
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2003, 2006. All rights reserved.

This application note is a supplement to the MPC185
Security Co-Processor User’s Manual to assist programmers
in understanding and creating descriptors. The information
in this note includes more specific requirements than those
that the MPC185 device driver covers. This application note
is more useful to programmers who are familiar with the
basics of MPC185 architecture in the user’s manual.

Document Number: AN2577
Rev. 1, 10/2006

Contents
1. Data Packet Descriptor Overview 2
2. Descriptor Structure . 2
3. Descriptor Header . 3
4. Execution Unit Mode Data . 5
5. Descriptor Type Field . 15
6. Descriptor Length and Pointer Fields 19
7. Descriptor Chaining . 21
8. Descriptor Classes . 22
9. Additional Examples . 25

10. SSLv3.1/TLS1.0 Processing 35
11. Conclusion . 39
12. Revision History . 40

MPC185 Descriptor Programmer’s
Guide
by Geoff Waters, Security Applications

Michael Torla, Security Design
Freescale Semiconductor, Inc.
Austin, TX

MPC185 Descriptor Programmer’s Guide, Rev. 1

2 Freescale Semiconductor

Data Packet Descriptor Overview

1 Data Packet Descriptor Overview
The MPC185 has bus mastering capability on the 60x bus that the PowerQUICC™ II and PowerPCTM

processor families (built on Power Architecture™ technology) use to off-load data movement and
encryption operations from a host processor. As the system controller, the host processor maintains a
record of current secure sessions and the corresponding keys and contexts of those sessions. When the host
has determined that security operation is required, the host can either directly write keys, context, and data
to the MPC185 (MPC185 in target mode) or can create a 'data packet descriptor' to guide the MPC185
through the security operation, with the MPC185 acting as a bus master. The descriptor can be created in
main memory, any memory local to the MPC185, including 32 Kbytes of on-chip gpRAM, or written
directly to the data packet descriptor buffer in the MPC185 crypto-channel.

2 Descriptor Structure
The MPC185 data packet descriptors are conceptually similar to descriptors that most devices with DMA
capability use. The descriptors are fixed-length (64 bytes), and consist of sixteen 32-bit fields. Descriptors
begin with a header that describes the security operation to be performed and the mode to which the
execution unit will be set while performing the operation.

Seven data length/data pointer pairs follow the header. Data length indicates the amount of contiguous data
to be transferred. This amount cannot exceed 32 Kbytes. The data pointer refers to the address of the data
that the MPC185 fetches. In this case, data is broadly interpreted to mean keys, context, additional
pointers, or the actual plain text to be permuted.

Figure 1 shows an example of a data packet descriptor.

0 31

Descriptor Header

R/W

Pointer 1

Length 2

Pointer 2

Length 3

Pointer 3

Length 4

Pointer 4

Length 5

Pointer 5

Length 6

Pointer 6

Length 7

Pointer 7

Next Descriptor Pointer

Figure 1. Example Data Packet Descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 3

Descriptor Header

3 Descriptor Header
The host creates descriptors to guide the MPC185 through required cryptographic operations. The
descriptor header defines the operations to be performed, the mode for each operation, and ordering of the
inputs and outputs in the body of the descriptor. The MPC185 device drivers allow the host to create proper
headers for each cryptographic operation. Figure 2 shows the descriptor header.

Table 1 defines the header bits.

0 11 12 23 24 27 28 29 30 31

Field Op_0 Op_1 Desc_TYPE RSVD ST DN

Reset 0x0000_0000

R/W R/W

Addr Channel_1 0x02080, Channel_2 0x03080, Channel_3 0x04080, Channel_4 0x05080

Figure 2. Descriptor Header

Table 1. Header Bit Definitions

Bits Name Description

0:11 Op_0 Op_0 contains two sub fields, EU_Select and Mode_Data. Figure 3 shows the sub field detail.
EU_SELECT[0:3] - Programs the channel to select a primary EU of a given type. Table 2 lists the possible
EU_SELECT values.
MODE_DATA[4:11] - Programs the primary EU mode data.
The mode data is specific to the chosen EU. This data is passed directly to bits 0:7 of the specified EU
mode register.

12:23 Op_1 Op_1 contains two sub fields, EU_Select and Mode_Data. Figure 3 shows the sub field detail.
EU_SELECT[12:15] — Programs the channel to select a secondary EU of a given type. Table 2 lists the
possible EU_SELECT values.
MODE_DATA[16:23] —Programs the secondary EU mode data.
The mode data is specific to the chosen EU. This data is passed directly to bits 0:7 of the specified EU
mode register.
Note: The MDEU is the only valid secondary EU. Values for Op1 EU_SELECT other than ‘MDEU’ or ‘No
secondary CHA selected’ causes an ‘Unrecognized Header’ error condition. Selecting MDEU for both
primary and secondary EU also creates an error condition.

24:27 Desc_Type Descriptor Type—Each type of descriptor determines the following attributes for the corresponding data
length/pointer pairs: the direction of the data flow; which EU is associated with the data; and which internal
EU address is used.
Table 10 lists the valid types of descriptors.

28:29 — Reserved—set to zero

30 ST Snoop type — Selects which of the two types of available snoop modes applies to the descriptor. See
Figure 12 for a graphical representation of the snooping concept.

0 Snoop output data mode.
1 Snoop input data mode.
In ‘Snoop input data mode’, while the bus transaction to write data into the input FIFO of the primary EU is
in progress, the secondary EU (always MDEU) snoops the same data into its input FIFO.
In ‘Snoop output data mode’, the secondary EU (always MDEU) snoops data into its input FIFO during the
bus transaction to read data out of the output FIFO of the primary EU.

MPC185 Descriptor Programmer’s Guide, Rev. 1

4 Freescale Semiconductor

Descriptor Header

Figure 3 shows the two sub fields of Op_x.

Op0 EU_SELECT values of ‘no primary EU selected’ or ‘reserved EU’ cause an ‘unrecognized header
error’ condition during processing of the descriptor header. Also, the primary EU selected by the Op0
EU_SELECT field may be only DEU, AESU, or AFEU when a valid secondary EU is selected. For this
case, all other values of Op0 EU_SELECT cause an ‘unrecognized header’ error condition.

The full range of permissible EU_Select values is shown in Table 2.

31 DN DONE_NOTIFICATION_FLAG — Done Notification Flag.
Setting this bit indicates whether to perform notification upon completion of this descriptor. The notification
can take the form of an interrupt or modified header write back or both depending upon the state of the
INTERRUPT_ENABLE and WRITEBACK_ENABLE control bits in Crypto Channel Configuration Register.
0 Do not signal DONE upon completion of this descriptor (unless globally programmed to do so by means
of the Crypto Channel Configuration Register.)
1 Signal DONE upon completion of this descriptor.
Note: The MPC185 can be programmed to perform DONE notification upon completion of each descriptor,
upon completion of any descriptor, or completion of the final descriptor in a chain. This bit provides for the
second case.
When the Crypto-Channel is requesting a write of the Descriptor Header back to system memory, the most
significant byte (Big Endian) of the header always reads as set to 0xFF, and the remaining 24 bits will not
be changed.

0 3 4 11

Op_x

EU_SELECT MODE_DATA

Figure 3. Op_x Sub Field

Table 2. EU_Select Values

Value EU Select

0000 No EU selected

0001 AFEU

0010 DEU

0011 MDEU

0100 RNG

0101 PKEU

0110 AESU

0111 KEU

Others Reserved EU

Table 1. Header Bit Definitions (continued)

Bits Name Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 5

Execution Unit Mode Data

4 Execution Unit Mode Data
The MPC185 execution units are programmed by means of the descriptor header. The Mode_Data portion
of Op_X field in the descriptor header is written to bits 0:7 of the mode register in the execution unit
selected by the EU_Select field in Op_X. A complete explanation of the execution unit registers can be
found in Chapter 5 of the MPC185 Security Co-Processor User’s Manual. However, the mode register for
each EU is provided in this section for convenience.

4.1 PKEU Mode Register
This register specifies the internal PKEU routine to be executed. For the root arithmetic routines, PKEU
has the capability to perform arithmetic operations on subsegments of the entire memory, which is
especially useful for operations such as elliptic curve Diffie-Hellman (ECDH) key agreement
computation. Using regAsel and regBsel, for example, parameter memory A subsegment 2 can be
multiplied into parameter memory B subsegment 1. Figure 4 and Figure 5 detail two definitions.

0 1 7 8 31

Field — MODE Reserved

Reset 0 0

R/W R/W

Addr PKEU 0x10000

0 31

Field Reserved

Reset 0

R/W R/W

Addr PKEU 0x10004

Figure 4. PKEU Mode Register: Definition 1

0 1 3 4 7 8 31

Field — MODE RegSEL Reserved

Reset 0 0 0 0

R/W R/W

Addr PKEU 0x10000

0 31

Field Reserved

Reset 0

R/W R/W

Addr PKEU 0x10004

Figure 5. PKEU Mode Register: Definition 2

MPC185 Descriptor Programmer’s Guide, Rev. 1

6 Freescale Semiconductor

Execution Unit Mode Data

Table 3 lists mode register routine definitions. Parameter memories are referred to for the base address, as
shown.

4.2 DEU Mode Register
The DEU mode register contains three bits to program the DEU, as shown in Figure 6. It also reflects the
value of burst size, which the crypto-channel loads during normal operation with the MPC185 as an
initiator. Burst size is not relevant to target mode operations, where an external host pushes and pulls data
from the execution units.

The mode register is cleared when the DEU is reset or re-initialized. Setting a reserved mode bit generates
a data error. If the mode register is modified during processing, a context error is generated.

Table 3. Mode Register Routine Definitions

Routine Mode [1:3] Mode [4:5] Mode [6:7]

Reserved 000 00 00

Clear memory 000 0 01

Modular exponentiation 000 00 10

R2 mod N 000 00 11

RnRp mod N 000 01 00

Fp affine point multiplication 000 01 01

F2m affine point multiplication 000 01 10

Fp projective point multiplication 000 01 11

F2m projective point multiplication 000 10 00

Fp point addition 000 10 01

Fp point doubling 000 10 10

F2m point addition 000 10 11

F2m point doubling 000 11 00

F2m R2 CMD 000 11 01

F2m INV CMD 000 11 10

MOD INV CMD 000 11 11

Modular addition 001 regAsel 1

00 = A0
01 = A1
10 = A2
11 = A3

1 regAsel and regBsel here refer to the specific segment of parameter memory A and B.

regBsel1

00 = B0
01 = B1
10 = B2
11 = B3

Modular subtraction 010

Modular multiplication with single reduction 011

Modular multiplication with double reduction 100

Polynomial addition 101

Polynomial multiplication with single reduction 110

Polynomial multiplication with double reduction 111

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 7

Execution Unit Mode Data

Table 4 describes the DEU mode register signals.

4.3 AFEU Mode Register
The AFEU mode register contains 3 bits to program the AFEU, as shown in Figure 7. It also reflects the
value of burst size, which the crypto-channel loads during normal operation with the MPC185 as an
initiator. Burst size is not relevant to target mode operations, where an external host pushes and pulls data
from the execution units.

0 4 5 6 7 8 12 13 15 16 31

Field Reserved CE Ts ED Reserved Burst Size Reserved

Reset 0 0 0 0 0 0 0

R/W R/W

Addr DEU 0x0A000

0 31

Field Reserved

Reset 0

R/W R/W

Addr DEU 0x0A004

Figure 6. DEU Mode Register

Table 4. DEU Mode Register Signals

Bits Signal Description

0-4 — Reserved

5 CBC/ECB If set, DEU operates in cipher-block-chaining mode. If not set, DEU operates in electronic code book
mode.
0 ECB mode
1 CBC mode

6 Triple/Single DES If set, DEU operates the Triple DES algorithm; if not set, DEU operates the single DES algorithm.
0 single DES
1 triple DES

7 encrypt/decrypt If set, DEU operates the encryption algorithm; if not set, DEU operates the decryption algorithm.
0 Perform decryption
1 Perform encryption

8-12 — Reserved

13-15 Burst Size The MPC185 implements flow control to allow larger than FIFO sized blocks of data to be processed
with a single key/IV. The DEU signals to the crypto-channel that a “burst size” amount of data is
available to be pushed to or pulled from the FIFO.

Note: Including this field in the DEU Mode Register avoids confusing a user who may read this
register in debug mode. Burst size should not be written directly to the DEU.

16-31 — Reserved

MPC185 Descriptor Programmer’s Guide, Rev. 1

8 Freescale Semiconductor

Execution Unit Mode Data

The mode register is cleared when the AFEU is reset or re-initialized. Setting a reserved mode bit generates
a data error. If the mode register is modified during processing, a context error is generated.

4.3.1 Host-Provided Context Using Prevent Permute
In the default mode of operation, the host provides the key and key size to the AFEU. The initial memory
values in the S-box are permuted with the key to create new S-box values to encrypt the plaintext.

If the ‘prevent permute’ mode bit is set, the AFEU does not require a key. Rather, the host writes the
context to the AFEU and message processing occurs using the provided context. This mode is used to
resume processing of a message using the already permuted S-box. The context may be written through
the FIFO if the ‘context source’ mode bit is set.

4.3.2 Dump Context
This mode may be independently specified in addition to host-provided context mode. In this mode, when
message processing is complete and the output data is read, the AFEU makes the current context data
available for reads by means of the output FIFO.

NOTE

After the initial key permute to generate a context for an AFEU-encrypted
session, all subsequent messages re-use that context, such that it is loaded,
modified during the encryption, and unloaded, similar to the use of a CBC
initialization vector in DES operations. A new context is generated (by
means of key permute) according to a rekeying interval that the security
protocol specifies. Context should never be loaded to encrypt a message if
a key is loaded and permuted at the same time.

0 4 5 6 7 8 12 13 15 16 31

Field Reserved cs dc pp Reserved Burst Size Reserved

Reset 0 0 0 0 0 0 0

R/W R/W

Addr AFEU 0x08000

0 31

Field Reserved

Reset 0

R/W R/W

Addr AFEU 0x08004

Figure 7. AFEU Mode Register

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 9

Execution Unit Mode Data

Table 5 describes the AFEU mode register signals.

4.4 MDEU Mode Register
The MDEU mode register, shown in Figure 8, contains 8 bits to program the MDEU. It also reflects the
value of burst size, which the crypto-channel loads during normal operation with the MPC185 as an
initiator. Burst size is not relevant to target mode operations, where an external host pushes and pulls data
from the execution units.

The mode register is cleared when the MDEU is reset or re-initialized. Setting a reserved mode bit
generates a data error. If the mode register is modified during processing, a context error is generated.

Table 5. AFEU Mode Register Signals

Bits Signal Description

0-4 — Reserved

5 Context Source If Set, the context is moved from the input FIFO into the S-box before starting encryption/decryption.
Otherwise, context should be directly written to the context registers. Context Source is checked only
if the prevent permute bit is set.
0 Context not from FIFO
1 Context from input FIFO

6 Dump Context If Set, this causes the context to be moved from the S-box to the output FIFO following assertion
AFEU’s done interrupt.
0 Do not dump context.
1 After cipher, dump context.

7 Prevent Permute Normally, AFEU receives a key and uses that information to randomize the S-box. If reusing a context
from a previous descriptor or if in static assignment mode, this bit should be set to prevent AFEU
from re performing this permutation step.
0 Perform S-Box permutation.
1 Do not permute.

8-12 — Reserved

13-15 Burst Size The MPC185 implements flow control to allow larger than FIFO sized blocks of data to be processed
with a single key/context. The AFEU signals to the crypto-channel that a “burst size” amount of data
is available to be pushed to or pulled from the FIFO.

Note: Including this field in the AFEU Mode Register avoids confusing a user who may read this
register in debug mode. Burst size should not be written directly to the AFEU.

16-31 — Reserved

MPC185 Descriptor Programmer’s Guide, Rev. 1

10 Freescale Semiconductor

Execution Unit Mode Data

Figure 8 shows the MDEU mode register.

Table 6 describes the MDEU mode register signals.

0 1 2 3 4 5 6 7 8 12 13 15 16 31

Field Con
t

-- INT HM
AC

PD ALG — BURST SIZE —

Reset 0

R/W R/W

Addr MDEU 0x0C000

0 31

Field Reserved

Reset 0

R/W R/W

Addr MDEU 0x0C004

Figure 8. MDEU Mode Register

Table 6. MDEU Mode Register

Bits Signal Description

0 Cont Continue (Cont): Used during HMAC/HASH processing when the data to be hashed is
spread across multiple descriptors.
0 = Don’t Continue- operate the MDEU in auto completion mode.
1 = Preserve context to operate the MDEU in Continuation mode.

1–2 — Reserved

3 INT Initialization Bit (INT): Causes an algorithm-specific initialization of the digest registers.
Most operations require this bit to be set. Only static operations that are continuing from a
know intermediate hash value would not initialize the registers.
0 Do not initialize.
1 Initialize the selected algorithm’s starting registers.

4 HMAC Identifies the hash operation to execute:
0 Perform standard hash
1 Perform HMAC operation. Requires a key and key length information.

5 PD If set, configures the MDEU to automatically pad partial message blocks.
0 Do not autopad.
1 Perform automatic message padding whenever an incomplete message block is
detected.

6–7 ALG Message Digest algorithm selection
00 = SHA-160 algorithm (full name for SHA-1)
01 = SHA-256 algorithm
10 = MD5 algorithm
11 = Reserved

8–12 — Reserved

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 11

Execution Unit Mode Data

4.4.1 Recommended Settings for MDEU Mode Register
The most common task likely to be executed by means of the MDEU is HMAC generation. HMACs
provide message integrity within a number of security protocols, including IPSec and SSL/TLS. When a
single dynamic descriptor (the MDEU acting as sole or secondary EU) generates the HMAC, use the
following mode register bit settings:

Continue—Off
Initialize—On
HMAC—On
Autopad—On

When the HMAC is generated for a message that is spread across a chain of static descriptors, use the
following mode register bit settings:

• First Descriptor:
Continue—On
Initialize—On
HMAC—On
Autopad—Off

• Middle Descriptor(s):
Continue—On
Initialize—Off
HMAC—Off
Autopad—Off

• Final Descriptor
Continue—Off
Initialize—Off
HMAC—On
Autopad—On

See Chapter 5 of the MPC185 Security Co-Processor User’s Manual60x for additional information about
descriptors.

13–15 BURST SIZE The implements flow control to allow larger than FIFO-sized blocks of data to be processed
with a single key/context. The MDEU signals to the crypto-channel that a “burst size”
amount of data is available to be pushed to the FIFO.
Note: Including this field in the MDEU Mode Register avoids confusing a user who may
read this register in debug mode. Burst size should not be written directly to the MDEU.

16–31 — Reserved

Table 6. MDEU Mode Register (continued)

Bits Signal Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

12 Freescale Semiconductor

Execution Unit Mode Data

4.5 RNG Mode Register
The RNG mode register can control the RNG. Randomizing, which is one operational mode, is defined.
Writing any other value than 0 through 0:7 causes a data error interrupt that is reflected in the RNG
interrupt status register. The mode register also reflects the value of burst size, which the crypto-channel
loads during normal operation with the MPC185 as an initiator. Burst size is not relevant to target mode
operations, where an external host pushes and pulls data from the execution units.

The mode register is cleared when the RNG is reset or re-initialized. The RNG mode register is shown in
Figure 9.

Table 7 describes the RNG mode register signals.

4.6 AESU Mode Register
The AESU mode register contains 4 bits to program the AESU. It also reflects the value of burst size,
which the crypto-channel loads during normal operation with the MPC185 as an initiator. Burst size is not
relevant to target mode operations, where an external host pushes and pulls data from the execution units.

The mode register is cleared when the AESU is reset or re-initialized. Setting a reserved mode bit generates
a data error. If the mode register is modified during processing, a context error is generated. The AESU
mode register is shown in Figure 10.

0 12 13 15 16 31

Field Reserved Burst Count Reserved

Reset 0

R/W R/W

Addr 0x0E000

0 31

Field Reserved

Reset 0

R/W R/W

Addr 0x0E004

Figure 9. RNG Mode Register

Table 7. RNG Mode Register Definitions

Bits Signal Description

0:12 ___ Reserved, must be set to zero

13:15 Burst Count The MPC185 implements flow control to allow larger than FIFO-sized blocks of data to be
processed with a single key/context. The RNG signals to the crypto-channel that a “burst
size” amount of data is available to be pulled from the FIFO.

Note: Including this field in the RNG Mode Register avoids confusing a user who may read
this register in debug mode. Burst size should not be written directly to the RNG.

16:31 ___ Reserved

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 13

Execution Unit Mode Data

Table 8 describes the AESU mode register signals.

4.6.1 Restore Decrypt Key
In most networking applications, the decryption of an AES protected packet is performed as a single
operation. However, if the decryption of a message must be split across multiple descriptors, the AESU

0 3 4 5 6 7 8 12 13 15 16 63

Field Reserved RDK CM ED Reserved Burst Size Reserved

Reset 0

R/W R/W

Addr AESU 0x12000

0 31

Field Reserved

Reset 0

R/W R/W

Addr AESU 0x12004

Figure 10. AESU Mode Register

Table 8. AESU Mode Register Signals

Bits Signal Description

0-3 — Reserved

4 RDK Restore Decrypt Key (RDK): Specifies that key data write will contain pre-expanded key
(decrypt mode only).
0 Expand the user key before decrypting the first block.
1 Do not expand the key. The expanded decryption key will be written following the context
switch.

5-6 CM Cipher Mode: Controls which cipher mode the AESU uses in processing:
00 ECB -Electronic Codebook mode.
01 CBC- Cipher Block Chaining mode
10 Reserved
11 CTR- Counter Mode

7 Encrypt/Decrypt If set, AESU operates the encryption algorithm; if not set, AESU operates the decryption
algorithm.
Note: This bit is ignored if CM is set to “11” - CTR Mode.
0 Perform decryption.
1 Perform encryption.

8-12 — Reserved

13-15 Burst Size The MPC185 implements flow control to allow larger than FIFO-sized blocks of data to be
processed with a single key/context. The AESU signals to the crypto-channel that a “burst

size” amount of data is available to be pushed to or pulled from the FIFO.
Note: Including this field in the AESU mode register avoids confusing a user who may read
this register in debug mode. Burst size should not be written directly to the AESU.

16:31 — Reserved

MPC185 Descriptor Programmer’s Guide, Rev. 1

14 Freescale Semiconductor

Execution Unit Mode Data

allows the user to save the decrypt key and the active AES context to memory for later re-use. This option
saves the internal AESU processing overhead associated with regenerating the decryption key schedule
(approximately 12 AESU clock cycles for the first block of data to be decrypted).

The use of RDK is completely optional. The input time of the preserved decrypt key may exceed the
approximate 12 cycles required to restore the decrypt key for processing the first block.

Freescale recommends the following procedure for using RDK:
• The descriptor type used in decryption of the first portion of the message is '0100—AESU Key

Expand Output'. The description mode must be ‘Decrypt'. See Chapter 4 in the MPC185 Security
Co-Processor User’s Manual, 8xx Interface, for more information. The descriptor causes the
MPC185 to write the contents of the context and key registers (which contains the expanded
decrypt key) to memory.

• To process the remainder of the message, use a 'normal' descriptor type (descriptor type selection
based on the need for simultaneous HMAC generation, and so on), and set the 'restore decrypt key'
mode bit. Load the context registers and the expanded decrypt key with previously saved key and
context data from the first message. The key size is written as before (16, 24, or 32 bytes).

4.7 KEU Mode Register
The mode register, which is shown in Figure 11, contains 5 bits to program the KEU. It also reflects the
value of burst size, which the crypto-channel loads during normal operation with the MPC185 as an
initiator. Burst size is not relevant to target mode operations, where an external host pushes and pulls data
from the execution units.

The mode register is cleared when the KEU is reset or re-initialized. Setting a reserved mode bit generates
a data error. If the mode register is modified during processing, a context error is generated.

Figure 11. KEU Mode Register

Table 9 describes KEU mode register signals.

0 2 3 4 5 6 7 8 12 13 15 16 63

Field Reserved PE INT CD Alg Reserved Burst Size Reserved

Reset 0

R/W R/W

Addr KEU 0x14000

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 15

Descriptor Type Field

5 Descriptor Type Field
The MPC185 accepts 13 fixed format descriptors. The descriptor type field in the descriptor header
informs the crypto-channel of the ordering of the inputs and outputs that the length/pointer pairs define in
the descriptor body. The MPC190 (a previous Freescale security co-processor with mastering capability)
allowed definition (within limits) of the order in which the MPC190 fetched keys, context, and data before
processing. The MPC185 descriptor type field advises the crypto-channel of the predetermined ordering
of keys, context, and null fields. The ordering of inputs and outputs in the length/pointer pairs (as defined
by descriptor type) is shown in Table 11.

Table 10 shows the permissible values for the descriptor type field in the descriptor header. Note that not
all descriptor types are operationally useful. Some exist for test and debug reasons and provide flexibility

Table 9. KEU Mode Register Signals

Bits Signal Description

0-2 — Reserved

3 PE Process End of Message (PE). Enables final processing of last message block (F9 only).
0 = Prevent final block processing (message incomplete).
1 = Enable final block processing (message complete).
Note: For f9 operations, if the 3G frame (or “message”) is being processed as a whole (not split across
multiple descriptors), the process end of message bit should be set. If the frame is processed across multiple
descriptors, this bit should only be set on the descriptor performing f9 processing on the final message block.

4 INT Initialization (INT). Enables initialization for a new message.
0 = Prevent Initialization.
1 = Enable Initialization.
Note: For f8 or f9 operations, if the 3G frame (or “message”) is being processed as a whole (not split across
multiple descriptors), the Initialization bit should be set. If the frame is processed across multiple descriptors,
this bit should only be set on the descriptor processing on the first message block.

5 CD Communication Direction (CD). Determines the direction that the specified algorithm will be used.
0 = Uplink (Decrypt)
1 = Downlink (Encrypt)
Note: Communication Direction is independent from encrypt/decrypt, however from the perspective of a
radio node controller, frames arriving from a mobile station will have the Uplink Bit set, and should be
decrypted, and frames needing to be sent on a downlink channel to a mobile station should be encrypted.

6-7 ALG F8/F9 Bits (ALG). Specifies functions to perform.
00 = Perform F8 function.
01 = Reserved
10 = Perform F9 function.
11 = Reserved

8-12 — Reserved

13-15 Burst Size The MPC185 implements flow control to allow larger than FIFO-sized blocks of data to be processed with a
single key/context. The RNG signals to the crypto-channel that a ‘burst size’ amount of data is available to
be pulled from the FIFO.
Note: Including this field in the KEU Mode Register avoids confusing a user who may read this register in
debug mode. Burst size should not be written directly to the KEU.

16-63 — Reserved

MPC185 Descriptor Programmer’s Guide, Rev. 1

16 Freescale Semiconductor

Descriptor Type Field

in dealing with evolving security standards. The cryptographic transforms that most security protocols
require use types 0001 and 0010.

Table 11 shows how to use length/pointer pairs with the various descriptor types to load keys, context, and
data into the execution units, and how the required outputs should be unloaded. Note that some outputs are
optional.

Table 10. Descriptor Types

Value Descriptor Type Notes

0000 Reserved —

0001 common_nonsnoop_no_afeu Common, nonsnooping, non-PKEU, non-AFEU

0010 hmac_snoop_no_afeu Snooping, HMAC, non-AFEU

0011 non_hmac_snoop_no_afeu Snooping, non-HMAC, non-AFEU

0100 aseu_key expand_output Non-snooping, non HMAC, AESU, expanded key out

0101 common_nonsnoop_afeu Common, nonsnooping, AFEU

0110 hmac_snoop_afeu Snooping, HMAC, AFEU (no context out)

0111 non_hmac_snoop_afeu Snooping, non-HMAC, AFEU

1000 pkeu_mm PKEU-MM

1001 pkeu_ec PKEU-EC

1010 pkeu_static_ec_point PKEU static-EC point (completes operand loading
and executes)

1011 pkeu_static_ec_parameter PKEU static-EC parameter (preloads EC operands)

1100 Reserved —

1101 Reserved —

1110 hmac_snoop_afeu_ key_in AFEU context out available

1111 hmac_snoop_afeu_ctx_in AFEU context out available

Table 11. Descriptor Length/Pointer Mapping

Descriptor
Type

L/P 1 L/P 2 L/P 3 L/P 4 L/P 5 L/P 6 L/P 7

0000 Null Null Null Null Null Null Null

0001 Null IV Key Data in Data out IV out MAC out

0010 HMAC key HMAC data Key IV Data in Data out HMAC/context
out

0011 MD Ctx in IV Key Data in Data out IV out MD/context out

0100 Null IV Key Data in Data out IV out Key out by means
of FIFO

0101 Null IV in by
means of

FIFO

Key Data in Data out IV out by
means of

FIFO

MD/context out

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 17

Descriptor Type Field

5.1 Descriptor Type 0001
Descriptor type 0001 is used for a wide variety of functions, most of which do not require using all the
length/pointer fields. A few non-obvious uses of this descriptor type are highlighted in Table 12.

For RNG operations, no key, context, or data can be sent in to the MPC185. The only relevant pointer is
the one that causes random data to be written from the RNG output FIFO to memory.

0110 HMAC key HMAC data Key IV in by
means of

FIFO

Data in Data out HMAC/context
out

0111 MD Ctx in IV in by
means of

FIFO

Key Data in Data out IV out by
means of

FIFO

MD/context out

1000 B A E N B out Null Null

1001 B A Key N B1 out Null Null

1010 A0 A1 A2 B1 out B2 out B3 out Null

1011 A3 B0 B1 Key N Null Null

1100 Null Null Null Null Null Null Null

1101 Null Null Null Null Null Null Null

1110 HMAC key HMAC data Key Data in Data out IV out by
means of

FIFO

HMAC/context
out

1111 HMAC key HMAC data IV Data in Data out IV out by
means of

FIFO

HMAC/context
out

Table 12. Descriptor Type 0001 Length/Pointer Mapping

Descriptor
Type

L/P 1 L/P 2 L/P 3 L/P 4 L/P 5 L/P 6 L/P 7 Use

0001 Null Null Null Null Data out Null Null RNG only

0001 Null Ctx-in
(opt)

Null Data in Null Hash out Null Hash only

0001 Null Ctx-In Integrity
Key

Data In Null MAC out Null Kasumi F9

0001 Null Ctx-in
(opt)

HMAC
Key

Data in Null HMAC out Null HMAC only

0001 Null IV Key Data in Data out IV out MAC out Self-integrity
checking

operations

Table 11. Descriptor Length/Pointer Mapping (continued)

Descriptor
Type

L/P 1 L/P 2 L/P 3 L/P 4 L/P 5 L/P 6 L/P 7

MPC185 Descriptor Programmer’s Guide, Rev. 1

18 Freescale Semiconductor

Descriptor Type Field

For HMAC only operations, the HMAC key should be loaded, followed by the data. The HMAC itself is
written out by means of L/P 6. If an HMAC calculation is spread across multiple descriptors, all descriptors
after the first must load the MDEU context registers by means of L/P 2, which requires the first descriptor
to output the MDEU context or message digest, rather than an HMAC, with L/P 6.

Certain protocols do not rely on the HMAC function provided by the MDEU to generate MACs, or
message integrity check values. An example is the Kasumi f9 operation that the KEU performs. When
directed by the KEU mode bits in the Op_0 portion of the descriptor header, the KEU generates the f9
MAC. The MAC that the f9 function generates is written out by means of L/P 6.

5.2 Snoop Type Bit
As Table 1 shows, bit 1 controls the type of ‘snooping’ that must occur between the primary and secondary
EU. The rationale for ‘in-snooping’ versus ‘out-snooping’ is found in security protocols that perform both
encryption and integrity checking, such IPSec. When transmitting an IPSec ESP packet, the encapsulator
must encrypt the packet payload and calculate an HMAC over the header plus encrypted payload. Because
the MDEU cannot generate the HMAC without the output of the primary EU (the one performing
encryption, typically the DEU or AESU), the MDEU must ‘out-snoop.’

When receiving an IPSec packet, the decapsulator must calculate the HMAC over the encrypted portion
of the packet before decryption to allow the MDEU to source its data from the input FIFO of the primary
EU without waiting for the primary EU to finish its task.

Note that slightly different portions of an IPSec packet would pass through the primary and secondary
EUs, in both the in-snooping and out-snooping cases. Providing different starting pointers and byte lengths
to the channel in the body of the descriptor deals with these offsets.

An overview of the snooping concept is shown in Figure 12.

Figure 12. Snooping

5.3 Done Notification Bit
The done notification bit in the MPC185 descriptor header is a manual override to the crypto-channel
configuration register’s NOTIFICATION_TYPE bit, which determines whether the MPC185 advises the
system (by means of interrupt or header writeback) that it is DONE with an operation after every descriptor
or after a chain of descriptors. Setting the notification bit in the descriptor header is unnecessary and

In-Snooping Out-Snooping

In-FIFO

DEU

Out-FIFO

MDEU

In-FIFO In-FIFO

Out-FIFO

In-FIFO

MDEUDEU

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 19

Descriptor Length and Pointer Fields

redundant if NOTIFICATION_TYPE is set to ‘end-of-descriptor’; but if set to ‘end-of-chain,’ the
notification bit in the header can be quite useful as an intermediate notification.

The DONE notification can be an interrupt or modified header writeback or both, depending on the state
of the INTERRUPT_ENABLE and WRITEBACK_ENABLE control bits in the crypto-channel
configuration register.

When the channel signals DONE by means of header writeback, the most significant byte of the original
header (at its original location in system memory) always reads as set to 0xFF, and the remaining 24 bits
are not modified. MPC185-initiated 60x bus writes can occur only on 64-bit word boundaries, but reads
can occur on any byte boundary. Writing back a header read from a non-64-bit word boundary yields
unpredictable results.

6 Descriptor Length and Pointer Fields
The length and pointer fields represent one of 7 data length/pointer pairs. Each pair defines a block of data
in system memory. The length field gives the length of the block in bytes. The maximum allowable number
of bytes is 32 Kbytes. A value of 0 loaded into the length field indicates that this length/pointer pair should
be skipped and processing should continue with the next pair.

The pointer field contains the address, in 60x address space, of the first byte of the data block. Transfers
from the 60x bus with the pointer address set to 0 have the length value written to the EU, and no data is
fetched from the 60x bus.

NOTE

Certain public key operations require information about data length, but not
the data itself. Figure 13 shows the descriptor length field.

Table 13 shows the descriptor length field mapping.

0 15 16 31

Field Reserved Data Length Field

 0 msb<--------lsb

Reset 0

R/W R/W

Figure 13. Descriptor Length Field

Table 13. Descriptor Length Field Mapping

Bits Name Reset Value Description

0:15 — 0 Reserved, set to zero

16:31 Data Field
Length

0 The maximum length of this field is 32K bytes. Under host control, a
channel can be temporarily locked static, and data only” descriptors can be
chained to fetch blocks larger than 32K bytes in 32K byte sub-blocks
without key/context switching, until the large original block has been
completely ciphered. Length fields also indicate the size of items to be
written back to memory upon completion of security processing in the
MPC185.

MPC185 Descriptor Programmer’s Guide, Rev. 1

20 Freescale Semiconductor

Descriptor Length and Pointer Fields

Figure 14 shows the descriptor pointer field.

Table 14 shows the descriptor pointer field mapping.

Following the length/pointer pairs is the next descriptor field, which contains the pointer to the next
descriptor in memory. When processing of the current descriptor is completes, this value, if non-zero, is
used to request an 60x burst read of the next-data-packet descriptor. This automatic load of the next
descriptor is called descriptor chaining. Figure 15 displays the next descriptor pointer field.

Table 15 describes the descriptor pointer field mapping.

0 31

Field Data Field X Pointer

Reset 0

R/W R/W

Figure 14. Descriptor Pointer Field

Table 14. Descriptor Pointer Field Mapping

Bits Name Reset Value Description

0:31 Data field pointer 0 The data pointer field contains the address, in 60x address space, of the first byte
of the data packet for either read or writeback. Transfers from the 60x bus with
pointer address set to 0 is skipped.

WARNING
MPC185-initiated 60x bus writes can occur only on 64-bit word boundaries,
but reads can occur on any byte boundary. Writing
back a header read from a non-64-bit word boundary will yield unpredictable
results.

0 31

Field Next Descriptor Pointer

Reset 0

R/W R/W

Figure 15. Next Descriptor Pointer Field

Table 15. Descriptor Pointer Field Mapping

Bits Name Reset Value Description

0:31 Next descriptor
pointer

0 The next descriptor pointer field contains the address, in 60x address space, of the
next descriptor to be fetched if descriptor chaining is enabled.

WARNING
The next descriptor pointer address must be modulo-8
aligned if writeback is enabled as the method of DONE
notification.

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 21

Descriptor Chaining

7 Descriptor Chaining
Descriptor chaining provides a measure of decoupling between host CPU activities and the status of the
MPC185. Rather than waiting for the MPC185 to signal DONE and arbitrating for the 60x bus to write
directly to the next-data-packet descriptor in the crypto-channel, the host can simply create new
descriptors in memory and chain them to descriptors that the MPC185 has not fetched by filling the
next-data-packet field with the address of the newly created descriptor. Whether or not processing
continues automatically following next-descriptor fetch and whether or not an interrupt is generated
depends on the programming of the crypto-channel’s configuration register.

See Section 6.1.1, “Crypto-Channel Configuration Register (CCCR),” for additional information about
programming the MPC185 to signal and act upon descriptor completion.

NOTE

It is possible to insert a descriptor into an existing chain. However, take
great care when doing so.

Figure 16 shows a conceptual chain, or linked list, of descriptors.

Figure 16. Chain of Descriptors

7.1 Null Fields
Sometimes a descriptor field may not be applicable to the requested service. With seven length/pointer
pairs, not all descriptor fields are required to load the required keys, context, and data. (Some operations

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

MPC185 Descriptor Programmer’s Guide, Rev. 1

22 Freescale Semiconductor

Descriptor Classes

do not require context; others may need to fetch a small, contiguous block of data only.) When processing
data packet descriptors, the MPC185 skips any pointer entirely that has an associated length of 0.

8 Descriptor Classes
The MPC185 has two general classes of descriptors:

• static—a relatively unchanging usage of MPC185 resources
• dynamic—a continually changing usage model

8.1 Static Descriptors
Recall that the MPC185 has eleven execution units and four crypto-channels. EUs can be statically
assigned, dedicating them to a particular crypto-channel. Certain combinations of EUs can be statically
assigned to the same crypto-channel to facilitate multi-operation security processes such as IPSec ESP
mode. When the system traffic model permits its use, static assignment can offer significant performance
improvements over dynamic assignment by avoiding key and context switching per packet.

Static descriptors split the operations to be performed during a security operation into separate descriptors.
The first descriptor is typically used only to set the EU mode and load the key and context. The second
(and multiple subsequent) descriptor contains length/pointer pairs to the data to be permuted. Because the
key and context are unchanging over multiple packets (or descriptors), the series of short reads and writes
required to setup and tear down a session are avoided. This savings and the dedicated execution units
crypto-channel can give a noticeable performance improvement.

Note that no mechanism exists to reset an EU automatically when statically assigned or when assignment
changes from static to dynamic. Freescale recommends that the drivers always reset an EU just before
removing a static assignment to it to prevent the previously used context from polluting another encryption
stream.

For example, statically assigning a DEU to a particular crypto-channel permits the DEU to retain context
between data packets. The following descriptors listed in Table 16 through Table 18 support context
retention. Table 16 defines the first DPD_3DES_CBC_Encrypt descriptor in the static chain.

Table 16. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_2 Pointer 60x address of IV

LEN_3 Length Number of bytes of key to be written to DEU key register (must be 16 or 24)

PTR_3 Pointer 60x address of key

LEN_4 Length Number of bytes to be ciphered

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 23

Descriptor Classes

Table 17 defines the second (or N middle) DPD_3DES_CBC_Encrypt descriptor in the static chain. Note
that the IV and key are not loaded; they remain in the DEU key and IV register.

Table 18 defines the final DPD_3DES_CBC_Encrypt descriptor in the static chain. Note that the IV and
key are not loaded; they remain in the DEU key and IV register. The IV may be optionally unloaded at the
conclusion of the descriptor. When this descriptor completes, reset the EU. The EU should be released by
means of a write to the EU assignment control register in the controller.

PTR_4 Pointer 60x address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer 60x address where ciphered data is to be written

LEN_6 Nul Null

PTR_6 Nul Null

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 17. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Null

PTR_3 Pointer Null

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer 60x address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer 60x address where ciphered data is to be written

LEN_6 Nul Null

PTR_6 Nul Null

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 16. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt (continued)

Field Value/Type Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

24 Freescale Semiconductor

Descriptor Classes

8.2 Dynamic Descriptors
In a typical networking environment, packets from innumerable sessions arrive quite randomly. The host
must determine which security association applies to the current packet and encrypt or decrypt without any
knowledge of the security association of the previous or next packet. This situation calls for using dynamic
descriptors.

When under dynamic assignment, an EU must be used under the assumption that a different
crypto-channel (with a different context) may have just used the EU and that another crypto-channel (with
yet another context) may use that EU immediately after the current crypto-channel has released the EU.

The descriptor shown in Table 19 completely sets up the DEU for an encryption operation; loads the keys,
context, and data; writes the permuted data back to memory; and (optionally) writes the altered context
(IV) back to memory. (This step may be necessary when DES is operating in CBC mode.) When the
descriptor completes, the DEU is automatically cleared and released.

Table 18. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Null

PTR_3 Pointer Null

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer 60x address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer 60x address where ciphered data is to be written

LEN_6 Length (Optional) Number of bytes of IV to be written to 60x memory space
(always 8)

PTR_6 Pointer (Optional) 60x address where IV is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 19. Representative Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 25

Additional Examples

Note that the descriptor header value is the same value used in the static assignment example. The
descriptor header does not determine static versus dynamic assignment (a difference from the MPC190).
In the MPC185, the EU Assignment Control Register in the Controller entirely controls static assignment
(see Chapter 8 in the MPC185 Security Co-Processor User’s Manual for more information about the
EUACR). When an EU is statically assigned to a channel, it uses keys and context from the current
descriptor for the following descriptor until the EU is reset and released from static assignment. Freescale
does not recommend releasing an EU and subsequently resetting it, because any channel with an
outstanding request for an EU of the type being released could be dynamically assigned the EU before the
reset cleared the previous key and context. When an EU is dynamically assigned to a channel, the channel
automatically resets the EU before releasing it for another channel’s use.

9 Additional Examples
The following sections contain descriptor examples of some common cryptographic transforms. Also
provided are tables of derivative descriptor headers for closely related transforms.

PTR_1 Pointer Null

LEN_2 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_2 Pointer 60x address of IV

LEN_3 Length Number of bytes of key to be written to DEU key register (must be 16
or 24)

PTR_3 Pointer 60x address of key

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer 60x address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer 60x address where ciphered data is to be written

LEN_6 Length (Optional) Number of bytes of IV to be written to 60x memory space
(always 8)

PTR_6 Pointer (Optional) 60x185 address where IV is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 19. Representative Descriptor DPD_Type 0001_3DES_CBC_Encrypt (continued)

Field Value/Type Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

26 Freescale Semiconductor

Additional Examples

9.1 Dynamically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound
IPSec ESP)

Table 20 shows a dynamic descriptor example of an inbound IPSec ESP transform.

The descriptor header encodes the information that is required to select the DEU for Op_0 and the MDEU
for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The Op_1
mode data configured the MDEU to operate in HMAC-SHA-1 mode. Because all the data necessary to
calculate the HMAC in a single dynamic descriptor is available, initialize and autopad are set, and continue
is off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is loaded first, followed by the length and pointer to the data
over which the HMAC will be calculated. The 3DES key is loaded next, followed by the 3DES IV. The
number of bytes to be ciphered and starting address will be an offset of the number of bytes being
HMAC’d. The data to be decrypted and HMAC’d is brought into the MPC185 only a single time, with the
DEU and MDEU reading only the portion that matches the starting address and byte length in the
length/pointer fields that correspond to their data of interest.

Table 20. Representative Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt

Field Value/Type Description

Header 0x2063_1C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt

LEN_1 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_1 Pointer 60x address of HMAC key

LEN_2 Length Number of bytes to be HMAC’d

PTR_2 Pointer 60x address of data to be HMAC’d

LEN_3 Length Number of bytes of key to be written to DEU key register (must be 16
or 24)

PTR_3 Pointer 60x address of key

LEN_4 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_4 Pointer 60x address of IV

LEN_5 Length Number of bytes of ciphertext to be decrypted

PTR_5 Pointer 60x address of ciphertext to be decrypted

LEN_6 Length Number of bytes of plaintext to be written out to memory (should be
equal to length of data-in)

PTR_6 Pointer 60x address where plaintext is to be written

LEN_7 Length Number of bytes of HMAC to be written to 60x memory space
(always 20 for HMAC-SHA-1)

PTR_7 Pointer 60x address where HMAC is to be written

PTR_NEXT Pointer Pointer to next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 27

Additional Examples

Ciphertext is brought into the DEU input FIFO, with the MDEU in-snooping the portion of the data it has
been told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is
written back to system memory as needed. When the final byte of data to be HMAC’d has been processed
through the MDEU, the descriptor causes the MDEU to write the HMAC to the indicated area in 60x
memory. The MPC185 writes the entire 20 bytes HMAC-SHA-1 to 60x memory, and the host compares
the most significant 12 bytes of the HMAC generated by the MPC185 with the HMAC that was received
with the inbound packet. If the HMACs match, the packet integrity check passes.

The next descriptor pointer is optional, and if a next descriptor is indicated, that descriptor may be
completely unrelated to the operation performed by the descriptor shown in Table 20.

9.2 Dynamically Assigned 3DES-HMAC-SHA-1 Encrypt (Outbound
IPSec ESP)

Table 21 shows a dynamic descriptor example of an outbound IPSec ESP transform.

The descriptor header encodes the information that is required to select the DEU for Op_0 and the MDEU
for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, encrypt mode. The Op_1
mode data configured the MDEU to operate in HMAC-SHA-1 mode. Because all the data necessary to
calculate the HMAC in a single dynamic descriptor is available, initialize, and autopad are set, while
continue is off.

Table 21. Representative Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt

Field Value/Type Description

Header 0x2073_1C20 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt

LEN_1 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_1 Pointer 60x address of HMAC key

LEN_2 Length Number of bytes to be HMAC’d

PTR_2 Pointer 60x address of data to be HMAC’d

LEN_3 Length Number of bytes of key to be written to DEU key register (must be 16 or 24)

PTR_3 Pointer 60x address of key

LEN_4 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_4 Pointer 60x address of IV

LEN_5 Length Number of bytes of plaintext to be encrypted

PTR_5 Pointer 60x address of plaintext to be encrypted

LEN_6 Length Number of bytes of ciphertext to be written out to memory (should be equal to length of data-in)

PTR_6 Pointer 60x address where ciphertext is to be written

LEN_7 Length Number of bytes of HMAC to be written to 60x memory space (always 20)

PTR_7 Pointer 60x address where HMAC is to be written

PTR_NEXT Pointer Pointer to next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

28 Freescale Semiconductor

Additional Examples

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is loaded first, followed by the length and pointer to the data
over which the HMAC will be calculated. The 3DES key is loaded next, followed by the 3DES IV. The
number of bytes to be encrypted and starting address will be an offset of the number of bytes being
HMAC’d. The data to be encrypted and HMAC’d is brought into the MPC185 only a single time, with the
DEU and MDEU reading only the portion that matches the starting address and byte length in the
length/pointer fields that correspond to their data of interest.

Plaintext is brought into the DEU input FIFO, with the MDEU out-snooping the portion of the data it was
told to process. As the encryption continues, the ciphertext fills the DEU output FIFO, and this data is
written back to system memory as needed. When the final byte of data to be HMAC’d is processed through
the MDEU, the descriptor causes the MDEU to write the HMAC to the indicated area in 60x memory. The
MPC185 writes the entire 20 bytes HMAC-SHA-1 to 60x memory, and the host appends the most
significant 12 bytes of the HMAC generated by the MPC185 to the packet as the authentication trailer.
Common practice in IPSec ESP with 3DES-CBC is to use the last 8 bytes of the ciphertext as the IV for
the next packet. In that case, the host should copy the last 8 bytes of the ciphertext to the Security
Association database entry for this particular session before transmitting the packet.

The next descriptor pointer is optional, and if a next descriptor is indicated, that descriptor may be
completely unrelated to the operation performed on the descriptor shown in Table 21.

9.3 Dynamically Assigned HMAC-MD-5 (Inbound/Outbound
IPSec AH)

Table 22 shows a dynamic descriptor example of an inbound/outbound IPSec AH transform.
Table 22. Representative Descriptor DPD_Type 0001_HMAC-MD-5

Field Value / Type Description

Header 0x31E0_0010 DPD_Type 0001_HMAC_MD-5

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_3 Pointer 60x address of HMAC key

LEN_4 Length Number of bytes of data to be written to MDEU input FIFO

PTR_4 Pointer 60x address of data

LEN_5 Length Null

PTR_5 Pointer Null

LEN_6 Length Number of bytes of HMAC to be written out to memory (always 16 MD-5)

PTR_6 Pointer 60x address where HMAC is to be written

LEN_7 Length Null

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 29

Additional Examples

The descriptor header encodes the information that is required to select the MDEU for Op_0 and no EU
for Op_1. The Op_0 mode data configured the MDEU to operate in HMAC-MD-5 mode. Because all the
data necessary to calculate the HMAC in a single dynamic descriptor is available, initialize and autopad
are set and continue is off.

The descriptor header also encodes the descriptor type 0001, which defines the input and output ordering
for ‘common_nonsnoop_no_afeu.’ This descriptor type is used for most operations that do not require a
secondary EU. Following some null pointers, the HMAC key is loaded, followed by the length and pointer
to the data over which the HMAC will be calculated.

The data is brought into the MDEU input FIFO, and when the final byte of data to be HMAC’d has been
processed through the MDEU, the descriptor causes the MDEU to write the HMAC to the indicated area
in 60x memory. The MPC185 writes the entire 16 bytes HMAC-MD-5 to 60x memory, and depending on
whether the packet is inbound or outbound, the host either inserts the most significant 12 bytes of the
HMAC generated by the MPC185 into the packet header (outbound) or compares the HMAC generated
by the MPC185 with the HMAC that was received with the inbound packet (obviously inbound). If the
HMACs match, the packet integrity check passes.

The next descriptor pointer is optional, and if a next descriptor is indicated, that descriptor may be
completely unrelated to the operation performed by the descriptor shown in Table 22.

Table 23 shows current, most commonly used IPSec descriptor headers. In all the descriptor headers
shown, the MDEU performs auto padding.

PTR_7 Pointer Null

PTR_NEXT Pointer Pointer to next descriptor

Table 23. Common IPSec Dynamic Descriptor Headers

Value/Type Description

0x2003_1E22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt

0x2013_1E20 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt

0x2003_1C22 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt

0x2013_1C20 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt

0x2043_1E22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt

0x2053_1E20 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt

0x2043_1C22 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt

0x2053_1C20 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt

0x2023_1E22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt

0x2033_1E20 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt

0x2023_1C22 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt

Table 22. Representative Descriptor DPD_Type 0001_HMAC-MD-5 (continued)

Field Value / Type Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

30 Freescale Semiconductor

Additional Examples

Table 24 shows current AES descriptors as they will be used for IPSec and SRTP. In all the descriptor
headers shown, the MDEU performs auto padding.

0x2033_1C20 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt

0x2063_1E22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt

0x2073_1E20 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt

0x2063_1C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt

0x2073_1C20 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt

0x31C0_0010 DPD_Type 0001_HMAC_SHA-1

0x31D0_0010 DPD_Type 0001_HMAC_SHA-256

0x31E0_0010 DPD_Type 0001_HMAC_MD-5

Table 24. Additional Multi-Op Dynamic Descriptor Headers

Value / Type Description

0x6083_1E22 DPD_Type 0010_AES_ECB_HMAC_MD-5 Decrypt

0x6093_1E20 DPD_Type 0010_AES_ECB_HMAC_MD-5 Encrypt

0x6083_1C22 DPD_Type 0010_AES_ECB_HMAC_SHA-1 Decrypt

0x6093_1C20 DPD_Type 0010_AES_ECB_HMAC_SHA-1 Encrypt

0x6083_1D22 DPD_Type 0010_AES_ECB_HMAC_SHA-256 Decrypt

0x6093_1D20 DPD_Type 0010_AES_ECB_HMAC_SHA-256 Encrypt

0x60A3_1E22 DPD_Type 0010_AES_CBC_HMAC_MD-5 Decrypt

0x60B3_1E20 DPD_Type 0010_AES_CBC_HMAC_MD-5 Encrypt

0x60A3_1C22 DPD_Type 0010_AES_CBC_HMAC_SHA-1 Decrypt

0x60B3_1C20 DPD_Type 0010_AES_CBC_HMAC_SHA-1 Encrypt

0x60A3_1D22 DPD_Type 0010_AES_CBC_HMAC_SHA-256 Decrypt

0x60B3_1D20 DPD_Type 0010_AES_CBC_HMAC_SHA-256 Encrypt

0x60E3_1E22 DPD_Type 0010_AES_CTR_HMAC_MD-5 Decrypt

0x60E3_1E20 DPD_Type 0010_AES_CTR_HMAC_MD-5 Encrypt

0x60E3_1C22 DPD_Type 0010_AES_CTR_HMAC_SHA-1 Decrypt

0x60E3_1C20 DPD_Type 0010_AES_CTR_HMAC_SHA-1 Encrypt

0x60E3_1D22 DPD_Type 0010_AES_CTR_HMAC_SHA-256 Decrypt

0x60E3_1D20 DPD_Type 0010_AES_CTR_HMAC_SHA-256 Encrypt

Table 23. Common IPSec Dynamic Descriptor Headers (continued)

Value/Type Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 31

Additional Examples

9.4 Statically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound
IPSec ESP)

This example, shown in Table 25, is designed to contrast the dynamic descriptor shown in Table 20. For
whatever reason, the data to be decrypted and authenticated is not available in a single contiguous block,
or the total data size is larger than 32 Kbytes. The user must statically assign a DEU and MDEU to a
channel before launching this descriptor chain.

The first descriptor loads the appropriate keys and context while the N middle descriptors continue
processing data. The final descriptor decrypts the final data and allows the HMAC calculation to complete.

The first descriptor header encodes the information that is required to select the DEU for Op_0 and the
MDEU for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The
Op_1 mode data configured the MDEU to operate in SHA-1 mode. Because all the data necessary to
calculate the HMAC is not present, the first static descriptor is set to initialize, continue, and HMAC, and
autopad is off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is loaded first, followed by the length and pointer to the data
over which the initial hash will be calculated. The 3DES key is loaded next, followed by the 3DES IV. The
number of bytes to be ciphered and starting address is an offset of the number of bytes being hashed. The
data to be decrypted and hashed is brought into the MPC185 only a single time, with the DEU and MDEU

Table 25. Representative First Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt

Field Value / Type Description

Header 0x2063_9822 DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt

LEN_1 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_1 Pointer 60x address of HMAC key

LEN_2 Length Number of bytes to be hashed

PTR_2 Pointer 60x address of data to be hashed

LEN_3 Length Number of bytes of key to be written to DEU key register (must be 16 or 24)

PTR_3 Pointer 60x address of key

LEN_4 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_4 Pointer 60x address of IV

LEN_5 Length Number of bytes to be ciphered

PTR_5 Pointer 60x address of data to be ciphered

LEN_6 Length Bytes to be written (should be equal to length of data-in)

PTR_6 Pointer 60x address where ciphered data is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

32 Freescale Semiconductor

Additional Examples

reading only the portion that matches the starting address and byte length in the length/pointer fields that
correspond to their data of interest.

Ciphertext is brought into the DEU input FIFO, with the MDEU snooping the portion of the data it has
been told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is
written back to system memory as needed. Because it has been told to expect more data (HMAC off,
continue on), the descriptor must not attempt to output the contents of the MDEU message digest register.

The next descriptor pointer should point to the descriptor shown in Table 26.

The middle descriptor header encodes the information required to select the DEU for Op_0 and the MDEU
for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The Op_1
mode data configured the MDEU to operate in SHA-1 mode. Because all the data necessary to calculate
the HMAC is still not present, the middle static descriptor is set to continue, while initialize, HMAC, and
autopad are off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is already loaded, and does not need to be reloaded. The
length and pointer to the data over which the initial hash will be calculated must be provided for this
descriptor. The 3DES key and IV are already loaded, and need not be reloaded.

Ciphertext is brought into the DEU input FIFO, with the MDEU snooping the portion of the data it has
been told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is

Table 26. Representative Middle Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1 Decrypt

Field Value/Type Description

Header 0x2063_8022 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 decrypt

LEN_1 Nul Null

PTR_1 Nul Null

LEN_2 Length Number of bytes to be Hashed

PTR_2 Pointer 60x address of data to be hashed

LEN_3 Nul Null

PTR_3 Nul Null

LEN_4 Nul Null

PTR_4 Nul Null

LEN_5 Length Number of bytes to be ciphered

PTR_5 Pointer 60x address of data to be ciphered

LEN_6 Length Bytes to be written (should be equal to Length of data-in)

PTR_6 Pointer 60x address where ciphered data is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 33

Additional Examples

written back to system memory as needed. Because it has been told to expect more data (HMAC off,
continue on), the descriptor must not attempt to output the contents of the MDEU message digest register.

The next descriptor pointer should point to the descriptor shown in Table 27.

The final descriptor header encodes the information that is required to select the DEU for Op_0 and the
MDEU for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The
Op_1 mode data configured the MDEU to operate in SHA-1 mode. Because the final data necessary to
calculate the HMAC is now present, the final static descriptor is set to HMAC and autopad, and continue
and initialize are off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is already loaded, and does not need to be reloaded. The
length and pointer to the data over which the initial hash will be calculated must be provided for this
descriptor. The 3DES key and IV are already loaded, and need not be reloaded.

Ciphertext is brought into the DEU input FIFO, with the MDEU snooping the portion of the data it has
been told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is
written back to system memory as needed. Because it has been told it has the final data for HMAC
calculation (HMAC on, continue off), the descriptor must output the contents of the MDEU message digest
register to the indicated address in system memory. The MPC185 writes the entire 20-byte HMAC-SHA-1

Table 27. Representative Final Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1 Decrypt

Field Value/Type Description

Header 0x2063_8C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 decrypt

LEN_1 Nul Null

PTR_1 Nul Null

LEN_2 Length Number of bytes to be hashed

PTR_2 Pointer 60x address of data to be hashed

LEN_3 Nul Null

PTR_3 Nul Null

LEN_4 Nul Null

PTR_4 Nul Null

LEN_5 Length Number of bytes to be ciphered

PTR_5 Pointer 60x address of data to be ciphered

LEN_6 Length Bytes to be written (should be equal to length of data-in)

PTR_6 Pointer 60x address where ciphered data is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Nul Null

MPC185 Descriptor Programmer’s Guide, Rev. 1

34 Freescale Semiconductor

Additional Examples

to 60x memory, and depending on the security protocol in question, the host compares the most significant
x bytes of the HMAC generated by the MPC185 with the HMAC sent with the packet.

The next descriptor pointer should be null, as the channel should not fetch another descriptor until the EUs
are reset. The static assignment of the current EUs need not end, if the channel is expected to need the same
EUs to operate on a similar static chain that belongs to a difference secure session.

Table 28 shows current, most commonly used IPSec descriptor headers. In all the descriptor headers
shown, the MDEU performs auto padding for the final data block, as needed.

Table 28. Common IPSec Static Descriptor Headers

Value/Type Description

0x2003_9A22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt First

0x2003_8222 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt Middle

0x2003_8E22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt Last

0x2013_9A22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt First

0x2013_8220 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt Middle

0x2013_8E20 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt Last

0x2003_9822 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt First

0x2003_8022 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt Middle

0x2003_8C22 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt Last

0x2013_9820 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt First

0x2013_8020 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt Middle

0x2013_8C20 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt Last

0x2043_9A22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt First

0x2043_8222 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt Middle

0x2043_8E22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt Last

0x2053_9A22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt First

0x2053_8220 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt Middle

0x2053_8E20 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt Last

0x2043_9822 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt First

0x2043_8022 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt Middle

0x2043_8C22 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt Last

0x2053_9820 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt First

0x2053_8020 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt Middle

0x2053_8C20 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt Last

0x2023_9A22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt First

0x2023_8222 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt Middle

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 35

SSLv3.1/TLS1.0 Processing

10 SSLv3.1/TLS1.0 Processing
The MPC185 is capable of assisting in SSL record layer processing, however, for SSL v3.0 and earlier,
this support is limited to acceleration of the encryption only. The MDEU does not calculate the version of
HMAC required by early versions of SSL. SSLv3.1 and TLSv1.0 use the same HMAC version as IPSec
(specified in RFC2104), which the MPC185 MDEU supports, allowing it to off-load both bulk encryption
and authentication from the host processor.

The order of operations mandated in the protocol makes SSLv3.1 and TLSv1.0 (henceforth called TLS)
record layer encryption/decryption more complicated for hardware than IPSec. TLS performs the HMAC
function first, then attaches the HMAC (which is variable size) to the end of the payload data. The payload
data, HMAC, and any padding added after the HMAC are then encrypted. Parallel encryption and

0x2023_8E22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt Last

0x2033_9A22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt First

0x2033_8220 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt Middle

0x2033_8E20 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt Last

0x2023_9822 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt First

0x2023_8022 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt Middle

0x2023_8C22 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt Last

0x2033_9820 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt First

0x2033_8020 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt Middle

0x2033_8C20 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt Last

0x2063_9A22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt First

0x2063_8222 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt Middle

0x2063_8E22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt Last

0x2073_9A22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt First

0x2073_8220 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt Middle

0x2073_8E20 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt Last

0x2063_9822 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt First

0x2063_8022 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt Middle

0x2063_8C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt Last

0x2073_9820 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt First

0x2073_8020 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt Middle

0x2073_8C20 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt Last

Table 28. Common IPSec Static Descriptor Headers (continued)

Value/Type Description

MPC185 Descriptor Programmer’s Guide, Rev. 1

36 Freescale Semiconductor

SSLv3.1/TLS1.0 Processing

authentication of TLS records cannot be performed using the MPC185 snooping mechanisms that work
for IPSec.

Performing TLS record layer encryption and authentication with the MPC185 requires two descriptors.
For outbound records, one descriptor calculates the HMAC, and a second encrypts the record, HMAC, and
padding. For inbound records, the first descriptor decrypts the record, while the second descriptor
recalculates the HMAC for validation by the host. With some planning, the programmer can create the
outbound descriptors and launch them as a chain, leaving the MPC194 to complete the full HMAC/encrypt
operation before signaling DONE. Placing the output from descriptor 1 into the MPC185 on-chip gpRAM,
then fetching that data as input for descriptor 2 can provide additional bus bandwidth savings and
improved system performance. For inbound records, the MPC185 signals DONE after decryption so that
the host can determine the location of the HMAC before setting up the HMAC validation descriptor.

The following sections provide examples and explanations covering TLS outbound and inbound
processing using dynamic assignment.

10.1 Outbound TLS Descriptor 1
The first descriptor performs the HMAC of the record header and the record payload, as shown in
Table 29. In this example, the HMAC is generated using the MD-5 algorithm.

Table 29. Outbound TLS Descriptor 1

Field Value/Type Description

Header 0x31E0_0010 DPD_Type 0001_HMAC_MD-5

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_3 Pointer 60x address of HMAC key

LEN_4 Length Number of bytes of data to be written to MDEU input FIFO

PTR_4 Pointer 60x address of data

LEN_5 Length Null

PTR_5 Pointer Null

LEN_6 Length Number of bytes of HMAC to be written out to memory (always 16 MD-5)

PTR_6 Pointer 60x address where HMAC is to be written

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Pointer to next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 37

SSLv3.1/TLS1.0 Processing

The primary EU is the MDEU, with its mode bits set to cause the MDEU to initialize its context registers,
perform autopadding if the data size is not evenly divisible by 512 bits, and calculate an HMAC-MD-5.
The descriptor header does not designate a secondary EU, so the setting of the snoop-type bit is ignored.

At the conclusion of outbound TLS descriptor 1, the crypto-channel has calculated the HMAC, placed it
in memory, and reset and released the MDEU.

10.2 Outbound TLS Descriptor 2
The second descriptor performs the encryption of the record, HMAC, pad length, and any padding
generated to disguise the size of the TLS record, as shown in Table 30.

Not surprisingly, inbound TLS processing reverses the order of operations of outbound processing.

10.3 Inbound TLS Descriptor 1
The first descriptor performs the decryption of the record, HMAC, pad length, and any padding generated
to disguise the size of the TLS record, as shown in Table 31.

Table 30. Outbound TLS Descriptor 2

Field Value/Type Description

Type 0101 common_nonsnoop_afeu 0x1000_0010 AFEU, new key, do not dump context, perform permute

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Length of ARC-4 key

PTR_3 Pointer Pointer to ARC-4 Key

LEN_4 Length Length of data to be read and permuted

PTR_4 Pointer Pointer to data in memory

LEN_5 Length Length of data to be written after permutation

PTR_5 Pointer Pointer to memory buffer for write back

LEN_6 Length Null

PTR_6 Pointer Null

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Null or pointer to unrelated next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

38 Freescale Semiconductor

SSLv3.1/TLS1.0 Processing

Note that ARC-4 does not have a concept of encrypt versus decrypt. As a stream cipher, ARC-4 generates
a key stream that is XOR’d with the input data. If the input data is plaintext, the output is ciphertext. If the
input data is ciphertext (which was previously XOR’d with the same key), the result is plaintext.

The primary EU is the AFEU, with its mode bits set to cause the AFEU to load the key and initialize the
AFEU S-box for data permutation.

The descriptor header does not designate a secondary EU, so the setting of the snoop type bit is ignored.

At the conclusion of inbound TLS descriptor 1, the AFEU has decrypted the TLS record so that the payload
and HMAC are readable. The negotiation of the TLS session should provide the receiver with enough
information about the session parameters (hash algorithm for HMAC, whether padding is in use) to create
inbound descriptors 2 along with descriptor 1. If so, the next descriptor pointer field should point to
descriptor 2.

Alternatively, the MPC185 could signal DONE at the conclusion of inbound descriptor 1 to allow the host
to inspect the decrypted record and generate the descriptor that is necessary to validate the HMAC. In that
case, inbound descriptor 2 does not need to be linked to inbound descriptor 1, and could even be processed
by a different crypto-channel.

Table 31. Inbound TLS Descriptor 1

Field Value/Type Description

Type 0101 common_nonsnoop_afeu 0x1000_0010 AFEU, new key, do not dump context, perform permute

LEN_1 Length Place holder

PTR_1 Pointer Place holder

LEN_2 Length Place holder

PTR_2 Pointer Place holder

LEN_3 Length Length of ARC-4 key

PTR_3 Pointer Pointer to ARC-4 Key

LEN_4 Length Length of data to be read and permuted

PTR_4 Pointer Pointer to data in memory

LEN_5 Length Length of data to be written after permutation

PTR_5 Pointer Pointer to memory buffer for writeback

LEN_6 Length Null

PTR_6 Pointer Null

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Null or pointer to unrelated next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 39

Conclusion

10.4 Inbound TLS Descriptor 2
The second descriptor performs the HMAC of the record header and the record payload. In the example
shown in Table 32, the HMAC is generated using the MD-5 algorithm.

The primary EU is the MDEU, with its mode bits set to cause the MDEU to initialize its context registers,
perform autopadding if the data size is not evenly divisible by 512 bits, and calculate an HMAC-MD-5.

The descriptor header does not designate a secondary EU, so the setting of the snoop type bit is ignored.

At the conclusion of inbound TLS Descriptor 2, the crypto-channel has calculated the HMAC, placed it in
memory, and has reset and released the MDEU. The host can compare the HMAC generated by inbound
TLS descriptor 2 with the HMAC that came as part of the record. If the HMACs match, the record is known
to have arrived unmodified, and can be passed to the application layer.

The next descriptor pointer field can also be null, or point to an unrelated dynamic descriptor.

11 Conclusion
The MPC185 device driver generates most of the descriptors described in this application note; however,
the drivers are structured for general purposes, and may provide more options than certain applications
require. Using more details and specific examples of descriptor programming, the programmer can

Table 32. Inbound TLS Descriptor 2

Field Value/Type Description

Type 0001 common_nonsnoop_non_ afeu 0x31E0_0010 MDEU, HMAC, MD-5, autopad

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Length of MD-5 key

PTR_3 Pointer Pointer to MD-5 key

LEN_4 Length Length of data to be read and permuted

PTR_4 Pointer Pointer to data in memory

LEN_5 Length Null

PTR_5 Pointer Null

LEN_6 Length Length of HMAC to be written to memory (16 bytes for MD-5)

PTR_6 Pointer Pointer to memory location for HMAC write (must be modulo-8)

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Null or pointer to unrelated next descriptor

MPC185 Descriptor Programmer’s Guide, Rev. 1

40 Freescale Semiconductor

Revision History

implement an application-specific minimal driver with higher performance and a smaller memory
footprint.

12 Revision History
Table 33 provides a revision history for this application note.

Table 33. Document Revision History

Rev.
Number

Date Substantive Change(s)

1 10/29/2006 Document template update.

0 08/22/2003 Initial release.

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 41

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

MPC185 Descriptor Programmer’s Guide, Rev. 1

42 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

MPC185 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 43

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN2577
Rev. 1
10/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2003, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
 Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor
 @hibbertgroup.com

	MPC185 Descriptor Programmer’s Guide
	1 Data Packet Descriptor Overview
	2 Descriptor Structure
	Figure 1. Example Data Packet Descriptor

	3 Descriptor Header
	Figure 2. Descriptor Header
	Table 1. Header Bit Definitions
	Figure 3. Op_x Sub Field
	Table 2. EU_Select Values

	4 Execution Unit Mode Data
	4.1 PKEU Mode Register
	Figure 4. PKEU Mode Register: Definition 1
	Figure 5. PKEU Mode Register: Definition 2
	Table 3. Mode Register Routine Definitions

	4.2 DEU Mode Register
	Figure 6. DEU Mode Register
	Table 4. DEU Mode Register Signals

	4.3 AFEU Mode Register
	4.3.1 Host-Provided Context Using Prevent Permute
	4.3.2 Dump Context
	Figure 7. AFEU Mode Register
	Table 5. AFEU Mode Register Signals

	4.4 MDEU Mode Register
	Figure 8. MDEU Mode Register
	Table 6. MDEU Mode Register
	4.4.1 Recommended Settings for MDEU Mode Register

	4.5 RNG Mode Register
	Figure 9. RNG Mode Register
	Table 7. RNG Mode Register Definitions

	4.6 AESU Mode Register
	Figure 10. AESU Mode Register
	Table 8. AESU Mode Register Signals
	4.6.1 Restore Decrypt Key

	4.7 KEU Mode Register
	Figure 11. KEU Mode Register
	Table 9. KEU Mode Register Signals

	5 Descriptor Type Field
	Table 10. Descriptor Types
	Table 11. Descriptor Length/Pointer Mapping
	5.1 Descriptor Type 0001
	Table 12. Descriptor Type 0001 Length/Pointer Mapping

	5.2 Snoop Type Bit
	Figure 12. Snooping

	5.3 Done Notification Bit

	6 Descriptor Length and Pointer Fields
	Figure 13. Descriptor Length Field
	Table 13. Descriptor Length Field Mapping
	Figure 14. Descriptor Pointer Field
	Table 14. Descriptor Pointer Field Mapping
	Figure 15. Next Descriptor Pointer Field
	Table 15. Descriptor Pointer Field Mapping

	7 Descriptor Chaining
	Figure 16. Chain of Descriptors
	7.1 Null Fields

	8 Descriptor Classes
	8.1 Static Descriptors
	Table 16. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt
	Table 17. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt
	Table 18. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

	8.2 Dynamic Descriptors
	Table 19. Representative Descriptor DPD_Type 0001_3DES_CBC_Encrypt

	9 Additional Examples
	9.1 Dynamically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound IPSec ESP)
	Table 20. Representative Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt

	9.2 Dynamically Assigned 3DES-HMAC-SHA-1 Encrypt (Outbound IPSec ESP)
	Table 21. Representative Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt

	9.3 Dynamically Assigned HMAC-MD-5 (Inbound/Outbound IPSec AH)
	Table 22. Representative Descriptor DPD_Type 0001_HMAC-MD-5
	Table 23. Common IPSec Dynamic Descriptor Headers
	Table 24. Additional Multi-Op Dynamic Descriptor Headers

	9.4 Statically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound IPSec ESP)
	Table 25. Representative First Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt
	Table 26. Representative Middle Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt
	Table 27. Representative Final Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt
	Table 28. Common IPSec Static Descriptor Headers

	10 SSLv3.1/TLS1.0 Processing
	10.1 Outbound TLS Descriptor 1
	Table 29. Outbound TLS Descriptor 1

	10.2 Outbound TLS Descriptor 2
	Table 30. Outbound TLS Descriptor 2

	10.3 Inbound TLS Descriptor 1
	Table 31. Inbound TLS Descriptor 1

	10.4 Inbound TLS Descriptor 2
	Table 32. Inbound TLS Descriptor 2

	11 Conclusion
	12 Revision History
	Table 33. Document Revision History

