
Application Note

AN2621/D
Rev. 0, 11/2003

MPC8220i PF300 Image
Coprocessor Operation

Andy Masia
32-bit Embedded
Controller Division

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MPC8220i contains an integrated Image Coprocessor called PF300 that can be
programmed to accelerate many common color and monochrome image-processing tasks. The
PF300 functions can be invoked from page description language interpreters, by firmware that
implements copy pipelines for MFP (AIO) devices or digital copiers, or from other image
processing applications.

This application note provides an overview of each of the image processing algorithms
performed by the PF300. It is addressed to algorithm developers, color and imaging scientists,
and printer controller applications developers. More detail can be found in Chapter 32 of the
MPC8220i Microcontroller Preliminary Reference Manual (MPC8220IRM/D, rev. 1.19).

In order to simplify the explanation in this application note, the following two assumptions
have been made: (1) data input to the pipeline is RGB raster data that is stored color and pixel
interleaved in contiguous memory, 8 bits per pixel per component, and (2) the color space
transformation is from RGB to CMYK. This is a very common mode of operation but the
PF300 Image Coprocessor is highly configurable and can be programmed to process data that
is not contiguous in memory and has other than three color components for input and other
than four components for output as assumed in this discussion.

The image processing functions implemented in the PF300 are: image resampling (geometric
transformation), color space conversion, and halftone screening. These functions can be
configured into a data processing pipeline that operates at the speed of the 120-MHz
MPC8220i memory bus. This speed is equivalent to 214 monochrome or 53 color pages per
minute at 600 dpi if the data processing pipeline runs without interruption. Due to the depth
of the pipeline, the PF300 is most suited to processing blocks of raster data. The PF300 can
be configured to process monochrome or color data, and each of the elements of the pipeline
can be enabled or disabled separately.

A data processing flow chart of the PF300 Image Coprocessor is shown in Figure 1.

For More Information On This Product,

 Go to: www.freescale.com

uctor, Inc., 2004. All rights reserved.

The Resampling Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. PF300 Image Coprocessor Data Flow

The PF300 is controlled by registers and makes use of both dedicated and system memory in its operation.

1 The Resampling Unit

1.1 Algorithm Description
The Resampling Unit (RU) operates on the locations (addresses) of pixels in the two-dimensional source
and destination reference coordinate systems. The RU performs a linear transformation of output
(destination) pixel coordinates to compute the required coordinates of the nearest neighbor input (source)
pixel. In general, this allows mapping of a rectangular source image to a parallelogram destination image.
The destination image can be rotated to an arbitrary angle and shifted by an arbitrary number of pixels with
respect to the source image coordinate system. The RU also generates a “shadow” image that is a 1-bit per
destination pixel mask indicating whether or not the corresponding destination pixel is valid (that is,
whether the associated source pixel was inside or outside of the source image). Most applications will
substitute white space or the current background color for destination pixel data that is not valid.

Algebraically, the coordinate transform can be expressed by two simultaneous equations as shown below.

Xdest = a × Xsrc + b × Ysrc + tx
Ydest = c × Xsrc + d × Ysrc + ty

Or, in matrix notation,

In these equations, Xdest and Ydest are the pixel coordinates of the destination image, and Xsrc and Ysrc
are the corresponding coordinates in the source image. a, b, tx, c, d, and ty are constants. tx and ty represent
translation (shift) in the x and y directions, respectively.

Resampling
Unit

Color
Conversion

Unit

Screening
Unit

Bus I/F Unit

CMYK
Buffer

CCU
RAM

Tile
RAM

Destination
Image

Source
Image

[Xdest Ydest 1] [Xsrc Ysrc 1]
a c 0

b d 0

tx ty 1

=

MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

Color Conversion Unit (CCU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.2 Computational Details
The RU functions by stepping through the destination pixel array and, with each step, incrementing a pair
of high-precision registers that contain the coordinates of the destination pixel transformed back to the
coordinate system of the source image. Each time the destination pixel location is incremented by one pixel,
the location of the new source pixel is calculated by adding the contents of two registers to the contents of
the X dimension source register and the contents of two other registers to the contents of the Y dimension
source register. The values of the four summing registers represent the unit vector in the destination image
transformed back to the source image space. The X and Y dimension source registers are initialized with the
coordinates of the upper left corner of the destination image (1,1) transformed back into the source image
coordinate system. Thirty two bits each of integer and fraction (64 bits in total) represent the X and Y
dimension source image coordinate registers and each of the four registers that are used to increment them
to assure sufficient range and precision. The initial contents of Xsrc and Ysrc and the values of the four
summing registers can be found by inverting the system of equation 1.

Once the required source pixel coordinates are found, they are translated into the linear address space of the
input pixel array so that the pixel values can be fetched from source memory and loaded into the next stage
of the pipeline, the Color Conversion Unit (CCU). The PF300 asserts itself as memory bus master in order
to read the required data from SDRAM. Any resulting source image coordinate that falls outside of the
source image is marked with a 0 in the “shadow” image mask indicating an invalid pixel value in the output
buffer.

A data flow chart of the RU is shown in Appendix A, “Resampling Unit Flow Chart,” and a C language
source code listing of the RU implementation in the MPC8220i is supplied in Appendix B, “Resampling
Unit C Code.”

2 Color Conversion Unit (CCU)

2.1 Algorithm Description
The Color Conversion Unit (CCU) performs a lookup and piecewise interpolation in a sparse
three-dimensional lookup table. A sparse lookup table is one in which only a subset of the possible inputs
are represented by data. Outputs for intermediate values are calculated by interpolation between the points
that are supplied. The CCU computes the interpolation in dedicated hardware.

Even though the table can be addressed with as many as 16,777,215 (224) different color combinations, each
individual dimension only has 256 possible addresses. The CCU takes advantage of this fact by
precomputing many intermediate results and pointers that can then be accessed for use in real time by simple
lookups into several much smaller (256 element) tables. The use of this block allows the three-dimensional
lookup with a table that is much smaller than the data size used to address it. Up to four tables can be loaded
and interpolated simultaneously, each addressed by the same data triplet. This allows the interpolation of all
components for four colorant printing systems with a single pass of the color data through the pipeline.
Examples of color space conversions that can be performed using this method include the following:

• CIE Lab −> CMYK
• CIE Lab −> RGB
• RGB −> CMYK
• RGB −> CIE Lab
• RGB −> K
• CMYK −> K
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

Color Conversion Unit (CCU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Both tri-linear and tri-nonlinear interpolations can be implemented. The algorithm allows non-uniform grid
point spacing (that is, the table indices must be located on a three-dimensional grid, but the grid can be either
irregular or regular, and the table need not be of equal size in each of the three address dimensions). This
allows selection of grid points to coincide precisely with certain important colors including the 16
“Neugebauer” primaries: white paper, C, M, Y, K, CM, CY, CK, MY, MK, YK, CMY, CMK, CYK, MYK,
and CMYK. It is important to locate at least some of these colors on table grid points so that (a) they are
interpolated with zero interpolation error, and (b) the color gamut of the printer is fully utilized by assuring
that the “tent poles” of the interpolating table are located at the extremes of the interpolation space. The use
of irregular grids also allows for finer table granularity in regions of color space where the color conversion
function has the most curvature. This reduces possible interpolation error while maintaining a relatively
small table size.

Following the three-dimensional lookup and interpolation each output channel is further processed by its
unique one-dimensional look up table to affect tonal corrections prior to piping the converted data to the
next processing block, the Screening Unit (SU).

2.2 Computational Details
Each of the output colors is represented by a sparse three-dimensional (meaning that they are addressed in
three-dimensions) color lookup table that can be addressed by 8-bit values in each of the three independent
variables that constitute its “input” space. The color lookup tables are stored in system RAM. Not all of the
2563 possible inputs to the table are represented in the table, however, which is why it is referred to as a
“sparse” table. Instead, each of the color tables consists of 8-bit colorant output values for each of M table
entries. The table entries are indexed in each of the three input dimensions by indices (I1, I2, and I3), which
have values (1, 2, … Ni). The total number of entries in the table is M (= N1 × N2 × N3). The function of the
CCU is to receive a triplet of 8-bit RGB values, to find the eight table entries that surround it, to get the 8-bit
color values of each of the surrounding table entries, and to compute the interpolated result for the RGB
triplet.

Dedicated lookup tables are supplied to contain the indices and the remainders for each possible input data
value in each of the three input dimensions. To effect linear interpolations the tables of indices are
programmed with the index number corresponding to the next lower input (address) value that has a table
entry, and the tables of remainders are programmed with the distances between the input (address) value and
the next lower input (address) value that has a table entry. The remainders are expressed as the fractional
distances between the input (address) value of the next lower address with a table entry and the one next
higher with a table entry encoded as 8-bit values. To facilitate the calculations, the remainder table is
programmed with the bit-wise complement of the computed remainder (contents = 255 – remainder). An
example of typical remainder and index tables are shown in Table 1.

Table 1. Example of CCU Index and Remainder Tables for Linear Interpolation

Address
Index Table

Contents
Remainder

Remainder
Table

Contents
Comments

0 1 0 255 Start of range of addresses associated with first index

1 1 85 170 One-third distance through span

2 1 170 85 Two-thirds of distance through span

3 2 0 255 Start of range of addresses associated with second table entry

4 2 28 227 One-ninth distance through span
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

Color Conversion Unit (CCU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5 2 57 198 Two-ninths distance through span

6 2 85 170 Three-ninths distance through span

7 2 113 142 Four-ninths distance through span

8 2 142 113 Five-ninths distance through span

9 2 170 85 Six-ninths distance through span

10 2 198 57 Seven-ninths distance through span

11 2 227 28 End of range of addresses associated with second table entry

12 3 0 255 Start of range of addresses associated with third table entry

13 3 16 239 One-sixteenth distance through span

14 3 32 223 Two-sixteenths distance through span

15 3 48 207 Three-sixteenths distance through span

16 3 64 191 Four-sixteenths distance through span

17 3 80 175 Five-sixteenths distance through span

18 3 96 159 Six-sixteenths distance through span

19 3 112 143 Seven-sixteenths distance through span

20 3 128 128 Eight-sixteenths distance through span

21 3 143 112 Nine-sixteenths distance through span

22 3 159 96 Ten-sixteenths distance through span

23 3 175 80 Eleven-sixteenths distance through span

24 3 191 64 Twelve-sixteenths distance through span

25 3 207 48 Thirteen-sixteenths distance through span

26 3 223 32 Fourteen-sixteenths distance through span

27 3 239 16 Fifteen-sixteenths distance through span

28 4 0 255 Start of range of addresses associated with fourth table entry

. . . .

. . . .

. . . .

240 10 0 255 Start of range of addresses of tenth table entry

241 10 23 232

242 10 46 209

243 10 70 185

244 10 93 162

Table 1. Example of CCU Index and Remainder Tables for Linear Interpolation (continued)

Address
Index Table

Contents
Remainder

Remainder
Table

Contents
Comments
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

Color Conversion Unit (CCU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 1 shows the contents of typical index and remainder tables for one of the three input dimensions. In
this example, the table has 12 indices, or table entries (Ni = 12, for this dimension). The number of indices
is programmable within the range of 2 to 256. The first table entry spans three input addresses, so the
remainder table for addresses in this span are programmed with 255–0×(255/3), 255–1×(255/3), and
255–2×(255/3). The second table entry spans nine input addresses, so the remainders table is programmed
with 255–0×(255/9), 255–1×(255/9), 255–2×(255/9), 255–3×(255/9), … 255–7×(255/9), and
255–8×(255/9). The index and remainder table entries for the rest of the addresses are programmed in a
similar manner. Each of the three input channels has its own set of index and remainder tables, so there is
no requirement for the color table to be indexed the same way in each dimension.

The three-dimensional color lookup table itself is programmed with the desired output values for the input
addresses that constitute the first of each span (that is, those with zero remainders, 255 as programmed
values). They are aligned with the indices.

In use, a triplet of 8-bit color values for each pixel is input to the block. Each individual 8-bit color value is
used to address its separate index and remainder tables. This results in the coordinates of a
three-dimensional color lookup table grid point (the three indices) and a three-dimension vector
representing the fractional distance to the next table grid point in each dimension (the reminders). Since the
three indices cannot be interpreted directly as an address to the color lookup table memory, they must first
be combined to form the addresses of the eight color lookup table grids that surround the point being
interpolated. This is accomplished by using the indices to address the CCU offset lookup table memory and
summing the result to form a physical address of the location in system memory containing the output color
data for the required grid point. The CCU offset lookup table must be programmed with the proper decoding
algorithm according to the following equations:

Input color channel 1: Offset Value = BaseAdr + (I–1) × 4
Input color channel 2: Offset Value = N1 × (I–1) × 4
Input color channel 3: Offset Value = N1 × N2 * (I–1) × 4

In each of these equations, the BaseAdr is the starting address of the sparse color lookup table in system
memory. I is the index number for the table. N1 and N2 are the number of table indices in each of the first

245 10 116 139

246 10 139 116

247 10 162 93

248 10 185 70

249 10 209 46

250 10 232 23 End of range of addresses of tenth table entry

251 11 0 255 Start of range of addresses of eleventh table entry

252 11 64 191

253 11 128 128

254 11 191 64 End of range of addresses of eleventh table entry

255 12 0 255 Last table entry

Table 1. Example of CCU Index and Remainder Tables for Linear Interpolation (continued)

Address
Index Table

Contents
Remainder

Remainder
Table

Contents
Comments
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

The Screening Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

two index dimensions, respectively. The additional factor of 4 is required if the normal three-color input
(RGB) to four-color output (CMYK) conversion is being implemented.

The sparse output color lookup table data is stored sequentially in system memory starting at the BaseAdr.
The first 32 bits of the color lookup table contains 1 byte for each of the output colorant values (in this case
C, M, Y, and K) for the first table grid point. The second 32 bits of the colorant lookup table contains the
output colorant values for the second grid point (indexed in the first input dimension) and so forth.

Once the indices are converted to colorant lookup table addresses, the output color data are fetched from the
color lookup table. The vector of remainders is then used to perform the interpolation within the eight
surrounding colorant values to produce an 8-bit colorant value for each output channel for the current pixel.
The interpolation is computed in parallel for each of the output channels.

The last stage of the CCU consists of individual one-dimensional lookup tables for each of the interpolated
output channels. The one-dimensional lookup tables are loaded into a dedicated PF300 memory block
referred to as the CCU output lookup table, which must not be confused with the sparse three-dimensional
colorant lookup table located in system memory and discussed in the preceding paragraph.

3 The Screening Unit

3.1 Algorithm Description
The Screening Unit (SU) of the PF300 implements a standard threshold array algorithm (See Adobe
Systems Incorporated, PostScript Language Reference Manual, Second Edition, Section 6.4.5 pages
316-317) for halftone screening. A two-dimensional threshold array, also referred to as a tile, memory is
loaded with 8-bit threshold values. Image pixel data is read into the Screening Unit in pixel-by-pixel,
line-by-line (raster) order. With each input pixel the tile memory is addressed modulo (the tile X dimension
size), the threshold value at that address is accessed, and a comparison is made with the current input pixel.
If the input pixel value is less than the corresponding threshold array value then the binary output for that
pixel is set to 1, otherwise it is set to zero. The binary output pixel is then stored in the output buffer, the
next input pixel is input to the block, and the process repeats. At the end of each raster line the Y threshold
array address is incremented and evaluated modulo (the tile Y dimension size) and the entire process
repeats.

The result is a binary image that represents the input gray scale image through area, instead of intensity,
modulation. The threshold array is applied as if it were replicated in a step and repeat fashion across the
entire image.

3.2 Computational Details
The SU in the PF300 Image Coprocessor contains programmable registers for each of the (up to) four screen
tiles to control the following:

• X dimension tile size

• Y dimension tile size

• Start address of the tile in threshold array memory

• X dimension starting pixel phase

• Y dimension starting pixel phase
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

The Screening Unit

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The first three registers allow the application that initializes the screening function to define a
two-dimensional pixel array user space in which to work. The data held in these registers allow the
Screening Unit to map the user space to the processor’s linear address space. The last two registers allow
the starting phase of each threshold array tile to be aligned to other threshold array tiles or to the beginning
of the image. More detail about the location of the screener block control registers and the threshold array
value memory can be found in Chapter 27 of the MPC8220i Reference Manual. A flow chart of the
algorithm is presented in Appendix C, “Screening Unit Flow Chart,” and the C code representation of the
halftone screening algorithm as implemented in the PF300 is shown in Appendix D, “Screening Unit C
Code.”

The maximum tile size is limited by the amount of memory dedicated to this function. The implementation
in the MPC8220i is limited to 4 Kbytes. Applications developers have significant flexibility to configure
tiles of arbitrary dimensions that fit within this memory.

Each of up to four tiles can be configured with arbitrary X and Y dimensions with only two restrictions: each
tile must be at least two scan lines high (Y dimension), and all of the tiles together must not exceed the
4 Kbytes of available memory. There are no further restrictions. A separate, dedicated, memory is provided
for the tiles, which is mapped into the general purpose SDRAM address space so that the core processor can
read and write tile data.

If the target engine prints only a single color plane at a time (including monochrome printers) and it can
afford the overhead of reloading the screen tiles between processing of each color plane, then all 4 Kbytes
can be used for the single tile. In some applications, particularly when “FM” screens are employed, the same
tile can be used for each of the four-color planes so long as they are addressed out of phase from one another.
In this case the entire 4 Kbytes of memory can be dedicated to the single threshold array tile, and each color
plane can address it simultaneously in proper phase through appropriate initialization of the X and Y
dimension starting pixel phase registers.
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A
Resampling Unit Flow Chart

No
Within
source

rectangle?

Set bit in
Shadow
Buffer

Pass
value from

Source
pixel SX,

SY

Clear bit
in Shadow

Buffer

Pass
value
0xaa

Increment
counters SX, DX

Start

DY < DYMAX?

Horizontal
counters to

line start
value

Increment
counters SY, DY

Done

No

No
DX < DXMAX?

Yes

Yes

DX and DY are the destination
pixel coordinates
SX and SY are the source pixel
coordinates
DXMAX and DYMAX are the
upper limits of the destination
image rectangle
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B
Resampling Unit C Code
Data types:

 Uint33 // unsigned 33-bit integer.

 Uint32 // unsigned 32-bit integer.

 Sint32 // signed 32-bit integer.

 Uint8 // unsigned 8-bit integer.

 Uint1 // Single bit value

 Adding a "*" to any of the data types indicates it is the address of

 a value of the specified type.

 Adding a "[]" to any of the data types indicates it is an array with

 allocated storage of the specified type. The number between the

 "[]" indicates how many elements of storage of the specified type

 are allocated.

PDLA initial condition register definitions:

 Sint32 sxmini; // Source x integer position at top left of dest

 Uint32 sxminf; // Source x fraction position at top left of dest

 Sint32 symini; // Source y integer position at top left of dest

 Uint32 syminf; // Source y fraction position at top left of dest

 Sint32 dsxi; // delta x integer in source per dest pixel delta x

 Uint32 dsxf; // delta x fraction in source per dest pixel delta x

 Sint32 dsyi; // delta y integer in source per dest pixel delta x

 Uint32 dsyf; // delta y fraction in source per dest pixel delta x

 Sint32 dvsxi; // delta x integer in source per dest pixel delta y

 Uint32 dvsxf; // delta x fraction in source per dest pixel delta y

 Sint32 dvsyi; // delta y integer in source per dest pixel delta y

 Uint32 dvsyf; // delta y fraction in source per dest pixel delta y

 Uint32 nsrc; // Highest source line index, Should be Uint8!

 Uint32 w; // Source width (in pixels)

 Uint8 *src_p[256]; // Addresses of the left most pixel of source scan lines

 Uint32 dx; // Number of pixels to step destination in x

 Uint32 dy; // Number of pixels to step destination in y

 Uint8 *shadow; // Address to store result for shadow buffer

 Uint8 *dest; // Address to store result

Temporary registers:

 Uint32 x; // Current horizontal position in destination

 Uint32 y; // Current vertical position in destination

 Sint32 sxi; // Current integer portion of position in source

 Uint33 sxf; // Current fractional portion of position in source

 Sint32 syi; // Current integer portion of position in source

 Uint33 syf; // Current fractional portion of position in source

 Uint1 *shad_p; // Pointer to bit strings for shadow result

Resample loops:
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 // Loop over the number of lines in the destination

 for (y = 0; y <= dy; y++)

 {

 // Reset the current position to beginning of next destination line

 sxi = sxmini;

 sxf = sxminf;

 syi = symini;

 syf = syminf;

 // Reset shad_p to current shadow position

 shad_p = (Uint1 *)shadow;

 // Loop over the width of the destination

 for (x = 0; x <= dx; x++)

 {

 // Check to see if location is within the source rectangle

 if ((sxi >= 0) && (sxi < w) &&

 (syi >= 0) && (syi < nsrc))

 {

 // Location is inside, set the correspoding bit in shadow

 shad_p[x] = 1;

 // Assign the value of the source pixel to the destination

 dest[x] = src_p[syi][sxi];

 }

 else

 {

 // Location is outside, clear corresponding bit in shadow

 shad_p[x] = 0;

 // Assign a constant value to the destination

 dest[x] = 170;

 }

 // Advance the source indices by the horizontal components

 sxi = sxi + dsxi;

 sxf = sxf + dsxf;

 syi = syi + dsyi;

 syf = syf + dsyf;

 // Add "carry" bit to integer locations if necessary

 if (sxf >= (1 << 32))

 {

 sxi = sxi + 1;

 sxf = sxf - (1 << 32);

 }

 if (syf >= (1 << 32))

 {

 syi = syi + 1;

 syf = syf - (1 << 32);

 }

 } // This completes the horizontal loop
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 // Advance the source indices by the vertical components

 sxmini = sxmini + dvsxi;

 sxf = sxminf + dvsxf;

 symini = symini + dvsyi;

 syf = syminf + dvsyf;

 // Add the "carry bit to the integer locations if necessary

 if (sxf >= (1 << 32))

 {

 sxmini = sxmini + 1;

 sxf = sxf - (1 << 32);

 }

 if (syf >= (1 << 32))

 {

 symini = symini + 1;

 syf = syf - (1 << 32);

 }

 // Store the corrected for "carry" values

 sxminf = sxf;

 syminf = syf;

 // Advance the result addresses

 shadow = shadow + ((dx + 1) / 8);

 dest = dest + (dx + 1);

 } // This completes the vertical loop
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix C
Screening Unit Flow Chart

Start

DY < DYMAX?

Set TX to
Initial TX

Increment
 TY, DY

Done

No

No
DX < DXMAX?

Yes

Yes

TY > TYMAX?
No Yes

Set TY to
0

Yes Pixel <
Threshold?

Clear bit in
Result

memory

Set bit in
Result

memory

Increment counters
TX, DX

No

TX < TXMAX? Set TX to 0
No Yes
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix D
Screening Unit C Code
Data types:

 Uint32 // unsigned 32-bit integer.

 Sint32 // signed 32-bit integer.

 Uint8 // unsigned 8-bit integer.

 Uint1 // Single bit value

 Adding a "*" to any of the data types indicates it is the address of

 a value of the specified type.

 Adding a "*" to a reference to a data type means use the value

 pointed to by the variable for the operation.

PF300 initial condition register definitions:

 Uint8 *tilep; // Pointer to top left pixel of tile

 Uint32 tileo; // Offset in bytes to left most pixel on initial line

 Uint32 tx; // Number of pixels in horizontal dimension of tile

 Uint32 ty; // Number of pixels in vertical dimension of tile

 Uint32 txo; // Initial horizontal position within tile (phase)

 Uint32 tyo; // Initial horizontal position within tile (phase)

 Uint32 dx; // Number of pixels to step horizontally in destination

 Uint32 dy; // Number of pixels to step vertically in destination

 Uint1 *dest; // Address to store result

Temporary registers:

 Uint32 txc; // Current horizontal position in tile

 Uint32 tyc; // Current vertical position in tile

 Uint8 *tp; // Pointer to current value in tile

 Uint8 pixel; // Value of the current input pixel

 Uint32 x; // Current horizontal position in destination

 Uint32 y; // Current vertical position in destination

Screening loops:

 // Initialize the current vertical location in the tile

 tyc = tyo;

 // Loop over the number of lines in the destination

 for (y = 0; y <= dy; y++)

 {

 // Reset the current horizontal location in the tile to inital pos.

 txc = txo;

 // Calculate the address of the initial position in tile.

 // tileo is incremented/wrapped at the bottom of the vertical loop.

 tp = tilep + tileo + txo;

 // Loop over the number of pixels in a line of the destination

 for (x = 0; x <= dx; x++)
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 {

 // Get the next pixel from the pipeline.

 pixel = getNextPixel();

 // Compare the threshold to the pixel value

 if (pixel < *tp)

 *dest = 1;

 else

 *dest = 0;

 // Increment the destination

 dest = dest + 1;

 // Increment the horizontal position in tile

 txc = txc + 1;

 tp = tp + 1;

 // Check to see if tile needs to wrap horizontally

 if (txc >= tx)

 {

 // Reset current horizontal position in tile

 txc = 0;

 // Reset tile pointer to beginning of line.

 tp = tp - tx;

 }

 } // This closes horizontal loop

 // Increment the vertical location in the tile

 tyc = tyc + 1;

 tileo = tileo + tx;

// Check to see if tile needs to wrap vertically.

 if (tyc >= ty)

 {

 // Reset to top most row of tile

 tyc = 0;

 tileo = 0;

 }

 } // This closes vertical loop
MPC8220i PF300 Image Coprocessor Operation

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2621/D, Rev. 0, 11/2003

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	MPC8220i PF300 Image Coprocessor Operation
	Figure 1. PF300 Image Coprocessor Data Flow
	1 The Resampling Unit
	1.1 Algorithm Description
	1.2 Computational Details

	2 Color Conversion Unit (CCU)
	2.1 Algorithm Description
	2.2 Computational Details
	Table 1. Example of CCU Index and Remainder Tables for Linear Interpolation
	0
	1
	0
	255
	1
	1
	85
	170
	2
	1
	170
	85
	3
	2
	0
	255
	4
	2
	28
	227
	5
	2
	57
	198
	6
	2
	85
	170
	7
	2
	113
	142
	8
	2
	142
	113
	9
	2
	170
	85
	10
	2
	198
	57
	11
	2
	227
	28
	12
	3
	0
	255
	13
	3
	16
	239
	14
	3
	32
	223
	15
	3
	48
	207
	16
	3
	64
	191
	17
	3
	80
	175
	18
	3
	96
	159
	19
	3
	112
	143
	20
	3
	128
	128
	21
	3
	143
	112
	22
	3
	159
	96
	23
	3
	175
	80
	24
	3
	191
	64
	25
	3
	207
	48
	26
	3
	223
	32
	27
	3
	239
	16
	28
	4
	0
	255
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	240
	10
	0
	255
	241
	10
	23
	232
	242
	10
	46
	209
	243
	10
	70
	185
	244
	10
	93
	162
	245
	10
	116
	139
	246
	10
	139
	116
	247
	10
	162
	93
	248
	10
	185
	70
	249
	10
	209
	46
	250
	10
	232
	23
	251
	11
	0
	255
	252
	11
	64
	191
	253
	11
	128
	128
	254
	11
	191
	64
	255
	12
	0
	255

	3 The Screening Unit
	3.1 Algorithm Description
	3.2 Computational Details

	Appendix A Resampling Unit Flow Chart
	Appendix B Resampling Unit C Code
	Appendix C Screening Unit Flow Chart
	Appendix D Screening Unit C Code

