
0 or 1	0 positive current on phase A					
	1 negative current on phaseA					
0 or 1	0 positive current on phase B					
	1 negative current on phaseB					
0 or 1	0 positive current on phase C					
	1 negative current on phaseC					
16-bit unsigned integer	PWM period in number of TCR1					
	TPU cycles					
16-bit unsigned integer	The number of PWM periods per					
	reload of new values					
16-bit unsigned integer	Dead-time in number of TCR1					
	I PU cycles					
	Minimum pulse width in number					
16-bit unsigned integer	of ICR1 IPU cycles. See					
	Performance for details.					
16-bit fractional	sqrt(3)/2 = 0.866 = \$6EDA					
	constant					
	address of synchronization					
	Channel <i>prescaler</i> parameter:					
8-bit unsigned integer	shapped number					
	is used					
 Parameters written by both T						
i arameters written by both i	0 CPU can undate variables					
1-bit	1 TPLL can read variables					
	CPU sets 1 TPU sets 0					
Parameters written by						
	Parameters written by 16-bit fractional 0 or 1 0 or 1 16-bit unsigned integer 16-bit fractional 8-bit unsigned integer 11-bit Parameters written by both T 1-bit					

Table 8. svmStdDt_top and svmStdDt_bottom parameter description

Parameter	Format	Description						
Sector	16-bit unsigned integer	The position of Stator Reference Voltage Vector in a sector. The Sector can be 1, 2, 3, 4, 5 or 6						
fault_pinstate	0 or 1	If fault channel is used, state of fault pin: 0 low 1 high						
Other parameters are just for TPU function inner use.								

Performance

Table 9. svmStdDt_top State Statistics

State	Max IMB Clock Cycles	RAM Accesses by TPU
HL	2	1
LH_C5	36	10

Table 10. svmStdDt_bottom State Statistics

State	Max IMB Clock Cycles	RAM Accesses by TPU
INIT	108	32
STOP	38	0
LH	2	1
HL	6	1
LH_RLD	44	16
C1	48	3
C2	48	4
C3	50	3
C4	48	8

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 IMB clocks)

AN2530/D Detailed Function Description

Figure 4. svmStdDt_top and svmStdDt_bottom timing

NOTE: The bottom channel with longest momentary low-time is marked by a flag0 and runs the LH_RLD and C1, C2, C3, C4 states.

Figure 5. svmStdDt_top and svmStdDt_bottom state diagram

Minimum Pulse Width

The TPU cannot generate PWM signals with duty cycle ratios very close to 0% or 100%. The minimum pulse width that the TPU can be guaranteed to correctly generate is determined by the TPU function itself and by the activity on the other channels. When the TPU function is requested to generate a narrower pulse a collision can occur. To prevent this, the parameter *MPW* (minimum pulse width) is introduced. The TPU functions svmStdDt_top and svmStdDt_bottom limit the narrowest generated pulse widths to *MPW*. The CPU program should check, and limit, the maximum amplitude of the Stator Reference Voltage Vector before decomposition to u_{a} , u_{a} components. The maximum amplitude of the Stator Reference Voltage Vector should be less than

$$1 - \frac{2(MPW + 2DT)}{T}$$

If this is not the case, the TPU function will start to limit the minimum pulse widths to *MPW* to prevent a collision, and the duty cycle ratio traces will be deformed as shown on **Figure 6**.

AN2530/D Detailed Function Description

The *MPW* is written by the CPU. The *MPW* depends on the whole TPU unit configuration, especially the lengths of the longest states of other functions, and their priorities, running on the same TPU. The *MPW* has to be correctly calculated at the time the whole TPU unit is configured.

Figure 7. Timing of the worst case

When svmStdDt_top and svmStdDt_bottom are running alone on one TPU, the minimum pulse width can be calculated according to Figure 7. This illustrates the worst case timing. The bottom channel low to high transition runs the HL state that sets the following high to low transition. The HL state lasts 6 IMB clock cycles (see Table 10). Each state is preceded by the Time Slot Transition (TST), which takes 10 IMB clock cycles. So the time necessary to set the next transition on the bottom channel is 16 IMB clock cycles. In addition, there is a latency between the low to high transition and the start of the HL state. The top channel state LH_C5, which is serviced at the time, causes the latency. The LH_C5 state lasts 36 IMB clock cycles (see Table 9). Its time slot transition is

10 IMB clock cycles. The service starts immediately after the top channel high to low transition, which occurs at a period of DT before the bottom channel low to high transition (see Figure 7), so that the latency is 36 IMB clock cycles + 10 IMB clock cycles – DT. The svmStdDt functions are designed so that no other svmStdDt state can request service at this time. The *MPW*, in the case when only svmStdDt functions are running on one TPU, is then

latency + 16 IMB clock cycles = = 36 IMB clock cycles + 10 IMB clock cycles - *DT* + 16 IMB clock cycles =

= 62 IMB clock cycles – DT

and is a minimum at least 16 IMB clock cycles (when latency = 0).

Note that the *MPW*, as well as the *DT*, are not entered into the parameter RAM in IMB clock cycles, but in TCR1 clock cycles. It is recommended for the svmStdDt function to configure the TCR1 clock to its maximum speed, which is the IMB clock divided by 2. In this case the MPW = 31 - DT, with a minimum value of 8.

When other functions are running together, on the same TPU, with the svmStdDt functions, the latency could be lengthened. To maintain sufficiently high performance of svmStdDt, it is recommended that the following rules are followed when configuring the TPU:

- assign svmStdDt PWM channels high priority
- assign svmStdDt PWM functions on low channel numbers so that no other function with high priority is assigned a channel with a lower number

In this instance, one of the two worst case timing cases can happen. These are illustrated in **Figure 8** and **Figure 9**. Which case occurs depends on the *DT*.

Figure 8. Worst case timing – case one

The time slot sequences at the top of both figures shows when a state of a high (H), middle (M) or low (L) priority is serviced in the worst case. To calculate the *MPW* follow these steps:

- Get the lengths of the longest states.
 - It is necessary to know the lengths of the longest states within all functions of each priority group. The initialization states are not considered only the running states. Let's denote *H* as the time period of the longest state within all functions running on high priority (Do not consider svmStdDt functions). Let's denote *M* as the time period of the longest state within all functions running on middle priority and *L* as the time period of the longest state within all functions running on middle priority and *L* as the time period of the longest state within all functions running on middle priority and *L* as the time period of the longest state within all functions running on low priority.
- Decide which timing case can occur.
 - The first case can occur when the DT (in IMB clock cycles) is less than TST + H + TST + M + TST+4 + LH_C5 + TST+4 + L (see Figure 9) that is 4*TST + 8 + H + M + L + LH_C5 that is 84 + H + M + L IMB clock cycles.

if DT (in IMB clock cycles) < 84 + H + M + Lthen – case one else – case two

- Calculate *MPW* based on case one or case two.
 - In **case one** the MPW is (according to **Figure 8**) TST + H + TST + M + TST+4 + LH_C5 + TST + L + TST+4 + HL – DTthat is 100+ H + M + L – DT IMB clock cycles.

MPW (in IMB clock cycles) = 100 + H + M + L - DT

In case two the MPW is (according to Figure 9)
 TST + H + TST + max(M,L) + TST+4 + HL
 that is 40 + H + max(M,L) IMB clock cycles.

MPW (in IMB clock cycles) = 40 + H + max(M,L)

• Convert *MPW* in IMB clock cycles to *MPW* in TCR1 clock cycles based on TCR1 prescaler settings.

When there are no channels of middle or low priority, simply leave out all the H or L and the following TST or TST+4 from the formulas.

When the recommended configuration rules are not adhered to, the timing of the worst case is much more complicated. It requires some familiarity with the details of the TPU priority scheme. In this case, the Worst-Case Latency (WCL), which is automatically calculated by the MPC500_Quick_Start Graphical Configuration Tool, can serve as a good approximation. This is always longer than the real-case is. Let the WCL be calculated after the configuration of the TPU channels and then find the longest WCL value within all the svmStdDt PWM channels. Convert the number, from IMB clock cycles to TCR1 clock cycles, to get the *MPW*.

Synchronization signal for Standard Space Vector Modulation with Dead-Time Correction (svmStdDt_sync) The svmStdDt_sync TPU function uses information obtained from svmStdDt PWM functions, the actual PWM center times and the PWM periods. This allows a signal to be generated, which tracks the changes in the PWM period and is always synchronized with the PWM. The synchronization signal is a positive pulse generated repeatedly after the *prescaler* or *presc_copy* PWM periods (see next paragraph). The low to high transition of the pulse can be adjusted by a parameter, either negative or positive, to go a number of TCR1 TPU cycles before or after the PWM period center time. The pulse width *pw* is another synchronization signal parameter.

AN2530/D Detailed Function Description

Figure 10. Synchronization signal adjustment examples

Synchronized Change of PWM Prescaler And Synchronization Signal Prescaler The svmStdDt_sync TPU function actually uses the *presc_copy* parameter instead of the *prescaler* parameter. The *prescaler* parameter holds the prescaler value that is copied to the *presc_copy* by the svmStdDt_bottom function at the time the PWM parameters are reloaded. This ensures that new prescaler values for the PWM signals, as well as the synchronization signal, are applied at the same time. Write the synchronization signal *prescaler* parameter address to the *sync_presc_addr* parameter to enable this mechanism. Write 0 to disable it, and remember to set the synchronization signal *presc_copy* parameter instead of the *prescaler* parameter in this case.

Host Interface

Table 11. svmStdDt_sync Control Bits

Name	Options
3 2 1 0	svmStdDt_sync function number
Channel Function Select	(Assigned during assembly the
	DPTRAM code from library TPU
	functions)
1 0	00 – Channel Disabled
Channel Brierity	01 – Low Priority
	10 – Middle Priority
	11 – High Priority

Name Options 00 – No Host Service Request 1 0 01 - Not used Host Service Bits (HSR) 10 - Initialization 11 - Not used 1 0 Host Sequence Bits (HSQ) xx - Not used 0 0 – Channel Interrupt Disabled **Channel Interrupt Enable** 1 – Channel Interrupt Enabled 0 0 - Interrupt Not Asserted **Channel Interrupt Status** 1 – Interrupt Asserted

Table 11. svmStdDt_sync Control Bits

TPU function svmStdDt_sync generates an interrupt after each low to high transition.

Table 12. svmStdDt_sync Parameter RAM

Channel	Parameter	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
lel	0	move															
anr	1								р	W							
cP	2							р	res	cale	er						
uo	3							pr	esc_	_co	ру						
zati	4								tin	ne							
inc	5		dec														
chre	6								T_c	ору	'						
Sync	7																

Table 13. svmStdDt_sync parameter description

Parameter	Format	Description								
Parameters written by CPU										
move	16-bit signed integer	The number of TCR1 TPU cycles to forego (negative) or come after (positive) the PWM period center time								
pw	16-bit unsigned integer	Synchronization pulse width in number of TCR1 TPU cycles.								

Parameter	Format	Description						
prescaler	16-bit unsigned integer	The number of PWM periods per synchronization pulse – use in case of synchronized prescalers change						
presc_copy	16-bit unsigned integer	The number of PWM periods per synchronization pulse – use in case of asynchronized prescalers change						
Parameters written by TPU								
Other parameters are just for TPU function inner use.								

Table 13. svmStdDt_sync parameter description

Performance

There is one limitation. The absolute value of parameter *move* has to be less than a quarter of the PWM period T.

 $|move| < \frac{T}{4}$

Table 14. svmStdDt_sync State Statistics

State	Max IMB Clock Cycles	RAM Accesses by TPU
INIT	12	5
S1	12	6
S2	8	3
S3	16	7

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 IMB clocks)

Figure 11. svmStdDt_sync timing

Figure 12. svmStdDt_sync state diagram

Resolver Reference Signal for Standard Space Vector Modulation with Dead-Time Correction (svmStdDt_res) The svmStdDt_res TPU function uses information read from the svmStdDt PWM functions, the actual PWM center times and the PWM periods. This allows a signal to be generated, which tracks the changes of the PWM period and is always synchronized with the PWM. The resolver reference signal is a 50% duty-cycle signal with a period equal to *prescaler* or synchronization channel *presc_copy* PWM periods (see next paragraph). The low to high transition of the pulse can be adjusted by a parameter, either negative or positive, to go a number of TCR1 TPU cycles before or after the PWM period center time.

Figure 13. Resolver reference signal adjustment examples

Synchronized Change of PWM Prescaler And Resolver Reference Signals Prescaler The svmStdDt_res TPU function can inherit the Synchronization Signal prescaler that is synchronously changed with the PWM prescaler. Write the synchronization signals *presc_copy* parameter address to the *presc_addr* parameter to enable this mechanism. Write 0 to disable it, and in this case set the *prescaler* parameter to directly specify prescaler value.

Host Interface

Written By CPU
Written Bv TPU

Written by both CPU and TPU

Not Used

			Name	Options
3	2	1	0	svmStdDt_res function number
			Channel Function Select	(Assigned during assembly the
				DPTRAM code from library TPU
				functions)
		1	0	00 – Channel Disabled
			Channel Brierity	01 – Low Priority
				10 – Middle Priority
				11 – High Priority
		1	0	00 – No Host Service Request
			Host Sorvice Rite (HSR)	01 – Not used
				10 – Initialization
				11 – Not used
		1	0 Host Sequence Bits (HSQ)	xx – Not used
			0 Channel Interrupt Enable	x – Not used
			0 Channel Interrupt Status	x – Not used

Table 15. svmStdDt_res Control Bits

Channel	Parameter	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0								mc	ve							
	1																
Ъ.	2							pr	esc	_ad	dr						
olve l	3		prescaler														
esc	4								tin	ne							
2		dec															
	6		Т_сору														
	7																

Table 17. svmStdDt_res parameter description

Parameter	Format	Description						
Parameters written by CPU								
move	16-bit signed integer	The number of TCR1 TPU cycles to forego (negative) or come after (positive) the PWM period center time						
presc_addr	16-bit unsigned integer	 \$00X6, where X is a number of Synchronization Signal channel, to inherit Sync. channel prescaler or \$0000 to enable direct specification of prescaler value in prescaler parameter 						
prescaler	1, 2, 4, 6, 8, 10, 12, 14,	The number of PWM periods per synchronization pulse – use when apresc_addr = 0						
Parameters written by TPU								
Other parameters are just for TPU function inner use.								

Performance

There is one limitation. The absolute value of parameter *move* has to be less than a quarter of the PWM period T.

 $|move| < \frac{T}{4}$

Table 18. svmStdDt_res State Statistics

State	Max IMB Clock Cycles	RAM Accesses by TPU				
INIT	12	5				

For More Information On This Product, Go to: www.freescale.com

Table 18. svmStdDt_res State Statistics

State	Max IMB Clock Cycles	RAM Accesses by TPU
S1	26	9
S3	18	7

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 IMB clocks)

Figure 15. svmStdDt_res state diagram

Fault Input for Standard Space Vector Modulation with Dead-Time Correction (svmStdDt_fault) The svmStdDt_fault is an input TPU function that monitors the pin, and if a high to low transition occurs, immediately sets all PWM channels low and cancels all further transitions on them. The PWM channels, as well as the synchronization and resolver reference signal channels (if used), have to be initialized again to start them running.

The function returns the actual pinstate as a value of 0 (low) or 1 (high) in the parameter *fault_pinstate*. The parameter is placed on the Phase A – top channel to keep the fault channel parameter space free.

Host Interface

Written by both CPU and TPU

Table 19. svmStdDt_fault Control Bits

Name	Options				
3 2 1 0 Channel Function Select	svmStdDt_fault function number (Assigned during assembly the DPTRAM code from library TPU functions)				
1 0 Channel Priority	00 – Channel Disabled 01 – Low Priority 10 – Middle Priority 11 – High Priority				
1 0 Host Service Bits (HSR)	00 – No Host Service Request 01 – Not used 10 – Initialization 11 – Not used				
1 0 Host Sequence Bits (HSQ)	xx – Not used				
0 Channel Interrupt Enable	0 – Channel Interrupt Disabled 1 – Channel Interrupt Enabled				
0 Channel Interrupt Status	0 – Interrupt Not Asserted 1 – Interrupt Asserted				

TPU function svmStdDt_fault generates an interrupt when a high to low transition appears.

Table 20. svmStdDt_fault Parameter RAM

Channel	Parameter	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0																
	1																
out	2																
inp	3																
ult	4																
Га	5																
	6																
	7																

Parameter	Format	Description			
	Parameters writte	en by TPU			
		State of fault pin:			
fault_pinstate	0 or 1	0 low			
		1 high			

Table 21. svmStdDt_fault parameter description

Performance

Table 22. svmStdDt_fault State Statistics

State	Max IMB Clock Cycles	RAM Accesses by TPU			
INIT	8	2			
FAULT	44	1			
NO_FAULT	4	1			

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 IMB clocks)

Figure 17. svmStdDt_fault state diagram

How to Reach Us:

Home Page:

www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

AN2530/D Rev. 0 5/2003 For More Information On This Product, Go to: www.freescale.com