
AN2637/D
1/2004

Software SCI for the
MC68HC908QT/QY MCU

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By: Pavel Lajsner
Freescale Czech System Labs
Roznov p.R., Czech Republic

General Description

Motorola’s PC master system provides a method for remotely controlling
almost any kind of application imaginable via a graphical user interface.

The system consists of software running on a PC, with a second piece of
software embedded in the target application. The PC and the target
communicate with each other using a standard method: a PC serial COM port
and a MCU SCI port.

Figure 1. Connection between PC and Target Board

This system can be used for debugging, monitoring, and controlling the target
application on-the-fly. It can also be used for intuitive, graphical demonstrations
of the target board application functionality.

The embedded application must be ported to platforms (processor) used on the
target board. The PC master software remains the same, independent of the
target platform. It basically reads and writes the application variables and
provides other functions needed for monitoring, controlling, or debugging the
target board application.

The PC master software, its usage, protocol, and a few target implementations
are described in several Freescale documents and application notes. See the
References section.

TARGET

BOARD

RS-232

PC MASTER

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M68HC08 Family and PC Master

The PC master software implementation on SCI-equipped M68HC08 MCUs is
straightforward. Because the original embedded core was written in C coding
language, the developer must prepare only the initialization and control
routines for the M68HC08 SCI.

For M68HC08 MCUs that do not have an available SCI, the serial
communication must be provided by means of software. This application note
provides an example of a C code implementation of a software SCI for the PC
master software. Such a solution has some limitations, which are also
discussed in this document.

This software SCI solution can be also used in other applications where the
limitations are acceptable. See details in System Limitations.

Figure 2 gives an example of the traditional PC master solution (on M68HC08
MCUs with true SCI).

Figure 2. Traditional (SCI-Equipped) M68HC08 PC Master Software

In this scenario, only dedicated SCI pins are occupied by PC master, plus some
CPU time is consumed serving SCI communication requests. The application
code runs independently of the PC master. Typically, very few restrictions arise
within this combination.

M68HC08 PC MASTER SOFTWARE

DEDICATED SCI PINS

SCI-EQUIPPED M68HC08

APPLICATION CODE

SCI MODULE
2 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
M68HC08 Family and PC Master

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PC Master on
M68HC08 MCUs
That Do Not Have
Available SCI

In contrast, the implementation of a software SCI requires more of the CPU
resources. This example demonstrates implementing a fully interrupt-driven
solution that uses only one channel of the 16-bit M68HC08 timer.

Figure 3. M68HC08 PC Master Software for M68HC08 MCUs That Don’t
Have SCI

Figure 3 is a relational diagram of the system components. The software
implementation was mainly targeted for the lower cost M68HC08 Family
members (QT/QY Family), so the main goal was to use the least possible MCU
resources.

In addition, a single-wire version of the communication has been developed.
The PC master running on the smallest 8-pin QT/QY MCU can be easily
demonstrated. This version occupies only one pin and requires minimum
internal MCU resources.

Basic 8-Pin CPU PC
Master Demo

The software implementation gives a little more freedom, so the usual TTL to
RS-232 level-shifting interface can be omitted entirely. Such a solution is
perfectly functional on recent motherboards. Here, the RS-232 receivers are
formed by Schmitt trigger gates with a threshold voltage of near 1 V, which
allows them to be driven by TTL levels (5 V/0 V). Although this doesn’t fully
conform to the RS-232 specifications, simple, non-critical demo applications
may use it. A short cable should be used.

SOFTWARE SCI IMPLEMENTATION

M68HC08 PC MASTER SOFTWARE

GENERIC I/O PINS

SCI-LESS M68HC08

APPLICATION CODE

TIM (16-BIT TIMER)

CHANNEL 0 CHANNEL 1
Software SCI MC68HC908QT/QY MCU 3

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4. Basic Demo Schematic

Figure 4 shows a very simple configuration of the single-wire communication.
Pin 3 (RS-232 output from the PC) goes through a level-limiting circuit (R1, D1)
directly to PTA0 (pin 7) of the MCU. The same pin is also used to transmit data
from the MCU to the PC (via RS-232 input, pin 2).

All other components (marked by asterisk) are used only for power supply (R2*,
D2*, C1*, D3*), or for demonstrating the output indicator (R3*, D4*).

J1

Cannon 9 / female

5
9
4
8
3
7
2
6
1

R1 3k3

+

C1* 22uF/6V

R2*
120

D2*
1N4148

D4* LED

D1
5V1

U1

MC68HC908QT4CP

81
2
3
4 5

6
7

VssVdd
PTA5/OSC1
PTA4/OSC2
PTA3/RST PTA2/IRQ

PTA1/AD1/TCH1
PTA0/AD0/TCH0

R3* 1k

D3* 5V1

* = USED ONLY FOR:

DEMONSTRATING THE OUTPUT INDICATOR (R3*, D4*)
POWER SUPPLY (R2*, D2*, C1*, D3*)
4 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Software SCI Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software SCI Description

This section describes the software SCI routines developed for PC master
software to be used on M68HC08 MCUs that do not have an available SCI.
Several requirements were defined from the start:

• All routines written in C language

• All processes are fully interrupt driven

• Communication is half-duplex (only one action—receive or transmit—is
allowed at a time)

• Uses the least possible CPU resources (ideally, one channel of the
16-bit timer only)

Software Versions As described above, there are several versions of the software. All features are
selected at the compile time by the set of several #define directives in
pcmastersoftsci.h header file.

directive SCISINGLEWIRE
defined: the software will conform to the single-wire communication, the

transmit line will go to the third state (allowing reception over the
same line)

undefined: the transmit software will behave in the normal way (transmit
line will be active all of the time)

directive SCIINV
defined: the SCI communication signal polarity is inverted (idle = 0 V,

mark = 5 V). This allows omission of the RS-232 level shifters and
inverters (see Figure 4)

undefined: regular SCI communication signal polarity is maintained, (idle
= 5 V, mark = 0 V), and the RS-232 level shifters are required.

directive SCITXDPINISTIMERPIN
defined: transmit pin uses the output compare feature of 16-bit timer

module.
undefined: transmit pin is software controlled, several other define

directives are required to define which pin is used:
#define TXDPIN PTA3
#define TXDPINDDR DDRA_BIT3
#define TXDPINPUE PTAPUE_BIT3
Software SCI MC68HC908QT/QY MCU 5

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

directive SCIRXDPINISTIMERPIN
defined: receive pin uses the input capture feature of 16-bit timer module.
undefined: receive pin is software controlled; several other define

directives are required to define which pin is used:
#define RXDPIN PTA3
#define RXDPINDDR DDRA_BIT3
#define RXDPINPORT PTA
#define RXDPINMASK 0x08

In addition, one more define specifies that the KBI feature of a respective pin is
used and what its number (name) is:

#define KBIECH KBIER_KBIE3

Because KBI can detect only the falling edge, this version cannot be used
together with the SCI signal inversion (SCIINV).

Receive Pin Because one version of the software SCI implementation uses the 16-bit timer,
the timer’s input capture feature is used to detect the start bit of serial
communication. If using this version, the receive pin must be on the timer pin.

Another version of the software was also developed to provide an alternative
receive pin option. It uses the QT/QY Family’s keyboard interrupt (KBI) module,
which is able to detect a falling edge (idle to mark transition, start bit), as the
receive pin.

With this version of the software, the receive pin must be on one of the
following:

• Timer pin

• Any pin that is KBI capable (all port A pins on QT/QY Family)

Transmit Pin The selection of the transmit pin is less critical, and there are two options. If the
transmit pin is also the timer pin, the output compare feature of the 16-bit timer
module can be used, thus the edge generation is precise. This is the preferred
solution.

Otherwise, the transmit pin can be any I/O pin since it can be software-driven
by the timer interrupt routine. It has been proven that this version works very
well too.
6 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Software SCI Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The software SCI routines generally use just one timer channel. The selected
channel is defined symbolically by the following define directives:

#define SCITSC TSC
#define SCITSCCH TSC0
#define SCITSC_CHF TSC0_CH0F
#define SCITSC_IE TSC0_CH0IE
#define SCITCNT TCNT
#define SCITCH TCH0
#define SCITMOD TMOD
#define IV_SCITMR IV_TCHO

Software SCI API The software SCI routines communicate with the application program over
several functions that together create an API (application program interface).
These functions are declared in pcmastersoftsci.h header file:

Table 1. Software SCI API Functions

Function Description

void SCI0Init(void);

This function must be called at application start. It will initialize the
necessary variables and timers. The SCI reception will be enabled
on exiting this routine. The standard settings (9600 bps baud rate,
8 bits, no parity) is used for PC master communication.

void SCI0Write(char ch);
Calling this routine will initiate SCI transmission of the character. No
checks are made on whether the SCI transmitter is empty or
whether SCI reception is in progress.

void SCI0InterruptTx_CB(void);

This is a call-back function that must be defined in the user
application. Only one source of transmit interrupt is currently
implemented — ‘Transmitter Empty’ condition, meaning that a new
character can be transmitted. When the current transmission of a
character is finished, this function is called by the SCI and
SCI0Write() can be called again.

void SCI0InterruptRx_CB(void);

This is a call-back function that must be defined in the user
application. Only one source of receive interrupt is implemented —
‘Receiver Buffer Full’ condition, meaning that a new character was
received and must be fetched by the application. This is done by the
calling SCI0Read() function.

char SCI0Read(void);

This function returns the SCI value last received. It must be called
after being signalled by SCI0InterruptRx_CB() function but
before the next character is fully received. Otherwise, the previous
value in the receive buffer is overwritten and lost.

void SCI0RxEnable(void);
This auxiliary function simply re-establishes reception (usually after
the transmission is finished). Any transmission or reception in
progress is aborted.
Software SCI MC68HC908QT/QY MCU 7

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Software SCI API Usage

RECEIVESCI0Init();

SCI0InterruptRx_CB();

CALLS SCI0Read()

‘A’ RETURNED

SCI0Read();

SCI0InterruptRx_CB();

CALLS SCI0Read()

‘b’ RETURNED

SCI0Read();

SCI0Write(‘W’);

SCI0InterruptTx_CB();

CALLS SCI0Write(‘y’);

SCI0Write(‘y’);

SCI0RxEnable();

SCI0InterruptTx_CB();

ENABLE RECEPTION NOW

TRANSMIT

RECEPTION NOT POSSIBLE

DURING THIS TIME *

* RECEPTION NOT POSSIBLE BECAUSE ONLY ONE TIMER IS SHARED BETWEEN TRANSMISSION AND RECEPTION

‘A’

‘b’

‘W’

‘y’
8 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Detailed Software Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Detailed Software Description

This section provides a detailed description of all software versions.

Transmission

Output Compare
Driven Transmit

This version of the transmit routine uses the output compare (OC) feature of the
16-bit timer (hardware sets a pre-defined level on timer output at a pre-defined
time). This provides the precise timing for the transmit signal which is fully
determined by the 16-bit timer hardware and independent of any process that
could delay the generation of software SCI signals.

The transmission starts with SCI0Write() routine, which initializes the timer
output compare, to generate a falling edge (as the start bit condition, idle to
mark transition) and enables the timer interrupt.

All subsequent events are interrupt driven. The timer hardware sets out the
proper level on the timer pin and generates the timer interrupt request. The
interrupt service routine then configures the timer for the next output compare
event. When all bits are sent out, further timer interrupts are disabled and the
SCI0InterruptTx_CB() call-back is called. In this routine, the user code
determines whether more characters are to be sent.

Figure 6 shows the mutual dependencies in the time domain.

Figure 6. Output Compare Driven Transmission Time Chart

9 8 7 6 5 4 3 2 1 0

D0 D1 D2START D3 D4 D5 D6 D7 STOP

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

SciCnt

TIME

O
U

TP
UT

C
O

M
PA

R
E

SC
I0

IN
TE

R
RU

PT
TX

_C
B(

)

O
U

TP
UT

C
O

M
PA

R
E

SC
I0

W
RI

TE
()
Software SCI MC68HC908QT/QY MCU 9

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7 contains flow charts of the routines related to this version of software.

Figure 7. Output Compare Driven Transmit Software Flow Chart

SCI0Write()

RESET TIMER OC LOGIC
FILL IN SHIFT REGISTER

SciCnt = 9
INITIALIZE OC FOR START

BIT AND SCHEDULE IT
ENABLE TIMER INTERRUPT

RETURN

Timer_Int()

SCHEDULE NEXT OC
SciCnt--

SciCnt > 1
TRANSMITTED

SCHEDULE THE PROPER LEVEL

SHIFT OUT THE BIT TO BE
RETURN

SciCnt == 1

SCHEDULE NEXT OC
SciCnt--

SCHEDULE THE IDLE LEVEL
 FOR NEXT OC (STOP BIT)

RETURN

DISABLE FURTHER
 INTERRUPTS
CALL BACK

 SCI0InterruptTx_CB()

RETURN

DATA BITS:

STOP BIT:

 FOR NEXT OC

IN SINGLEWIRE MODE
 SET TXD PIN AS INPUT

YES

YES

NO

NO
10 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Detailed Software Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Direct Port Control
Transmit

This version of the transmit routine does not use pin hardware control features
of the 16-bit timer. Actual control of the transmit line is through software, using
I/O access to the pin dedicated to transmission. This basically allows using any
output-capable pin for transmission. The timer is still used to generate the
periodic interrupt requests.

The transmission starts with SCI0Write() routine, which initializes the timer
and directly clears the transmit line to indicate a start bit condition.

All subsequent events are output compare interrupt driven. The timer
generates timer interrupt requests. The timer interrupt service routine then
sets/clears the transmit line and configures the timer for the next output
compare event. Any other interrupt request that has just been processed will
delay execution of the timer interrupt service routine, thus also delaying the
transmit signals. See details in System Limitations.

When all bits are sent out, further interrupts are disabled and the
SCI0InterruptTx_CB() call-back is called. In this routine, the user code
determines whether more characters are to be sent.

Figure 8 shows the mutual dependencies in the time domain.

Figure 8. Direct Port Control Transmission Time Chart

Figure 9 contains the flow charts of routines related to this version of software.

SC
I0

W
R

IT
E(

)

9 8 7 6 5 4 3 2 1 0

D0 D1 D2START D3 D4 D5 D6 D7 STOP

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

O
U

TP
UT

C
O

M
PA

R
E

SciCnt

TIME

O
U

TP
UT

C
O

M
PA

R
E

SC
I0

IN
TE

RR
U

PT
TX

_C
B(

)

Software SCI MC68HC908QT/QY MCU 11

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9. Direct Port Control Transmit Software Flow Chart

SCI0Write()

RESET TIMER OC LOGIC
FILL IN SHIFT REGISTER

SciCnt = 9
SET TXD PIN TO MARK

(START BIT), SETUP DDR
SCHEDULE NEXT INTERRUPT

RETURN

Timer_Int()

SHIFT OUT THE BIT
MODIFY THE TXD PINSciCnt > 1

SciCnt--
SCHEDULE NEXT OC

RETURN

SciCnt == 1
SET TXD PIN TO IDLE
SCHEDULE NEXT OC

SciCnt--
RETURN

RETURN

DATA BITS:

STOP BIT:

ENABLE TIMER INTERRUPT

DISABLE FURTHER
 INTERRUPTS

CALL BACK
 SCI0InterruptTx_CB()

IN SINGLEWIRE MODE
 SET TXD PIN AS INPUT

(STOP BIT)

YES

YES

NO

NO
12 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Detailed Software Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reception

Input Capture Start Bit
Detection

This version of the receive routine uses the input capture hardware feature of
the 16-bit timer to a detect start bit condition (falling edge, idle) to mark
transition. This limits the selection of the receive pin to the timer pins only.
Reception may start after the receive software and hardware is initialized using
SCI0RxEnable() function.

The actual reception starts with a falling edge on the receive line that generates
the input capture interrupt. In the input capture interrupt service routine, the
timer is reconfigured to generate output compare events.

All subsequent events are driven by periodic output compare interrupts. The
timer interrupt service routine then reads the level on the receive line. Any other
interrupt request that has just been processed will delay execution of the timer
interrupt request routine, thus also delaying the reading of receive signals. See
details in System Limitations.

When all bits have been received, reception is re-initialized using
SCI0RxEnable() function. Then the SCI0InterruptRx_CB() call-back is
called. In this routine, the user code should read the data that was actually
received.

Figure 10 shows the mutual dependencies in the time domain.

Figure 10. Input Capture Start Bit Detection Software Time Chart

Figure 11 contains the flow charts of routines related to this version of
software.

IN
PU

T
C

AP
TU

R
E

0 2 3 4 5 6 7 8 91 10 0

SC
I0

RX
EN

AB
LE

()

D0 D1 D2START D3 D4 D5 D6 D7 STOP

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

O
U

TP
U

T
CO

M
PA

R
E

SciCnt

TIME

SC
I0

R
XE

N
AB

LE
()

SC
I0

IN
TE

R
R

U
PT

_R
XC

B(
)

Software SCI MC68HC908QT/QY MCU 13

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11. Input Capture Start Bit Detection Software Flow Chart

SCI0RxEnable()

SET RXD PIN AS OUTPUT
CLEAR SHIFT REGISTER

SciCnt = 0
SET INPUT CAPTURE TO
 CATCH START BIT EDGE

ENABLE TIMER INTERRUPT

RETURN

Timer_Int()

SCHEDULE NEXT OC INTO
MIDDLE OF START BITSciCnt == 0

SciCnt++
(HALF BIT PERIOD)

RETURN

SciCnt > 9 RETURN

RETURN

START BIT EDGE:

INITIALIZE RECEPTION
 CALLING SCI0RxEnable()

CALL BACK
 SCI0InterruptRx_CB()

FILL IN SCDR REGISTER

SCAN COMPLETE PORT
CONTAINING RXD PIN

SHIFT IN RECEIVED BIT VALUE
SCHEDULE NEXT OC FOR

SciCnt++
 FULL BIT PERIOD

YES

YES

NO

NO
14 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Detailed Software Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Keyboard Interrupt
(KBI) Start Bit
Detection

This version of the receive routine uses the KBI feature to detect a start bit
condition (falling edge, idle to mark transition). This allows the option to use any
KBI-capable pin as the receive pin. Reception may start after the receive
software and hardware is initialized using the SCI0RxEnable() function.

The actual reception starts with a falling edge on the receive line that generates
the keyboard interrupt. In the keyboard interrupt service routine, the keyboard
interrupt is disabled and the timer is configured to generate output compare
events.

All subsequent events are driven by periodic output compare interrupts. The
timer interrupt service routine then reads the level on the receive line. Any other
interrupt request that has just been processed will delay execution of the timer
interrupt request routine, thus also delaying the reading of receive signals. See
System Limitations for details.

When all bits have been received, reception is re-initialized using the
SCI0RxEnable() function. Then the SCI0InterruptRx_CB() call-back is
called. In this routine, the user code should read the data that was actually
received.

Figure 12 shows the mutual dependencies in the time domain.

Figure 12. Keyboard Interrupt Start Bit Detection Software Time Chart

Figure 13 contains the flow charts of routines related to this version of
software.

KE
YB

O
AR

D
IN

TE
R

RU
PT

SC
I0

RX
EN

AB
LE

()

0 2 3 4 5 6 7 8 91 10 0

SC
I0

R
XE

N
AB

LE
()

D0 D1 D2START D3 D4 D5 D6 D7 STOP

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

O
U

TP
U

T
C

O
M

PA
R

E

SciCnt

TIME

SC
I0

IN
TE

R
RU

PT
_R

XC
B(

)

Software SCI MC68HC908QT/QY MCU 15

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 13. Keyboard Interrupt Start Bit Detection Software Flow Chart

NOTE: Because the keyboard interrupt hardware can only detect falling edges, only
the regular polarity levels can be serviced.

SCI0RxEnable()

SET RXD PIN AS OUTPUT
CLEAR SHIFT REGISTER

SciCnt = 0
SET KEYBOARD INTERRUPT
 TO CATCH START BIT EDGE
ENABLE TIMER INTERRUPT

RETURN

Timer_Int()

SciCnt > 9 RETURN

RETURN

INITIALIZE RECEPTION
 CALLING SCI0RxEnable()

CALL BACK
 SCI0InterruptRx_CB()

FILL IN SCDR REGISTER

MEMORIZE COMPLETE PORT
WITH RXD PIN

SHIFT IN RECEIVED BIT VALUE
SCHEDULE NEXT OC FOR

SciCnt++
 FULL BIT PERIOD

YES

NO

Kbd_Int()

RETURN

SCHEDULE NEXT OC INTO
 MIDDLE OF START BIT

SciCnt++
(HALF BIT PERIOD) & ENABLE

DISABLE FURTHER KEYBOARD
 INTERRUPTS
16 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Detailed Software Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

System Limitations This software SCI implementation sets several limitations to the user
application. In other words, software SCI requires that several conditions be
met to work correctly. The limitations namely concern the timer channel that is
used for communication.

Modulo Limitation This implementation has been designed for a user application that shares the
16-bit timer module. The user application’s primary mode for the 16-bit timer is
PWM generation on the other timer channel. The PWM frequency is constant
and relatively low during the application execution.

The software SCI routines do not directly use the modulo feature (overflow
feature), but they take into consideration that the user application sets the
modulo to some (constant) value. To calculate the timer value for the next
interrupt event, the routines must know that modulo value, using #define
directive:

directive TMRMODULO

Specific Modulo
Values

This particular requirement allows a flexible selection of the PWM frequency,
so rounded binary values for the modulo counter could be used. Here, the
2n – 1 values (such as 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF,
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF) are effectively implementing modulo
calculations by a simple logical AND operation:

 modulo_value = nonmodulo_value & TMRMODULO;

where nonmodulo_value could be higher than TMRMODULO. This is
very effective on M68HC08 arithmetic and requires only two assembly
ASM instructions (one of which is removed during the optimizations).

If the user application requires any other value, all modulo calculations must be
rewritten into standard modulo C function:

 modulo_value = nonmodulo_value % TMRMODULO;

This implementation then uses the C library modulo function, which is much
longer. It will possibly work too, but it has never been tested for the time
consumption.
Software SCI MC68HC908QT/QY MCU 17

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Modulo Can’t Be
Less...

There is another condition for the modulo value selection. To generate the SCI
speed, for example 9600 bps, the PWM frequency must not be higher than
9600 Hz. In this case, the distance between two SCI bits is longer than the total
modulo timer cycle. This implementation would not work under such conditions.

In the case of QT/QY M68HC08 running an internal oscillator (at 3.2 MHz bus
clock) and 9600 bps baud rate, the limitation for modulo value is
3.200.000/9.600 = 333 (0x014D), so the modulo values 0x01FF, 0x03FF,
0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, and 0xFFFF are feasible.

Timer Must Run All
the Time

Another system limitation is that the user software must not stop the timer. In
such a case, the software SCI would stop working too.

The user code must also carefully reconfigure the timer registers, so it will not
modify any setting that might affect the software SCI timer settings.

Interrupt Latency
Low, Interrupts
Enabled

Except for output compare driven transmit software, all other versions of the
software access serial lines using direct I/O instructions. This means that if the
software SCI timer interrupt is delayed for some reason (such as another
interrupt being serviced), the SCI signals are delayed too. This delay may lead
to corruption of the character being sent/received. The number of other
interrupt service routines should be kept to a minimum (which is good practice
anyway), or they should be implemented as interruptible.

If the user application must disable interrupts, the amount of off-time should
also be kept to a minimum.

No detailed numbers (time restrictions) are provided in this application note
because no measurement of error rate was carried out.

In the case of PC master communication that runs over this software SCI, the
protocol is tolerant to SCI errors, and sporadic errors are corrected by repeating
the data transmission.

Shared Keyboard
Interrupt

If the user application also uses the keyboard interrupt, some adjustments must
be implemented to share one interrupt service routine between the software
SCI and the user code.
18 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
System Implementation Notes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

System Implementation Notes

This chapter describes some specific system implementation notes.

Internal Oscillator
Usage

This application uses the internal oscillator of the QT/QY M68HC08 MCU. The
internal oscillator is specified to run at 12.8 MHz, ±25%. The bus clock is then
3.2 MHz, ±25%.

The ±25% variation can be reduced to ±5% by trimming the oscillator. The
MCU has a factory pre-programmed trim value at address 0xFFC0 that has
been measured at the time of testing. However, there is no guarantee that this
value will work with SCI communication.

Another option is to use the developer’s serial bootloader (as described in
AN2295/D: Developer’s Serial Bootloader). During bootloading, the correct SCI
timing constant is measured and stored in FLASH memory.

The correct SCI timing constant can be retrieved after the bootloader’s
SCISPIInit() routine is called. (Bootloader sci.h header file must be
included in the project.) The initialization routine will pre-load several variables
in RAM, including SCIAPISpeed. This is later copied to the internal BAUDTICK
variable as shown in the following example:

#ifdef BOOTLOADERSCIAPIUSED
 SCIAPIInit(); // initialize SCI API
 BAUDTICK = SCIAPISpeed; // get SCI calibrated value (best known)
#endif

This process provides a very reliable SCI timing value, based on previous MCU
communication with PC, that has a precise and known data rate.

References

AN1948/D: Real Time Development of MC Applications using the PC Master
Software Visualization Tool

AN2263/D: PC Master Software: Creation of Advanced Control Pages

AN2395/D: PC Master Software Usage

AN2471/D: PC Master Software Communication Protocol Specification

AN2295/D: Developer’s Serial Bootloader for M68HC08
Software SCI MC68HC908QT/QY MCU 19

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Source Code Listings

pcmastersoftsci.h:
/***
*
* Freescale Semiconductor, Inc.* (c) Copyright 2003 Freescale Semiconduct, Inc.
* ALL RIGHTS RESERVED.
*
**
*
* $File Name: pcmastersoftsci.h$
*
* Description: Software SCI headers for
* PC Master Communication protocol
*
* $Version: 1.1.3.0$
* $Date: Sep-25-2003$
* $Last Modified By: r30323$
*
***/
#include “map.h”

/* Software SCI API */
extern char SCI0Read(void);
extern void SCI0Write(char ch);
extern void SCI0RxEnable(void);
extern void SCI0InterruptTx_CB (void);
extern void SCI0InterruptRx_CB (void);
extern voidSCI0Init(void);
/* Software SCI API end */

#pragma DATA_SEG SHORT _DATA_ZEROPAGE
/*------SCI definitions registers-------------------*/
extern char SCDR; /*SCI data register*/
#pragma DATA_SEG DEFAULT

#define BUS_CLOCK_HZ 3200000 /* reqd’ bus clock in Hz */

/*##################################*/
/*##################################*/

/*##################################*/
#define BAUDRATE 9600L

#define TMRMODULO 0x3fff // specify the modulo (mask) in which ‘free’ running timer
operates
/*##################################*/

/*##################################*/
/*### common softSCI section */
#define SCISINGLEWIRE // define only if RXD & TXD pins are shared (ie. single wire)
#define SCIINV // define this one, if SCI needs to be inverted (ie. non-standard
interface)
/*##################################*/
20 Software SCI MC68HC908QT/QY MCU
For More Information On This Product,

 Go to: www.freescale.com

AN2637/D
Source Code Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/*##################################*/
/*### TXD pin section */
#define SCITXDPINISTIMERPIN // defined if TXD pin can use hw output compare feature
/*##################################*/

#ifndef SCITXDPINISTIMERPIN
#define TXDPIN PTA0
#define TXDPINDDR DDRA_BIT0

#define TXDPINPUE PTAPUE_BIT0
#endif

/*##################################*/
/*### RXD pin section */
#define SCIRXDPINISTIMERPIN // defined if RXD pin can use hw input capture feature
#define RXDPIN PTA0
#define RXDPINDDR DDRA_BIT0
#define RXDPINPORT PTA
#define RXDPINMASK 0x01
/*##################################*/

#ifndef SCIRXDPINISTIMERPIN // if RXD is not timer pin, it must be KBI pin
 #ifdef SCIINV
 #error “Cannot use SCIINV and !SCIRXDPINISTIMERPIN features together!”
 #endif
 #define KBIECH KBIER_KBIE0 // and you must define your KBIE here
#endif

/* softSCI timer selection section */
/* must be one of timer channels, if SCIRXDPINISTIMERPIN and/or SCITXDPINISTIMERPIN
 macros are defined, it must also match the appropriate hardware (pin) */
#define SCITSC TSC
#define SCITSCCH TSC0
#define SCITSC_CHF TSC0_CH0F
#define SCITSC_IE TSC0_CH0IE
#define SCITCNT TCNT
#define SCITCH TCH0
#define SCITMOD TMOD
#define IV_SCITMR IV_TCHO
/* end */

#define DDRIN 0
#define DDROUT 1

#ifndef SCIINV
 #define TXDPINSET() TXDPIN=1
 #define TXDPINCLR() TXDPIN=0
#else
 #define TXDPINSET() TXDPIN=0
 #define TXDPINCLR() TXDPIN=1
#endif

#define SCITX 1
#define SCIRX 2
Software SCI MC68HC908QT/QY MCU 21

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

pcmastersoftsci.c:
/***
*
* Freescale Semiconductor, Inc.
* (c) Copyright 2003 Freescale Semiconductor, Inc.
* ALL RIGHTS RESERVED.
*
**
*
* $File Name: pcmastersoftsci.c$
*
* Description: Software SCI library for
* PC Master Communication protocol
*
* $Version: 1.1.5.0$
* $Date: Oct-21-2003$
* $Last Modified By: r30323$
*
***/
#include “map.h”
#include “pcmastersoftsci.h”

#include “pcmaster.h”
#include “pcmasterconfig.h”

#define BOOTLOADERSCIAPIUSED
/* if you undefine this you have to ensure that SCI will get the correct ticks for SCI speed ;-)
 if defined, MCU must be bootloader enabled (Freescale AppNote AN2295) and it will provide
 the proper SCI constant derived out of bootloading communication */

#ifdef BOOTLOADERSCIAPIUSED
#include “sci.h” /* Bootloader’s API needed! */
#endif

#pragma DATA_SEG SHORT _DATA_ZEROPAGE
/*------SCI definitions registers-------------------*/
char SCDR; /*SCI data register*/

unsigned char SciBuff;
unsigned char SciPort;
unsigned char SciCnt;
unsigned char SciStat;
unsigned int SciTmr, BAUDTICK;
#pragma DATA_SEG DEFAULT

void SCI0Init(void)
{
#ifdef BOOTLOADERSCIAPIUSED
 SCIAPIInit(); // initialize SCI API
 BAUDTICK = SCIAPISpeed; // get SCI calibrated value (best known)
#else

BAUDTICK = BUS_CLOCK_HZ / BAUDRATE;
#endif
22 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Source Code Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SCITMOD = TMRMODULO;
 SCITSC = 0; // run timer, no prescaling, no modulo int.
 SCI0RxEnable();

#ifndef SCITXDPINISTIMERPIN
 TXDPINPUE = 1; // enable pull-up
#endif
};

char SCI0Read(void)
{
 return SCDR;
}

void SCI0Write(char ch)
{

#ifndef SCIRXDPINISTIMERPIN
 KBIECH = 0; // disable RX KBI int’
#endif
 #ifndef SCIINV
 SCITSCCH = 0x00; // reset timer logic so no false edge appears
 #else
 SCITSCCH = 0x10; // reset timer logic so no false edge appears
 #endif
#ifndef SCITXDPINISTIMERPIN
 TXDPINSET(); // just make sure no glitch (high to low) appears
 TXDPINDDR = DDROUT; // TXD pin output
#endif
 SciStat = SCITX;
 SciBuff = ch; // copydown the timer
 SciCnt = 9; // 8 bits of data + stop bits to send

#ifdef SCITXDPINISTIMERPIN
 #ifndef SCIINV
 SCITSCCH = 0x18; // output compare, falling edge
 #else
 SCITSCCH = 0x1C; // output compare, rising edge
 #endif
 SCITCH = SciTmr = ((SciTmr = SCITCNT) + BAUDTICK) & TMRMODULO;
#else
 SCITSCCH = 0x10; // just timer int to be scheduled (just port control)
 SCITCH = SciTmr = ((SciTmr = SCITCNT) + BAUDTICK) & TMRMODULO;
 TXDPINCLR(); // TXD pin low (start bit)
#endif

 SCITSC_CHF = 0; // clearing timer flag
 SCITSC_IE = 1; // enable tmr. channel interrupts
}

void SCI0RxEnable(void)
{
 SCITSC_IE = 0; // disable tmr. channel interrupts

 RXDPINDDR = DDRIN; // RXD pin input
Software SCI MC68HC908QT/QY MCU 23

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SciStat = SCIRX;
 SciCnt = 0; // sci cnt will be falling edge

#ifdef SCIRXDPINISTIMERPIN
 #ifndef SCIINV
 SCITSCCH = 0x08; // input capture, falling edge only on tmr.
 #else
 SCITSCCH = 0x04; // input capture, rising edge only on tmr.
 #endif
 SCITSC_CHF = 0; // clearing timer flag
 SCITSC_IE = 1; // enable tmr. channel interrupts
#else
 /* specify RXD fallling edge interrupt init here! */
 KBSCR_IMASKK = 1; // mask int now (safe int init)
 KBSCR_MODEK = 0; // edge only
 KBIECH = 1; // enable pin specific KBI int’
 KBSCR_ACKK = 1; // confirm interrupt
 KBSCR_IMASKK = 0; // unmask int now
#endif
}

#ifndef SCIRXDPINISTIMERPIN
void interrupt IV_KBRD Kbd_int(void)
{
 SCITCH = SciTmr = ((SciTmr = SCITCNT) + BAUDTICK/2) & TMRMODULO;

 SciCnt++;
 SCITSC_CHF = 0; // clearing timer flag
 SCITSCCH = 0x50; // timer int to be scheduled (keep int enabled)

 KBIECH = 0; // and disable KBI int - all subsequent ints are timer driven
 KBSCR_ACKK = 1; // confirm interrupt
}
#endif

void interrupt IV_SCITMR Timer_int(void)
{
 SciPort = RXDPINPORT; // as fast as possible port scan for receive branch

 if (SciStat == SCITX)
 {

#ifdef SCITXDPINISTIMERPIN
 if (SciCnt > 1)
 {
 SCITCH = SciTmr = (SciTmr + BAUDTICK) & TMRMODULO;
 SciCnt--; // decrement counter
 #ifndef SCIINV
 SCITSCCH = 0x58 | (SciBuff & 0x01?0x04:0); // output compare, schedule clear
output (start bit)
 #else
 SCITSCCH = 0x58 | (!(SciBuff & 0x01)?0x04:0); // output compare, schedule
clear output (start bit)
 #endif
24 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Source Code Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SciBuff >>= 1; // shift internal buffer
 }
 else if (SciCnt == 1) // stop bit reached
 {
 #ifndef SCIINV
 SCITSCCH = 0x58 | 0x04; // output compare, schedule set output (stop bit)
 #else
 SCITSCCH = 0x58; // output compare, schedule set output (stop bit)
 #endif
 SCITCH = SciTmr = (SciTmr + BAUDTICK) & TMRMODULO;
 SciCnt--; // decrement counter
 }
 else
 {
 SCITSCCH = 0x00; // port control, set output & disable further interrupts
 SCI0InterruptTx_CB();
 }
#else /* ifdef SCITXDPINISTIMERPIN */
 if (SciCnt > 1)
 {
 #ifndef SCIINV
 TXDPIN = SciBuff & 0x01; // copy to TXD pin
 #else
 TXDPIN = ~(SciBuff & 0x01); // copy to TXD pin
 #endif
 SciBuff >>= 1; // shift internal buffer
 SCITCH = SciTmr = (SciTmr + BAUDTICK) & TMRMODULO;
 SciCnt--; // decrement counter
 }
 else if (SciCnt == 1) // stop bit reached
 {
 TXDPINSET(); //stop bit
 SCITCH = SciTmr = (SciTmr + BAUDTICK) & TMRMODULO;
 SciCnt--; // decrement counter
 }
 else
 {
 #ifdef SCISINGLEWIRE
 TXDPINDDR = DDRIN; // TXD pin input
 #endif
 SCITSC_IE = 0; // disable further interrupts
 SCI0InterruptTx_CB();
 }
#endif /* ifdef SCITXDPINISTIMERPIN */

 }
 else /* if (SciStat == SCITX) */
 {

#ifdef SCIRXDPINISTIMERPIN
 if (SciCnt == 0) // start bit falling edge captured
 {
 SCITSCCH = 0x50; // timer int to be scheduled (keep int enabled)
 SCITCH = SciTmr = ((SciTmr = SCITCH) + BAUDTICK/2) & TMRMODULO;
 SciCnt++; // first int will be useless (in the middle of start bit)
Software SCI MC68HC908QT/QY MCU 25

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 }
 else
#endif /* ifdef SCIRXDPINISTIMERPIN */
 {
 #ifndef SCIINV
 if (SciPort & RXDPINMASK)
 #else
 if (!(SciPort & RXDPINMASK))
 #endif
 SciBuff = (SciBuff>>1) | 0x80;
 else
 SciBuff = (SciBuff>>1) & 0x7f;
 SCITCH = SciTmr = (SciTmr + BAUDTICK) & TMRMODULO;
 SciCnt++;

 if (SciCnt > 9) // 9 bits because first is in start bit (*not used*)
 {
 SCDR = SciBuff; // copy down the received buffer
 SCI0RxEnable(); // restore RX
 SCI0InterruptRx_CB(); // make RX interrupt!
 }
 }
 } /* if (SciStat == SCITX) */

 SCITSC_CHF = 0; // clearing timer flag
}

26 Software SCI MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2637/D
Source Code Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software SCI MC68HC908QT/QY MCU 27

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2637/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	General Description
	M68HC08 Family and PC Master
	PC Master on M68HC08 MCUs That Do Not Have Available SCI
	Basic 8-Pin CPU PC Master Demo

	Software SCI Description
	Software Versions
	Receive Pin
	Transmit Pin

	Software SCI API

	Detailed Software Description
	Transmission
	Output Compare Driven Transmit
	Direct Port Control Transmit

	Reception
	Input Capture Start Bit Detection
	Keyboard Interrupt (KBI) Start Bit Detection

	System Limitations
	Modulo Limitation
	Specific Modulo Values
	Modulo Can’t Be Less...

	Timer Must Run All the Time
	Interrupt Latency Low, Interrupts Enabled
	Shared Keyboard Interrupt

	System Implementation Notes
	Internal Oscillator Usage

	References
	Source Code Listings

