
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2003, 2006. All rights reserved.

This application note addresses the process and
methodology of porting AltiVec™-enabled software to a
multiprocessing operating environment. The focus of this
application note is not only on speeding up performance in
individual applications, but also on the techniques for
enabling AltiVec in operating systems. The Linux and
VxWorks kernels, combined with their networking stacks,
are used as examples to illustrate the porting process.
Various operating system support options are discussed,
along with an analysis of their performance issues.

To put the AltiVec software porting methodology into
practice, a real network traffic test was performed on a
Freescale G4 PowerPC™ with AltiVec-enabled Linux and a
VxWorks protocol stack. Performance increases were
measured in CPU efficiency and absolute throughput.

Contents
1 Altivec Basics .2
2 Enabling AltiVec in a Multiprocessing Environment . .2

2.1 Linux 2.4 . 3
2.2 VxWorks .3
2.3 Independent Approach for Managing AltiVec
Context .4
2.4 Summary of OS Support Options 6

3 Optimizing Networking Software with AltiVec7
3.1 Software Abstraction .8
3.2 Linux Code Example .8
3.3 Benchmarking/Testing on Network Traffic 9

4 Conclusion .15
5 Appendix . 15
6 References .26
7 Document Revision History .26

Altivec™ Performance Enhancement
in a Multiprocessing Environment
By Jacob Pan

Networking and Computing Systems Group
Freescale Semiconductor, Inc.

Document Number: AN2581
Rev. 1, 07/2006

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

2 Freescale Semiconductor

Altivec Basics

1 Altivec Basics
AltiVec technology delivers a performance boost for many process-intensive applications, such as
high-throughput TCP/IP networking1. Software techniques for enabling AltiVec can be as simple as
linking with AltiVec library functions or as significant as recoding entire algorithms with AltiVec assembly
instructions. Performance speedup is often tied to the software porting effort. The challenge is using
AltiVec efficiently in multitasking environments.

Most embedded systems run some kind of operating system that supports multiprocessing, which permits
concurrent execution of multiple processes on the same hardware. Between time slices and interrupts,
context switching is essential for sharing hardware resources and maintaining coherency among running
processes. Although the exact content of a process varies among different operating systems, a typical
process contains the following:

• A thread of execution, that is, a process program counter

• The CPU register file and optional floating-point registers

• A stack for dynamic variables and function calls

• I/O assignments for standard input, output, and error

• Timers for delays and time-slices (optional for real-time operating systems (RTOS))

• The kernel control structures

• Signal handlers

• Independent memory space (optional)

• Debugging and performance monitoring values (optional)

The CPU register file is a central part of the hardware context. Because context switching may occur
frequently, effectively saving and restoring registers is essential to performance. The introduction of the
AltiVec unit and its own vector register file expands the hardware context by up to 32 quad words. In
addition, AltiVec registers must be protected if used in multiple processes concurrently. Stack operations
are also needed for nested calls to AltiVec-enabled functions. The AltiVec unit introduces some overhead,
which can vary greatly at runtime depending on the context management mechanism, the system clock tick
frequency, and interrupts.

The performance issues of different techniques used by operating systems are analyzed in Section 3. An
AltiVec application programmer should be acquainted with these techniques and use them properly to
achieve highest performance.

2 Enabling AltiVec in a Multiprocessing Environment
Although AltiVec is enabled in most commercial RTOSs, the scope and AltiVec support mechanisms of
different environments may vary greatly, which in turn affects the performance of different applications.
For example, the Linux and VxWorks operating systems represent two distinct methodologies that have
performance trade-offs. Before executing code on the AltiVec unit, you must understand how AltiVec is
supported in these multiprocessing environments.

1. See TCP/IP white paper, “Enhanced TCP/IP Performance with AltiVec,” 2003.

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 3

Enabling AltiVec in a Multiprocessing Environment

2.1 Linux 2.4
The Linux kernel supports AltiVec in the user mode only. The kernel space machine state register (MSR)
setting prohibits AltiVec usage; the user space MSR disables AltiVec by default. When a user process
executes an AltiVec instruction, it first takes an ’AltiVec unavailable’ exception, which leads program
execution to enter kernel mode. The corresponding kernel handler then enables AltiVec for that process
when it returns to user mode. After that, a lazy context switch is performed between AltiVec-enabled
processes. No more AltiVec exceptions should occur for the process that executed the AltiVec instruction.
This approach is nearly identical to the way floating point registers are handled.

The following C code illustrates the control logic in the kernel process switch function:

if ((previous_process->thread.regs

&&(previous_process->thread.regs->msr& MSR_VEC)))

giveup_altivec(previous_process);

The current AltiVec registers are saved in the giveup_altivec() function. A simplified scenario is illustrated
in Figure 1.

Figure 1. Linux AltiVec Support

The benefit of this approach is that the kernel can automatically handle AltiVec context as soon as the user
program needs it. It is not necessary for the user program to tell the kernel which process is using the
AltiVec unit. From a performance perspective, it is inefficient for the AltiVec unit to be repeatedly used in
newly spawned processes; performance may be offset by excessive AltiVec exceptions. Additionally, this
approach excludes AltiVec from some important areas, such as networking stacks because most of the core
networking stack is built into the kernel. Because Linux by default does not support AltiVec usage in
kernel mode, such areas cannot benefit from AltiVec unless AltiVec content is managed independently.
Section 2.3, “Independent Approach for Managing AltiVec Context” introduces such an approach.

2.2 VxWorks
For better performance and to meet real-time constraints, some RTOSs do not force kernel and user
boundaries. For example, in VxWorks®, all tasks execute in privileged mode, and memory spaces are
shared among tasks. The AltiVec support method in VxWorks 5.5 does not use the AltiVec unavailable
exception to trap user programs. It relies on the user program to notify the kernel explicitly whether the
current task is using the AltiVec unit. The VX_ALTIVEC_TASK flag must be set in the options field2

2. VxWorks® for PowerPC Architecture Supplement 5.5.

User Mode

Kernel Mode
Time

User Proc B

Lazy
Switch

AltiVec Function User Proc BUser Proc A

AltiVec
Unavailable
Exception

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

4 Freescale Semiconductor

Enabling AltiVec in a Multiprocessing Environment

whenever a new task is spawned with AltiVec function calls. Otherwise, the system takes an AltiVec
unavailable exception, and the task is suspended. VxWorks run-time support for AltiVec enables the usage
of a vector unit in both the kernel and user programs. Networking and other kernel functions can take
advantage of AltiVec as long as the vector unit is initialized and the running task is spawned with the
AltiVec option.

Because VxWorks uses a slower system tick3 in a preemptable kernel, context switching is minimal if
AltiVec usage is limited to a single task with few interrupts. However, there can be significant overhead
under some scenarios such as networking applications in which the kernel receives frequent interrupts.
Because knowledge of AltiVec usage occurs only at the task level, the kernel often performs unnecessary
save/restores on the AltiVec registers even when the current task is not executing AltiVec functions.

Consider the scenario in Figure 2, which consists of two running tasks both spawned by
VX_ALTIVEC_TASK. Both tasks include some AltiVec code (represented by the shaded areas). AltiVec
function fractions occupy portions of execution time, and it is rare for context switching and interrupts to
occur in the middle of function execution. Therefore, since the kernel has no knowledge of the beginning
or end of AltiVec usage, it has to save and restore VRs every time context switching is needed. In most
cases, this is unnecessary and hinders performance and interrupt latency.

Figure 2. AltiVec Context Switching in VxWorks

2.3 Independent Approach for Managing AltiVec Context
A new approach that manages AltiVec context independently at the function level is aimed at solving the
usage and performance limitations discovered in the Linux and VxWorks kernels. This approach offers
AltiVec users another option that may be suitable for their specific applications. Above all, it allows the
use of AltiVec functions without operating system dependency. This new approach is implemented in
assembly macros, which can be inserted in AltiVec assembly functions as prolog and epilog. C functions
can also declare the assembly macros as inline. This implementation includes the following components:

• A counting semaphore-like atomic counter that measures the number of AltiVec function calls at
the time of execution

• A global independent stack with maximum size = 4

• Stack operation primitives with a binary semaphore lock for stack operations

When testing in the VxWorks environment, the global independent AltiVec stack is initialized in the user
application initialization function. The stack is cleared, and the counter is set to zero. Memory space is
statically allocated for the stack and semaphores. Stack overflow is possible due to the stack size limit of
four but is unlikely. The code can be written so that the scalar version of the function is used when a stack

3. 60 Hz by default.

Time

Save VRs Restore VRs

Priority

Save VRs Restore VRs

Task A

Task B

Task A

Interrupt

Task A

AltiVec Function

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 5

Enabling AltiVec in a Multiprocessing Environment

overflow occurs, or the last AltiVec function to access the stack can be put into busy spin until more stack
space becomes available. The source code format is shown in the following pseudo code:

Altivec_function_begin: // prolog

INCREMENT_VEC_USAGE_COUNTER(r6,r7);

Function_body:

......

Altivec_function_exit: // epilog

DECREMENT_VEC_USAGE_COUNTER(r6,r7);

If a function has multiple exit points, the same epilog can be inserted before all non-conditional exit points.
All conditional exit points have to be merged into a single point where the epilog can be inserted. Figure 3
illustrates the control flow of the new approach.

Figure 3. Control Flow of Independent AltiVec Context Management

N

Y
Y

N

Execute AltiVec Function

PROLOG

INCREMENT_VEC_USAGE_COUNTER

N

Y

Y

Return to Caller

N

Increment the global AltiVec usage count
(atomic load/modify/write).

Counter =>1? Stack locked?

Lock the AltiVec stack.
Push currently-used VRs to the stack.

Unlock the AltiVec stack.

Decrement the global AltiVec usage count
(atomic load/modify/write).

Lock the AltiVec stack.
Pop currently-used VRs from the stack.

Unlock the AltiVec stack.
DECREMENT_VEC_USAGE_COUNTER

EPILOG

Counter >= 1? Stack locked?

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

6 Freescale Semiconductor

Enabling AltiVec in a Multiprocessing Environment

To use the assembly macros, AltiVec software developers must provide two general-purpose
registers (GPR) for the macro performance atomic memory access and stack operations. A convenient
choice is a pair of reusable volatile registers. With the epilog and prolog appended, the overhead of kernel
switching is now transferred to each function, but since nested AltiVec function calls occur rarely in most
applications, the overhead for each function call is just a pair of atomic load and stores that most likely
access a cache-resident global counter. Performance numbers of networking benchmarks will be provided
in Section 3.3, where an AltiVec-enabled protocol stack is tested.

2.4 Summary of OS Support Options
Awareness of potential kernel overhead is important for optimizing performance with AltiVec-enabled
software. System clock ticks and interrupts determine the frequency of saving and restoring AltiVec
context. Non-preemptable kernels often use faster ticks to accommodate the delay derived from blocked
processes with real-time requirements. On the other hand, preemptable kernels tend to use a slower tick
that reduces the overhead of saving/restoring AltiVec context. Interrupts also require saving and restoring
hardware context. They may become significant in some applications, such as networking traffic with a
large amount of small packets. This challenge is not unique to AltiVec but is an issue general to operating
systems; for the same reason, more and more network devices and drivers implement optimization
schemes to cope with flooding interrupts. Usually, system interrupts can be reduced by using
packet-gathering hardware or polling-based drivers.

Table 1 summarizes the performance trade-offs among the options for supporting AltiVec in a multitasking
environment. Overhead comes mainly from saving and restoring vector registers. The column, “Lower
overhead with less frequent interrupts,” refers to applications such as graphics editors, which have
infrequent interrupts. The column, “Higher overhead with more frequent interrupts,” refers to such
applications as the file transfer protocol (FTP), which require frequent interrupts. The column, “Low
overhead with large data block to process,” refers to applications such as image processing software, where
a large amount of data is processed but there are not many interrupts. As the table shows, running an
application with frequent interrupts with the independent approach is more efficient than with the
Linux-like and VxWorks-like schemes; vector registers need only to be saved with nested AltiVec function
calls.

Table 1. Comparison of AltiVec Multitasking Support

Context Management
Schemes

 AltiVec Usage in
Kernel

 Kernel AltiVec
Dependency

Overhead with respect to application types

Lower Overhead
with Less
Frequent
Interrupts

 Higher
Overhead with
More Frequent

Interrupts 1

1 Only if running more than one AltiVec task concurrently. Low level interrupt service routines typically should not use AltiVec.

Low Overhead
with Large Data

Block to
Process

Linux-like No Yes Yes Yes Yes

VxWorks-like Yes Yes Yes Yes Yes

Independent Yes No Yes 2

2 Normally low. High only when AltiVec functions are called frequently with small amounts of data to process, which is not
recommended.

No Yes 3

3 Same as 2

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 7

Optimizing Networking Software with AltiVec

Figure 4 shows the differences in overhead among context switching schemes in VxWorks. A test was
executed on a Freescale Sandpoint system with a MPC7455 processor. A networking benchmark was used
to generate busy TCP/IP traffic over the Ethernet. In the AltiVec cases, some bcopy()4 and all IP checksum
routines were replaced with their AltiVec counterparts. All networking tasks were spawned with the
AltiVec option in the VxWorks task level switching test, whereas no AltiVec tasks were spawned in the
other two cases (scalar and independent). Due to frequent interrupts, the kernel CPU usage increased from
7% to 13% with task level switching. In contrast, the independent approach introduced negligible overhead
to the networking tasks and nearly unchanged kernel overhead (%1).

Figure 4. Overhead Comparison of AltiVec Context Switching Schemes in VxWorks

Again, the actual overhead of each application may vary depending on the factors mentioned in this
discussion; software implementation, such as device drivers, may also alter the outcome. No single
approach is consistently superior to another. If AltiVec is guaranteed not to be used in interrupts,
saving/restoring its context is unnecessary. Therefore, kernel overhead can be minimized, and interrupt
latency remains unchanged.

3 Optimizing Networking Software with AltiVec
This section explains the techniques for porting AltiVec functions to an existing TCP/IP protocol stack. In
most protocol stack implementations, the bottlenecks in large throughput traffic are data movement and
checksum computation. AltiVec technology can dramatically accelerate data movement/processing, which
in turn reduces the bottlenecks5. Faster data movement can further reduce buffer polling time, memory
allocation/deallocation delays, and queuing time. Ultimately, a better orchestrated and efficient buffer
management system can be realized for networking protocols.

4. A memory copy function with reversed destination and source pointers than libc memcpy()
5. TCP/IP white paper

A l t i V e c C o n t e x t S w i t c h i n g O v e r h e a d C o m p a r i s o n

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

1 0 0 %

Id le C P U % 9 1 0 1 5

K e r n e l C P U % 7 1 3 8

B la s t e r /B la s t e e
t a s k C P U %

4 0 4 2 4 2

t N e tT a s k C P U % 4 2 3 5 3 5

O r i g i n a l s c a la r
v x W o r k s

s w i tc h i n g
In d e p e n d e n t

s w i t c h i n g

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

8 Freescale Semiconductor

Optimizing Networking Software with AltiVec

To take advantage of AltiVec technology for a specific algorithm, many software engineers develop
AltiVec code in either intrinsic C or assembly language. Another approach is to use the open source
AltiVec library, which contains many process-intensive C library functions as well as some commonly
used algorithms such as those that compute an IP-style checksum. The latter approach requires much less
coding effort while still preserving the portability of existing software.

3.1 Software Abstraction
Abstracting code into layers is important for software portability; it allows for the reuse of common code
for multiple projects. Using the HTTP or FTP server as an example, Table 5 shows common networking
software layers. It helps to examine which parts of the software should be vectorized for both good
performance and portability.

Figure 5. Common Networking Software Layers

Portability increases as hardware dependency decreases. On the other hand, the complexity increases and
performance decreases as more software layers are created. Often, to use new hardware technology,
hardware-dependent code must be developed. If a performance bottleneck can be identified in a few
isolated function calls or code fractions, those functions can often be substituted with optimized code.
Therefore, performance enhancement can be achieved without extensive rewriting of the software.

Networking software typically includes a socket layer that is defined in the operating system application
programming interface (API). The majority of APIs are somewhat compatible with the POSIX standard.
The socket layer then provides a common interface between the application and the protocol stack.
Optimizing data movement in this common layer can benefit all communication protocols.

3.2 Linux Code Example
This section covers the details of porting to and testing AltiVec functions in Linux networking code. Linux
is used for the code example because it is an open source operating system, and its protocol stack is derived
from the commonly used Berkeley Software Distribution (BSD) Unix operating system. Again,
AltiVec-enabled IP checksum and standard memcpy routines are used in code examples.

The first step is to insert the AltiVec assembly source functions into the following appropriate files in the
kernel source tree:

linux_source_top_dir/arch/ppc/lib/string.S

linux_source_top_dir/arch/ppc/lib/checksum.S

B

HTTP, FTP server

Socket API

(common layer)

TCP/IP protocol stack
and buffer management

Ethernet driver

Poor Portability Better Portability

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 9

Optimizing Networking Software with AltiVec

The original scalar version library functions should be preserved because completely replacing them with
AltiVec functions may result in lower performance or other problems. For example, if memcpy is replaced
with the AltiVec version, it may cause one or more of the following problems:

• Too many processes have to support AltiVec context, causing excessive overhead.

• The AltiVec unit is used during boot time before caches are fully configured.

• AltiVec I/O or non-cacheable memory is used, resulting in either a slowdown or an alignment
problem.

Therefore, naming the AltiVec version with a suffix such as “_vec” allows selective usage of AltiVec
routines for optimal performance and controllable behavior. For example, the following two functions are
inserted into string.S:

_GLOBAL(memcpy_vec)

_GLOBAL(__copy_tofrom_user_vec6)

Unlike memcpy, the IP checksum function is used only in the networking software (mainly in the protocol
stack and its buffer management.) This function can be completely replaced with the AltiVec version.
Although all Freescale G4 PowerPC processors support snooping on the front side bus, attention must be
paid to ensure that the correct mapping of network buffers in cacheable memory is provided. As a result,
the following two functions in checksum.S are vectorized:

csum_partial_copy_generic(src, dst, len, sum, src_err, dst_err)

csum_partial(buff, len, sum)

Hardware abstraction layer access functions also have to be modified to accommodate the changes. The
routines can be copied from:

linux_source_top_dir/include/asm-ppc/uaccess.h

Networking code changes are fairly simple since all the checksum routines have been replaced with the
AltiVec versions, and the impact is transparent. On the other hand, memcpy_vec() is selectively used in
the socket buffer management code. Two socket buffer management files are listed below:

linux_source_top_dir/net/core/iovec.c

linux_source_top_dir/net/core/skbuff.c

The Linux kernel can be rebuilt after the above changes have been made. There is no need to change the
make system or configuration files. Similar changes can be made to the VxWorks stack, which is also
based on a BSD release.

3.3 Benchmarking/Testing on Network Traffic
Benchmarking network performance is a multi-dimensional project. Many factors can affect network
throughput, delay, and packet rate. Since throughput-critical traffic is almost always carried by large
packets, the focus of this experiment is on TCP/UDP bulk data transfer over the standard Ethernet.
Network throughput data is gathered in conjunction with the host processor workload. A Linux kernel with
an AltiVec-enhanced socket and protocol stack is compared with the original scalar version on virtually
identical hardware. Throughout the test, Netperf is used to benchmark the overall network throughput of
the TCP/UDP traffic. PowerPC performance monitoring counters and other software tools are also used

6. An exception table must be inserted for this function to deal with potential page faults caused by loads and stores.

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

10 Freescale Semiconductor

Optimizing Networking Software with AltiVec

for CPU efficiency analysis. Results show that AltiVec-enabled data processing functions contribute to
better performance in both throughput and CPU efficiency.

3.3.1 Test Bench Configuration
As shown in Figure 6, the test bench consists of two identical Freescale Sandpoint evaluation systems.
Each system is equipped with identical PowerPC G4 host processors7 but loaded with separate Linux
kernels with and without AltiVec enhancement. Netperf-generated TCP/UDP traffic is tested across the
Gbit Ethernet channel through a PCI-based network interface card.

Figure 6. Test Bench on Systems Loaded with Linux Kernels With/Without AltiVec

To explore the AltiVec performance enhancement, test cases were divided into the following three
dimensions:

• Different protocols, namely TCP and UDP

• Different socket buffer sizes

• Client versus server

3.3.2 Netperf Results
Socket buffer size plays an important role in achieving better TCP performance; it is often a trade-off
between memory consumption and performance. However, studies have shown that the buffer size should
be no smaller than the bandwidth and delay product. In addition, its relation with cache sizes may also
affect cache hit ratio and consequently affect overall performance.

Figure 7 shows CPU usage variation with respect to different socket buffer sizes. The default socket buffer
size is 16 Kbytes, which is designed for fast Ethernet throughput. With little variation in throughput of
around 328 Mbps, Figure 6 shows that CPU use varies greatly as buffer size changes. The
AltiVec-enhanced kernel shows the best performance enhancement with a socket size of 128 Kbytes,
which is the closest to the bandwidth delay product for Gbit Ethernet. At socket buffer size 32 Kbytes,
which is the same as the L1 cache size, performance degraded for both cases with and without AltiVec.

There is little difference in the throughput because TCP is a connection-oriented protocol; its throughput
is limited by the performance of both connection endpoints as well as network delays.

7. Tested on both MPC74XX and MPC745X family processors on PPMC cards.

Netperf/Netserver Netperf/NetserverGbit

Ethernet

Sandpoint X3 System
MPC74XX Host Processor

Linux 2.4.19 Kernel (Original)

Sandpoint X3 System
MPC74XX Host Processor

Linux 2.4.19 kernel ((((AltiVec))))

PCI Network
Interface Card

PCI Network
Interface Card

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 11

Optimizing Networking Software with AltiVec

Figure 7. Netperf TCP Stream Test with Different Socket Buffer Sizes

On the other hand, the UDP test result in Figure 8 shows a throughput increase from using AltiVec
functions. Because UDP is a connection-less and best-effort protocol, the Netperf benchmark continues
sending data without a payload checksum and does not wait for acknowledgement. Therefore,
performance does not vary with respect to different buffer sizes. At runtime, the AltiVec optimization point
is limited to the memcpy() function only. No payload checksum is involved.

Figure 8. Netperf UDP Stream Test with Different Socket Buffer Sizes

Another important factor that may affect AltiVec enhancement is the internal segmentation and buffer
management mechanism. When bulk data transfers are processed, data should be copied into a buffer with
sufficient head room to grow and also use the maximum segment size that the physical path allows. For
example, Linux segments the TCP bulk data stream into 1460 byte data packets, which is the maximum
data size allowed by the path maximum transfer unit (MTU). In this case, the AltiVec-enabled checksum
and memcpy() functions can be used to process data movement for excellent performance.

C P U U t i l i z a t i o n C o m p a r i s o n o f N e t p e r f T C P S t r e a m T e s t
M P C 7 4 0 0 @ 4 0 0 M H z (~ 3 2 8 M b p s L i v e T r a f f i c)

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

A l t iV e c 3 1 % 6 9 % 3 1 % 9 %

S c a la r 3 8 % 7 0 % 3 5 % 2 0 %

1 6 K B 3 2 K B 6 4 K B 1 2 8 K B

Throughput Comparison of Netperf UDP Stream Test MPC74XX@250MHz

0

100

200

300

400

500

AltiVec 403 415 434 434

Scalar 380 389 393 395

8k skbuf/8k msg 16k skbuf/16k msg 32k skbuf/32k msg 64k skbuf/32k msg

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

12 Freescale Semiconductor

Optimizing Networking Software with AltiVec

A similar experiment was conducted in the VxWorks operating system. Collecting the data sizes used in
AltiVec-enabled checksum and memcpy functions yields the following distribution, which is not the most
favorable to AltiVec enhancement. The graph in Figure 9 was collected while running the Netperf TCP
stream test (bulk data transfer.) It shows that most data segments processed by AltiVec functions are
relatively small even though the final data packets are 1460 bytes long. Extra data fragmentation may have
occurred due to the internal memory buffer cluster management scheme.

Figure 9. VxWorks Data Segment Length Distributions

User data is segmented into data buffers or clusters of various sizes. When data moves between software
layers, AltiVec functions can perform better in large data blocks. It is important to avoid unnecessary
fragmentation of the data. As shown in Figure 10, even though two packets are carrying the same amount
of data, performance is affected differently. With AltiVec, data movement is faster in packet 2 than in
packet 1 because of the way data is fragmented. Packet 2 is represented in two large data clusters but packet
1 is represented in four smaller clusters. Allocating large data clusters wherever possible with room to
grow for the potential packet headers can help reduce the number of small data fragments.

V xWorks checksum/bcopy data length distribu tions

0

200

400

600

800

1000

1200

1400

1600

data points

da
ta

 le
n

gt
h

Sorted
cksum

Sorted
bcopy

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 13

Optimizing Networking Software with AltiVec

Figure 10. Two Same-Size Packets with Different Memory Buffer Segmentation

3.3.3 Analysis with Performance Monitoring Counters
PowerPC G4 processors provide hardware counters to measure important runtime statistics on the device.
The measurement takes place without software intervention except when starting and stopping the
counters. The following graphs show the performance monitoring data collected while running the Netperf
TCP stream test. On a live TCP traffic test, the measurement is taken at the sender side; the significant
difference lies in the percentage of load and store instructions completed during execution time. Because
AltiVec loads and stores are four times wider than its scalar version, the total loads and stores dropped from
49 percent to 38 percent in that particular test case, as shown in Figure 11. Because loads and stores are
high-latency instructions compared to other arithmetic or branch instructions, they consume more time.
Therefore, AltiVec enhancement can speed up overall data movement and enable faster buffer
management, which results in better performance.

Socket Layer

NULL

NULL

Packet 1

Packet 2

mbuf mbuf mbuf mbuf

User data

mbuf mbuf

Data Data Data Data

Cluster Cluster

Data Data

ClusterClusterCluster Cluster

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

14 Freescale Semiconductor

Optimizing Networking Software with AltiVec

Figure 11. Netperf TCP Stream (Live Traffic) Test Performance Monitoring Counts

Figure 12 shows the performance monitoring result of a TCP loopback test8. Again, the AltiVec-enhanced
version reduces loads and stores from 69 percent to 33 percent.

Figure 12. Netperf/Netserver TCP Stream (Loopback) Test Performance Monitoring Counts

Performance monitoring tools provide direct insight into the processor, helping to explain why and from
where the performance speedup is derived. Using the counters can also be helpful in debugging
performance issues such as cache hit/miss ratios, which are closely related to AltiVec performance.

8. Netperf and Netserver are run on the same host system, consuming nearly 100% CPU.

Netperf 16KB LSS Scalar Instruction PMC Distribution

L2 I side misses
0%

stores
23%

L2 Snoop Hits
1%

loads
26%

L2D misses
1%

L1I reloads
1%

L1D misses
10%

Other Inst
38%

Netperf 16KB LSS AltiVec Instruction PMC Distribution

Other Inst
55%

L1I reloads
1%

L2 I side misses
0%

L2D misses
1%

L2 Snoop Hits
1%

L1D misses
4%

stores
17%

loads
21%

Netperf 64KB Localhost Test Instruction PMC Distribution on
Scalar Kernel

loads
35%

stores
34%

other inst
31%

L2I side misses
0%

L2D misses
0%

Netperf 64KB Localhost Test Instruction PMC Distribution
on AltiVec Kernel

loads
16%

stores
17%

other inst
67%

L2D misses
0%

L2I side misses
0%

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 15

Conclusion

4 Conclusion
The AltiVec unit provides Freescale PowerPC G4 processors with extra processing power. This application
note demonstrates major performance enhancement contributed by using a few AltiVec-enabled library
functions in the operating system protocol stacks. With a properly tuned buffer size, an AltiVec-enhanced
protocol stack and socket layer can use half the CPU time to deliver the same TCP stream throughput
compared to the original kernel or deliver more throughput using a simple protocol such as UDP.

This application note also explains and introduces common techniques for enabling AltiVec in
multitasking operating systems. It allows the user to choose the best option to minimize the overhead of
saving and restoring vector registers. Moreover, the independent approach provides an option to use
AltiVec on an RTOS without AltiVec context support. The networking benchmark example demonstrates
that kernel overhead can be minimized with an appropriately selected context management scheme.

In summary, AltiVec can provide major performance enhancement to applications in which large data
blocks or multiple data streams are processed in parallel. Its speedup can be extended beyond the
networking example described in this document to any application with similar parameters. Example
applications are provided on the AltiVec website: simdtech.org.

5 Appendix
AltiVec function prolog and epilog for independent VR context management:

/* load/store VRs with index update by 16B */

#define STVXU(vr, ra, rb) .long\

(31<<26)+((vr)<<21)+((ra)<<16)+((rb)<<11)+(231<<1) ;\

addi rb, rb, 16; \

#define LVXU(vr, ra, rb) .long\

(31<<26)+((vr)<<21)+((ra)<<16)+((rb)<<11)+(103<<1); \

 addi rb, rb, 16; \

/* This macro performs the push operation of the AltiVec stack. It does not have
* to be atomic since the stack frame is incremented by 32 * 16B each time.
* Everything will be restored if preemption occurs in the middle

*/

#define PUSH_ALL_VR(RP, RC)\

lis RP, altivecStack@h ; \

ori RP, RP, altivecStack@l ; \

addi RC, RC, -2; /* zero base, RC has ben incremented */ \

rlwinm RC, RC, 9, 0, 31 ; /* find the end of the stack 16B*32*RC */\

add RP, RP, RC; \

STVXU (0, 0, RP); \

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

16 Freescale Semiconductor

Appendix

STVXU (1, 0, RP); \

STVXU (2, 0, RP); \

STVXU (3, 0, RP); \

STVXU (4, 0, RP); \

STVXU (5, 0, RP); \

STVXU (6, 0, RP); \

STVXU (7, 0, RP); \

STVXU (8, 0, RP); \

STVXU (9, 0, RP); \

STVXU (10, 0, RP); \

STVXU (11, 0, RP); \

STVXU (12, 0, RP); \

STVXU (13, 0, RP); \

STVXU (14, 0, RP); \

STVXU (15, 0, RP); \

STVXU (16, 0, RP); \

STVXU (17, 0, RP); \

STVXU (18, 0, RP); \

STVXU (19, 0, RP); \

STVXU (20, 0, RP); \

STVXU (21, 0, RP); \

STVXU (22, 0, RP); \

STVXU (23, 0, RP); \

STVXU (24, 0, RP); \

STVXU (25, 0, RP); \

STVXU (26, 0, RP); \

STVXU (27, 0, RP); \

STVXU (28, 0, RP); \

STVXU (29, 0, RP); \

STVXU (30, 0, RP); \

STVXU (31, 0, RP); \

#define POP_ALL_VR(RP, RC)\

lis RP, altivecStack@h ; \

ori RP, RP, altivecStack@l ; \

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 17

Appendix

addi RC, RC, -1; /* zero base */ \

rlwinm RC, RC, 9, 0, 31 ; /* find the end of the stack 16B*RC */\

add RP, RP, RC; \

LVXU (0, 0, RP); \

LVXU (1, 0, RP); \

LVXU (2, 0, RP); \

LVXU (3, 0, RP); \

LVXU (4, 0, RP); \

LVXU (5, 0, RP); \

LVXU (6, 0, RP); \

LVXU (7, 0, RP); \

LVXU (8, 0, RP); \

LVXU (9, 0, RP); \

LVXU (10, 0, RP); \

LVXU (11, 0, RP); \

LVXU (12, 0, RP); \

LVXU (13, 0, RP); \

LVXU (14, 0, RP); \

LVXU (15, 0, RP); \

LVXU (16, 0, RP); \

LVXU (17, 0, RP); \

LVXU (18, 0, RP); \

LVXU (19, 0, RP); \

LVXU (20, 0, RP); \

LVXU (21, 0, RP); \

LVXU (22, 0, RP); \

LVXU (23, 0, RP); \

LVXU (24, 0, RP); \

LVXU (25, 0, RP); \

LVXU (26, 0, RP); \

LVXU (27, 0, RP); \

LVXU (28, 0, RP); \

LVXU (29, 0, RP); \

LVXU (30, 0, RP); \

LVXU (31, 0, RP); \

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

18 Freescale Semiconductor

Appendix

#define INC_VEC_USAGE(RC, RP)\

500: \

lis RP, altivecUsage@h; \

ori RP, RP, altivecUsage@l;\

lwarx RC, 0, RP; \

addi RC, RC, 1; \

stwcx. RC, 0, RP; \

bne- 500b; \

 cmpi cr6, 0, RC, 1; \

 beq cr6, 502f; \

501: \

 PUSH_ALL_VR(RP, RC)\

lis RP, altivecStackSize@h; \

 ori RP, RP, altivecStackSize@l; \

 lwz RC, 0(RP); \

 addi RC, RC, 32; \

 stw RC, 0(RP); \

502: nop \

#define DEC_VEC_USAGE(RC, RP)\

600: \

lis RP, altivecUsage@h; \

ori RP, RP, altivecUsage@l;\

lwarx RC, 0, RP; \

addi RC, RC, -1; \

stwcx. RC, 0, RP; \

bne- 600b; \

 cmpi cr6, 0, RC, 0; \

 beq cr6, 602f; /* no stack op */ \

601: \

 POP_ALL_VR(RP, RC)\

lis RP, altivecStackSize@h; \

 ori RP, RP, altivecStackSize@l; \

 lwz RC, 0(RP); \

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 19

Appendix

 addi RC, RC, -32; \

 stw RC, 0(RP); \

602: nop ; \

Usage INC_VEC_USAGE(r6,r7)

Example code for using performance monitoring counters in Linux, compiled by GNU C compiler9:

/***

 * Copyright Freescale, Inc. 1989-2003 ALL RIGHTS RESERVED

 *

 * $ID:$

 *

* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE, solely in conjunction with the development
* and marketing of your products which use and incorporate microprocessors
* which implement the PowerPC(TM) architecture manufactured by
* Freescale and provided you comply with all of the following restrictions
* i) this entire notice is retained without alteration in any
* modified and/or redistributed versions, and
* ii) that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or
* otherwise under any patents or trademarks of Freescale, Inc.

*

 * The SOFTWARE is provided on an "AS IS" basis and without warranty. To
* the maximum extent permitted by applicable law, Freescale DISCLAIMS ALL
* WARRANTIES WHETHER EXPRESS OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY
* AGAINST INFRINGEMENT WITH REGARD TO THE SOFTWARE
* (INCLUDING ANY MODIFIED VERSIONS THEREOF) AND ANY ACCOMPANYING
* WRITTEN MATERIALS.

*

* To the maximum extent permitted by applicable law, IN NO EVENT SHALL
* Freescale BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT
* LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
* INTERRUPTION, LOSS OF BUSINESS INFORMATION,
* OR OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE.
* Freescale assumes no responsibility for the maintenance and support of
* the SOFTWARE.

 **/

#include<stdio.h>

#include <linux/config.h>

#include <linux/module.h>

9. ANSI uses “__asm__” for inline assembly function whereas GCC uses “asm”.

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

20 Freescale Semiconductor

Appendix

#include <linux/kernel.h>

#include <linux/types.h>

#include <linux/compiler.h>

#include <linux/slab.h>

#include <linux/delay.h>

#include <linux/init.h>

#include <linux/ioport.h>

#define MPC74XX_UMMCR0 936

#define MPC74XX_UPMC1 937

#define MPC74XX_UPMC2 938

#define MMCR2 944

#define BAMR 951

#define MMCR0 952

#define PMC1 953

#define PMC2 954

#define SIAR 955

#define MMCR1 956

#define PMC3 957

#define PMC4 958

#define MMCR0_PMC1SEL_LEFT_SHIFT_BITS (31-25)

#define MMCR0_PMC2SEL_LEFT_SHIFT_BITS (0)

#define MMCR1_PMC3SEL_LEFT_SHIFT_BITS (31-4)

#define MMCR1_PMC4SEL_LEFT_SHIFT_BITS (31-9)

/* PMC1 */

#define MMCR0_PMC1SEL_CYCLES (1)

#define MMCR0_PMC1SEL_INST (2)

#define MMCR0_PMC1SEL_INST_DISP (4)

#define MMCR0_PMC1SEL_VSIU (8)

#define MMCR0_PMC1SEL_LOAD_MISS (11)

#define MMCR0_PMC1SEL_DISP_STALL (13)

#define MMCR0_PMC1SEL_STORE (21)

#define MMCR0_PMC1SEL_L1HITS (24)

#define MMCR0_PMC1SEL_IL1_MISS (32)

#define MMCR0_PMC1SEL_L2ISIDE_MISS (34)

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 21

Appendix

#define MMCR0_PMC1SEL_STALL_BIU (37)

#define MMCR0_PMC1SEL_ALTIVEC_LOAD (48)

/* PMC2 */

#define MMCR0_PMC2SEL_CYCLES (1)

#define MMCR0_PMC2SEL_INST (2)

#define MMCR0_PMC2SEL_ITLB_MISS (6)

#define MMCR0_PMC2SEL_LOAD (11)

#define MMCR0_PMC2SEL_L1D_MISS (17)

#define MMCR0_PMC2SEL_IL1_RELOAD (25)

#define MMCR0_PMC2SEL_L2D_MISS (26)

#define MMCR0_PMC2SEL_SNOOP_HIT (37)

/* PMC3 */

#define MMCR1_PMC3SEL_CYCLES (1)

#define MMCR1_PMC3SEL_INST (2)

#define MMCR1_PMC3SEL_SNOOP_BUS (26)

#define MMCR1_PMC3SEL_L2SNOOP_HITS (27)

#define MMCR1_PMC3SEL_STALL_LRCTR (15)

/* PMC4 */

#define MMCR1_PMC4SEL_CYCLES (1)

#define MMCR1_PMC4SEL_INST (2)

#define MMCR1_PMC4SEL_STALL_FETCH (14)

#define MSR_PMM ((31-29)<<0x01)

#define DRV_MODULE_NAME"JPAN MPC7400 PMM TEST"

#define DRV_MODULE_VERSION"0.99"

#define DRV_MODULE_RELDATE"Fev 12, 2003"

#define KERN_INFO "<6>"

MODULE_AUTHOR("Jacob Pan);

MODULE_DESCRIPTION("Kernel module to access performance monitors");

MODULE_LICENSE("Freescale General Business Use");

typedef struct sPmcEvent

{

 int pmc_number;

 int event_number;

 const char name[80];

} tPmcEvent;

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

22 Freescale Semiconductor

Appendix

/* define a test matrix */

tPmcEvent pmcEvent[] =

 {

 { 1, MMCR0_PMC1SEL_CYCLES, "Processor Cycles "},

 { 1, MMCR0_PMC1SEL_L1HITS, "L1 Cache hits "},

 { 1, MMCR0_PMC1SEL_INST_DISP, "Instruction Dispatched "},

 { 1, MMCR0_PMC1SEL_IL1_MISS, "L1 I-Cache Fetch Misses "},

 { 1, MMCR0_PMC1SEL_L2ISIDE_MISS, "L2 I-Cache Side Misses "},

 { 1, MMCR0_PMC1SEL_LOAD_MISS, "Load Miss Latency over threshhold "},

 { 1, MMCR0_PMC1SEL_STORE, "Stores Completed "},

 { 1, MMCR0_PMC1SEL_ALTIVEC_LOAD, "AltiVec Loads "},

 { 1, MMCR0_PMC1SEL_DISP_STALL, "Dispatch Stalls Due to Spec. Branch "},

 { 1, MMCR0_PMC1SEL_STALL_BIU, "Stalls BIU "},

 { 2, 1, "Processor Cycles "},

 { 2, 2, "Inst Completed "},

 { 2, MMCR0_PMC2SEL_ITLB_MISS, "I-TLB MIsses, no translation "},

 { 2, MMCR0_PMC2SEL_IL1_RELOAD, "L1 I-Cache Block Reloads "},

 { 2, MMCR0_PMC2SEL_LOAD, "Loads Completed"},

 { 2, MMCR0_PMC2SEL_L2D_MISS, "L2D Misses"},

 { 2, MMCR0_PMC2SEL_L1D_MISS, "L1D Misses"},

 { 2, MMCR0_PMC2SEL_SNOOP_HIT, "Snoop Hits"},

 { 3, 1, "Processor Cycles "},

 { 3, MMCR1_PMC3SEL_INST, "Inst. Completed "},

 { 3, MMCR1_PMC3SEL_STALL_LRCTR, "Stall on LR|CTR "},

 { 3, 26, "Bus Snoops "},

 { 3, 27, "L2 Snoop Hits "},

 { 4, 1, "Processor Cycles"},

 { 4, 2, "Instructions Completed"},

 { 4, 14, "Stalled Cycles Br. Fetch"},

 {-1, 0, "the end"}

 };

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 23

Appendix

int pmc_read()

{

 unsigned long ummcr0=0xDEADBEEF, upmc1, upmc2=0;

 unsigned long ummcr1=0xDEADBEEF, upmc3, upmc4=0;

 unsigned long msr =0;

 asm volatile ("mfmsr %0 \n\t"

: "=r" (msr));

 asm volatile ("mfspr %0, 936\n\t"

"mfspr %1, 937\n\t"

"mfspr %2, 938\n\t"

: "=r" (ummcr0), "=r" (upmc1), "=r" (upmc2));

 asm volatile ("mfspr %0, 940\n\t"

"mfspr %1, 941\n\t"

"mfspr %2, 942\n\t"

: "=r" (ummcr1), "=r" (upmc3), "=r" (upmc4));

printk(KERN_INFO "%d\n%d\n%d\n%d\n",\

 upmc1, upmc2, upmc3, upmc4);

 return 0;

}

static int

print_mmcr_event(unsigned long mmcr0, unsigned long mmcr1)

{

 int event[4];

 int i, j;

 event[0] = (mmcr0 >>6)&0x0000007F;

 event[1] = mmcr0 & 0x0000003F;

 event[2] = mmcr1 >>27;

 event[3] = (mmcr1 >>22)&0x0000001F;

 // printk("Seleted PMM counts are \n");

 for(i=0; i<=3; i++)

 {

 printk("PMC%d:", i+1);

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

24 Freescale Semiconductor

Appendix

 j=0;

 while(pmcEvent[j].pmc_number != -1)

{

 if((pmcEvent[j].pmc_number) == (i+1) && \

 (pmcEvent[j].event_number== event[i]))

 printk("%s(%d)",pmcEvent[j].name, event[i]);

 j++;

}

 printk("\n");

 }

 return -1;

}

static int __init pmm_init(void)

{

 unsigned long msr =0, mmcr0=0, mmcr1=0;

 unsigned long mmcr0_mask=0, mmcr1_mask=0;

 /* Set test case mmcrX selection */

 mmcr0_mask = (MMCR0_PMC1SEL_DISP_STALL<<MMCR0_PMC1SEL_LEFT_SHIFT_BITS) \

 |(MMCR0_PMC2SEL_INST<<MMCR0_PMC2SEL_LEFT_SHIFT_BITS);

 mmcr1_mask = (MMCR1_PMC3SEL_STALL_LRCTR<<MMCR1_PMC3SEL_LEFT_SHIFT_BITS) \

 |(MMCR1_PMC4SEL_CYCLES<<MMCR1_PMC4SEL_LEFT_SHIFT_BITS);

 print_mmcr_event(mmcr0_mask, mmcr1_mask);

 printk("-- MPC74XX Performance Monitoring --\n");

 asm volatile ("mfmsr %0 \n\t"

: "=r" (msr));

msr |= MSR_PMM;

 asm volatile ("mtmsr %0 \n\t"

: "=r" (msr));

 asm volatile ("mfmsr %0 \n\t"

: "=r" (msr));

printk(KERN_INFO "NOW MSR = 0x%08X\n", msr);

 /* select events for PMC 1 to 2 controlled by MMCR0 */

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 25

Appendix

 asm volatile ("mfspr %0, 952 \n\t"

: "=r" (mmcr0));

 mmcr0|=mmcr0_mask;

 asm volatile ("mtspr %0, %1 \n\t"

:: "i"(MMCR0),"r" (mmcr0));

 /* select events for PMC 3 to 4 controlled by MMCR0 */

 asm volatile ("mfspr %0, 956 \n\t"

: "=r" (mmcr1));

 mmcr1|=mmcr1_mask;

 asm volatile ("mtspr %0, %1 \n\t"

:: "i"(MMCR1),"r" (mmcr1));

return 0;

}

static void __exit pmm_cleanup(void)

{

/* read pmc before exit */

 pmc_read();

 asm volatile ("mtspr %0, %3 \n\t"

"mtspr %1, %3 \n\t"

"mtspr %2, %3 \n\t "

:: "i" (MMCR0), "i" (PMC1), "i" (PMC2), "r" (0));

 asm volatile ("mtspr %0, %3 \n\t"

"mtspr %1, %3 \n\t"

"mtspr %2, %3 \n\t "

:: "i" (MMCR1), "i" (PMC3), "i" (PMC4), "r" (0));

 printk(KERN_INFO "*********** PMM Cleanup ***********\n");

}

module_init(pmm_init);

module_exit(pmm_cleanup);

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

26 Freescale Semiconductor

References

6 References
[1] Gary R. Wright, and W. R. Stevens “TCP/IP Illustrated Volume 2” 1993.

7 Document Revision History
Table 2 provides a revision history for this application note.

Table 2. Document Revision History

Revision Number Change(s)

0 Initial release

1 Updated the document in the Freescale template. No substantive changes.

Altivec™ Performance Enhancement in a Multiprocessing Environment, Rev. 1

Freescale Semiconductor 27

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN2581
Rev. 1
07/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2003, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 Altivec Basics
	2 Enabling AltiVec in a Multiprocessing Environment
	2.1 Linux 2.4
	2.2 VxWorks
	2.3 Independent Approach for Managing AltiVec Context
	2.4 Summary of OS Support Options

	3 Optimizing Networking Software with AltiVec
	3.1 Software Abstraction
	3.2 Linux Code Example
	3.3 Benchmarking/Testing on Network Traffic

	4 Conclusion
	5 Appendix
	6 References
	7 Document Revision History

