
AN2685
Rev. 0, 3/2004

How to Configure and Use the
XGATE on S12X Devices

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Joachim Krücken,
8/16-bit Products Division
Munich

Introduction

The HCS12X microcontroller family offers many enhancements over the
HCS12 family; principal among these is the XGate peripheral processor. The
XGATE is a programmable core that operates independently of the main CPU,
has access to all of the S12X peripherals, and features a RISC instruction set.
This application note describes how to configure and use the XGATE.

The document begins with a discussion of the issues surrounding data
coherency in dual core systems and how these can be addressed by software.

It goes on, in the following section, to provide some general information and
advice on how to set up and initialize the XGATE module.

Finally, it describes the XGATE’s various power saving modes, and provides a
comparison of their capabilities and differences.

Data Coherency

Data coherency is the state whereby a set of data is seen as consistent and
complete by any process that wishes to examine it. In practice, this means that
access to the set is forbidden if the data is currently being changed and so is
not internally consistent.
Example: One process enters some data into a memory area and increments
a variable holding the number of entries, while the other process takes the data
out of that memory area and decrements this entry count variable. A typical
code sequence looks like the following:

1. Read the variable into an internal processor register

2. Increment or decrement the variable
© Motorola, Inc., 2004

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2685

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3. Write the variable back to memory

In a multi-tasking system, an interrupt might cause a task switch immediately
after reading the variable. The variable might then be read in the other task,
decremented and written back, thereby causing the variable to end up in an
inconsistent state. In single processor systems, such code sequences are
typically protected by disabling and enabling the interrupt before and after the
critical code sequence.
When dealing with any dual-processor architecture, this method does not work.
Strictly speaking, almost every kind of peripheral has this kind of issue. For
example, an SCI receiver fills the receive buffer when a new byte is received;
at the same time, the CPU might read the receive buffer and get conflicting
data. In the case of peripherals, in most cases special flags indicate whether
data is available or can be transmitted.
In short, each time two or more processes can access the same resource
simultaneously, special care has to be taken.

The XGATE and the HCS12X CPU access the RAM in a time-multiplexed way.
Within one S12X CPU cycle (25 ns), the XGATE can either: access the RAM
twice within 12.5 ns, if the S12X CPU does not address the RAM; or at least
one time, with one access dedicated to the S12X CPU and the other to the
XGATE. This nice feature enhances the throughput of XGATE as well as of the
CPU, but the complexity of the data coherency problem is also increased.

This application note describes several application relevant techniques that
can be used to resolve data coherency issues.

Simple Buffer
Scheme

A simple way to exchange data between two processors and avoid data
coherency problems is to use a buffer. The two processors must honour an
underlying agreement that one side writes to the buffer only if the other side has
flagged the buffer as empty, and the other side reads from the buffer only if it
has received the full signal.

Transmit Buffer Typical applications that can use this simple scheme are LIN transmission and
SPI masters. The flow for a transmit buffer would be as follows:

1. CPU fills the buffer.

2. CPU signals the XGATE module that the data is ready for transmission.
(This can be caused, for instance, by enabling the transmit request
inside the peripheral.)

3. The XGATE module gets a transmit service request.

4. The XGATE module sends out the data to the peripheral.

5. Once finished, the XGATE disables transmit request of the peripheral.

6. The XGATE signals to the CPU (via an interrupt, for example) that the
transfer is completed.
2 How to Configure and Use the XGATE on S12X Devices

For More Information On This Product,
 Go to: www.freescale.com

AN2685
Data Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7. The CPU can now start again at step 1.

Figure 1. Transmit or Receive Buffer Data Structure

Receive Buffer The flow for receiving data from a peripheral device and storing it into a buffer
is very similar. However, care must be taken that no new data is received
before the buffer is read. This is not an issue for a LIN node, or for SPI
protocols, for example, as the sending of data is actually controlled by a
transmit process, i.e. controlled by the CPU, itself. If the receive process runs
asynchronous to the CPU activities, different methods must be used, as shown
below. For receive processes, the same structure as for transmit can be used.

1. The XGATE services a receive service request from the peripheral.

2. The XGATE module fills the buffer until a predefined number of bytes is
filled in or an end marker is received.

3. The XGATE informs the CPU (via an interrupt, for example) that the
transfer is completed.

4. The CPU can then fetch the data from the buffer for further processing.

Guarding Technique Another technique, not using semaphores, is to allow overwriting of the data.
The reading side must set a “guard” before reading data, and verify that this
guard is still set after the read sequence is completed. The advantage of this
technique, compared to a semaphore based technique (see below), is that the
process reading the data never gets stopped, and does not even need to block
interrupts. The disadvantage of this is that, potentially, the reading of data must
be repeated. Before a process starts to fill a buffer, the variable Guard is
incremented. After the data is completely written into the buffer, the variable
Guard is incremented again. Before the read process starts to read the data
buffer, it creates a copy of the current guard (OldG). Assuming the variable
Guard has been initialized to $0000, an odd number indicates that a write is
just in progress, so the read process keeps polling the variable Guard until it

Pointer to Data Buffer

Length nIndex i

Data Buffer
containing n bytes
How to Configure and Use the XGATE on S12X Devices 3

For More Information On This Product,
 Go to: www.freescale.com

AN2685

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

becomes even, at which time it starts to read the data. At the end of the read
process, the variable Guard is compared to the saved one, OldG. If they are
not equal, then a write has occurred while reading, thereby corrupting the read
data. In this case, the process must be repeated. Figure 2 shows the flow.

This technique can be used in XGATE to S12X CPU or S12X to XGATE
direction.

Figure 2. Flowchart Guarding Technique

Mutex (Mutually
Exclusive Variable)
or Semaphores

In many cases, concurrent access to the same resource is avoided by using a
mutex (mutually exclusive RAM variable) or a semaphore1. However, for the
S12X CPU and the XGATE module it is impossible to use a read-modify-write
mutex or semaphore in RAM to indicate exclusive access to any resources,
because it takes several cycles to read a RAM variable, test its contents, and
write the modified variable back to RAM. Between the read and the write, the
variable is “in transition” in an internal register of either the CPU or the XGATE
module. If, now, the other module accesses the variable while being in
transition, a write-back will result in an inconsistent state.2 The XGATE

If Guard
!= OldG

OldG = Guard

Read the Data

Guard++

Write Data Buffer

Guard++

OldG & 0x01
Y

Y

Buffer Write Process Buffer Read Process

Done

Done

1. While the term semaphore is typically associated with a data type being able to count items,
and a mutex can have only three states, the term semaphore is used here interchangeably with
mutex.
4 How to Configure and Use the XGATE on S12X Devices

For More Information On This Product,
 Go to: www.freescale.com

AN2685
Data Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

provides a set of eight hardware semaphores designed specifically for this
purpose. Such a semaphore can be in one of the following three states.

1. Unused, released

2. Assigned to S12X CPU process

3. Assigned to XGATE process

The transition between these three states is handled as follows.

1. Set semaphore.
XGATE provides a dedicated instruction called SSEM with either a 3-bit
immediate value or a register as operand. The carry flag is set if the
XGATE could successfully lock the semaphore, and is cleared if the
semaphore is already locked.
The S12 CPU accesses the semaphore via the XGSEM peripheral
register and requires a two step approach to set and check the
semaphore, using the C-Macros shown below.

2. Release semaphore.
XGATE provides a dedicated instruction called CSEM with either a 3-bit
immediate value or a register as operand to release the semaphore.
Again, the S12 CPU accesses the semaphore via the XGSEM
peripheral register.

The hardware assures a clear priority, in case the two “get” commands are
issued at the same time. The “release” command should be issued only by the
process associated with the semaphore.

#define SET_SEM(x) (XGATE.XGSEM = 0x0101 << (x))
#define TST_SEM(x) (XGATE.XGSEM & 0x0001 << (x))
#define REL_SEM(x) (XGATE.XGSEM = 0x0100 << (x))

do {SET_SEM(2); /* try to allocate semaphore 2 */
 } while (!TST_SEM(2));/* out of a pool of 0..7 */

/* Protected software region starts */
/* now do a short piece of work as short as possible */
/* End of protected software region */
REL_SEM(2);

Same sequence in XGATE Assembler
LOOP1: SSEM #2 ; try to lock semaphore

BCC LOOP1 ; retry if locked
.... ; protected software region starts here
CSEM #2 ; release semaphore

2. Why does this not happen in a normal multitasking operation system using semaphores or
alike to guarantee exclusive access of one task to a shared resource? Most CPUs have an non-
interruptible “read, test, modify, write” instruction so the variable is never “in transition”. The
HCS12 must emulate this by using disable and enable interrupts, around the read-modify-write
sequence, while the HCS12X CPU has a dedicated instruction (BTAS).
How to Configure and Use the XGATE on S12X Devices 5

For More Information On This Product,
 Go to: www.freescale.com

AN2685

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Semaphore States

FIFO A well known technique for de-coupling two asynchronous data streams is a
First-In-First-Out (FIFO) data structure. A FIFO is most useful if a stream of
data has to be received, where the individual bytes (or whole messages) are
received in bursts, too fast for the CPU to handle, even though the overall
performance of the CPU is more than sufficient to sustain the average data
rate. By using a FIFO, the latency requirements of the CPU can be reduced
significantly. A typical example is the 16550 UART found in almost every
personal computer, which uses a 16-byte deep FIFO to buffer the incoming and
outgoing data.

The main issue with any FIFO is that at least one common bit of information is
required to be updated by the process filling the FIFO, and by the process
draining the FIFO. This section shows a way to implement a FIFO. The basic
data structure is shown in Figure 4. The index putidx shows the location
where new items are written into the data buffer. The index getidx shows the
location where items are read from the FIFO. In this example, a variable num is
used, denoting the number of entries in the FIFO. While the difference between
the putidx and getidx can be used to calculate the number of entries in the
FIFO, using a dedicated variable holding the number of entries in the FIFO is
typically simpler to implement in software.The variable num is incremented by
the process filling the FIFO and decremented by the process draining the FIFO,
and is, therefore, a resource shared by two independent processes. The
example uses the mutex to protect critical code region as shown in "Mutex
(Mutually Exclusive Variable) or Semaphores" on page 4.

00

SSEM
W

rite M
=1,D=1

Semaphore locked for
Process XGATE

Semaphore locked for
Process S12X

CSEM

Only the bits where Mask bit = 1
perform a state transition

W
rite M

=1,D=0

0110
6 How to Configure and Use the XGATE on S12X Devices

For More Information On This Product,
 Go to: www.freescale.com

AN2685
Data Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4. FIFO Data Structure

Receive FIFO The following code example shows an implementation using byte wide entries
and a maximum of 256 entries in this FIFO. It can easily be adapted to have a
larger number of entries or more complex entries. The XGATE stores a byte
into the FIFO while the CPU reads it out from there.

Putting Entries Into FIFO by XGATE

; Entry Conditions for this code sequence
; R1 points to data structure
; R2 to hardware (not shown here)
; R3 points to FIFOs data space
; R4 contains the byte to be stored in to the FIFO (also not shown how its loaded)

LDL R5,(R1,#num) ; get number of entries in the FIFO
LDL R7,(R1,#size)
CMP R7,R5 ; check if there is space left
BHI SPACEOK ; at least one item space left

; overflow error can be raised here
; further checks can be made here for high watermarks typically for XON/XOFF protocols
SPACEOK LDL R6,(R1,#putidx) ; get the index where to put this in the buffer

STB R4,(R3,R6+) ; Store byte to buffer an increment put index
CMP R6,R7 ; check on overflow
BLO LBL1
CLR R5 ; cyclical increment

LBL1 EQU *
STB R6,(R1,#putidx) ; bump the next store index

; since the variable items is also updated by the reading side precautions must be
; taken to avoid a clash
; try to set a semaphore

Data Storage

putidx

getidx

const size

num
How to Configure and Use the XGATE on S12X Devices 7

For More Information On This Product,
 Go to: www.freescale.com

AN2685

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEMLOP SSEM #FIFOSEM ; try to lock it
BCC SEMLOP
LDB R5,(R1,#num) ; get value again in protected region
INC R5 ; since it might got changed in the mean time
STB R5,(R1,#num) ; update length byte
SIF ; signal to the HCS12 at least one byte is available
CSEM #FIFOSEM ; unlock semaphore, leave protection

; further activities like clearing request flag,...

Getting Bytes Out of the FIFO by the S12 CPU

; Entry:
; Typically the FIFO might be drained in an interrupt handler
; X register points to the FIFO control structure
; Y points to FIFO Data space

LDAA num,X ; get number of entries
BNE ONEPLUS ; at least one item in FIFO

; underrun error, should never occur
; further comparisons can be made here for a low watermark if e.g. the transmission has
; been blocked using e.g. XON/XOFF protocol
ONEPLUS LDAB getidx,X ; where to pick data from

LDAA B,Y ; get the byte item
; Content of Accumulator A must now be stored into the next level data structure

INCB
CMPB size,X ; check length
BLO LBL1
CLRB ; cyclical increment

LBL1 STAB getidx,X
; now we need to updated the number of items left in the FIFO
; since this can clash with the filling side it must be locked using the
; same semaphore as above
SEMLOP MOVW #$0101<<FIFOSEM,XGSEM ; try to lock semaphore

BRCLR XGSEM+1,#1<<FIFOSEM,SEMLOP ; repeat if not successful
DEC num,X ; decrement number of entries left
BNE LEFTOVERS ; leave the interrupt asserted
MOVB #CLAERIF,XGIF ; clear interrupt in case last entry removed
MOVW #$0100<<FIFOSEM,XGSEM

 unlock semaphore
RTS
8 How to Configure and Use the XGATE on S12X Devices

For More Information On This Product,
 Go to: www.freescale.com

AN2685
Power Saving Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Power Saving Modes

The S12X features some new ways to save power along with an XGATE I/O
Processor.

To reduce power consumption, all clocks for the XGATE are turned off while
the XGATE is waiting for a new thread to start. Consequently, a STOP
instruction, such as on the S12 CPU, is not required.

From the overall system point of view, the four power saving modes shown in
Table 1 can be classified into two distinct types: STOP and PSEUDO-STOP,
on one hand; and WAIT and RUN, on the other hand.

The STOP and PSEUDO-STOP modes reduce the power consumption as
much as possible, by turning off all internal clocks with the exception of some
support modules.

In WAIT mode and RUN mode, a large portion of the internal clock distribution
network (clock tree) stays alive.

Table 1. Power Saving Modes

Module STOP PSEUDO-STOP WAIT RUN

Voltage Regulator Reduced Power Reduced Power Full Performance Full Performance

Crystal Oscillator Stopped
Reduced

Oscillation
Amplitude

Full Drive Full Drive

VCO Stopped

Runs if Clock
Monitor detected a
fail and self clock
mode is enabled

Runs if PLLON
and PLLWAI=0 or

Clock Monitor
detected a fail and
self clock mode is

enabled

Runs if PLLON or
Clock Monitor

detected a fail and
self clock mode is

enabled

PLL Stopped Stopped
Runs if PLLON
and PLLWAI=0

Runs if PLLON

API (internal RC oscillator) Runs if APIFE=1 Runs if APIFE=1 Runs if APIFE=1 Runs if APIFE=1

S12CPU No Clocks No Clocks No Clocks Clocked

XGATE No Clocks No Clocks Clocked active Clocked if active

RTI Stopped Runs if PRE=1 Runs if RTIWAI=0

COP Stopped Runs if PCE=1
Runs if

COPWAI=0
How to Configure and Use the XGATE on S12X Devices 9

For More Information On This Product,
 Go to: www.freescale.com

AN2685

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STOP The system STOP mode is entered if the CPU executes the STOP instruction
and the XGATE is not executing a thread.

Wake-up Capabilities System wake-up from STOP can be achieved via external inputs on certain
pins. On the S12XDP512, these pins are: XIRQ and IRQ; pins on ports H, J,
and P; and pins associated with the SCI or CAN modules, if these modules are
enabled. Depending on the setting of the RQST bit in the interrupt module,
either the S12 SPU or the XGATE is woken up.

The 9S12XDP512 features also a purely internal API (Asynchronous Periodic
Interrupt) with an accuracy of approximately +-5% over temperature and
voltage, once trimmed.

In the event of wake-up, the user has several current-saving choices.

1. Start right away using the minimum VCO clock (bus rate typically
1.5 MHz) to drive the internal clock system. In many cases, only tasks
that are not timing-critical have to be performed (for example, reading a
switch input). In the majority of these cases, no further action is required
and the system can go back to STOP mode. In the case of an active
event, the crystal oscillator can be started under software control. Once
the oscillator is up and running, the SCMIF (Self Clock Mode Interrupt
Flag) is set, and the internal clock system is switched to the output of the
crystal oscillator. The software can then turn on the PLL to achieve a
higher clock frequency.

2. Start the crystal oscillator Immediately, and wait for stable oscillation
(SCMIF set) before proceeding. Typical crystal oscillator stabilization
times are 5 –10 ms, depending on the frequency and quality of the
crystal.

NOTE: If the XGATE is woken up by an external event, it can wake up the CPU from
STOP by raising an interrupt to the CPU.

PSEUDO-STOP The PSEUDO-STOP mode is very similar to the STOP mode, but it keeps the
external crystal oscillator and the clock monitor circuit alive, if these are
enabled. Additional options allow the RTI and the COP (Computer Operating
Properly) Watchdog Timer to continue counting.

Other Peripheral Module Stopped Stopped

Most modules
feature a lock

Module_Stops_In_
Wait bit

Clocked (if
enabled for sure)

Table 1. Power Saving Modes

Module STOP PSEUDO-STOP WAIT RUN
10 How to Configure and Use the XGATE on S12X Devices

For More Information On This Product,
 Go to: www.freescale.com

AN2685
General Setup Guidelines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Wake-up Capabilities The wake-up capabilities in PSEUDO-STOP mode are the same as in STOP
mode, plus a wake-up via the RTI (Real Time Interrupt). Unlike the API, this RTI
allows a precision timebase to be achieved, since it is derived from a crystal
oscillator.

The COP can reset the system if it is not serviced properly.

WAIT In WAIT mode, the voltage regulator is in full performance mode and most of
the internal clock distribution network is kept alive. This will raise the current
consumption significantly, compared to STOP and PSEUDO-STOP. Most of
the peripheral modules feature a Module_Stops_In_Wait bit, allowing the clock
to the module to be turned off in WAIT mode.

Wake-up Capabilities The wake-up capabilities are the same as in PSEUDO-STOP mode, but most
of the peripheral modules can raise an interrupt to either the XGATE or the S12
waking up the system.

The CWAI bit allows the clocks to the CPU and BDM to be turned off, thus
preventing debug connections to the system in WAIT mode.

RUN Mode In RUN mode, all enabled modules, including the core, are clocked.

General Setup Guidelines

This section provides a short explanation of how to properly configure and
initialize an HCS12X system. It takes the form of a simple recipe; as with all
good recipes, it can be adapted to the user’s taste.

Initialize Stack
Pointer

Firstly, interrupts should be disabled: CLI (just to be sure), and the initial stack
pointer should be loaded. In most cases, on the S12X, a value of $4000 (top of
RAM+1) is adequate. The interrupt vector base register, if available, can be
initialized here as well. If the XIRQ is used as an emergency, non maskable
interrupt, it can be enabled now. If the usage of the XIRQ is less critical, it
should be enabled along with the other interrupts in "The Final Countdown"
on page 12.

Initialize I/O Ports Then, the General Purpose I/O ports (GPIO) should be initialized, to minimize
glitches occurring on the output pins.
How to Configure and Use the XGATE on S12X Devices 11

For More Information On This Product,
 Go to: www.freescale.com

AN2685

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Initialize RAM
Variables

If memory tests, such as basic RAM tests, or FLASH or EEPROM checksum
tests, are required, these should be done before the RAM variables are
initialized.

Initialize the RAM variables. This is usually done in the start-up routine of “C”
(crt.o), even before the main routine is entered. (Note that ANSI-C requires that
all static variables are initialized.) Some words of caution here...

1. Peripheral registers should be excluded from this, since some are write
once, or the order of the setup is important.

2. If a RAM test is executed within the main routine, this could corrupt the
initialization of variables.

3. If possible, code should not rely on automatic initialization.

4. If automatic initialization cannot be avoided, it should be done after the
stack initialization.

Most compiler vendors deliver the startup routine source code, to allow users
to adapt it to meet their needs.

Download XGATE
Code

If the application makes use of the XGATE, the XGATE code should be
downloaded into RAM. The RAM protection can be set after downloading, thus
preventing an overwrite of XGATE code or S12 RAM variables. The XGATE
Vector base register should be set afterwards.

Interrupt Module Set up the interrupt module by writing the interrupt priority for each vector (if
different from the reset condition). If service requests are routed to the XGATE
module, the RQST bit of those interrupts must also be set. In addition, it is
advisable to initialize the interrupt vector base register, even if the reset value
($FF) is valid for this application.

Peripheral Modules Initialize all peripheral modules and set their local interrupt enable bits, if
required.

The Final
Countdown

Initialize and service the watchdog.

NOTE: Some devices allow the watchdog to be enabled out of reset. In this case, care
must be taken to ensure that the watchdog does not fire while executing the
sequence above.

1. Enable STOP instruction, if required.

2. Enable XIRQ, if required.

3. Enable the interrupt (CLI if XGATE is used; XGE=1).
12 How to Configure and Use the XGATE on S12X Devices

For More Information On This Product,
 Go to: www.freescale.com

AN2685
General Setup Guidelines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

How to Configure and Use the XGATE on S12X Devices 13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2685
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
hibbertleft

	Introduction
	Data Coherency
	Simple Buffer Scheme
	Transmit Buffer
	Receive Buffer

	Guarding Technique
	Mutex (Mutually Exclusive Variable) or Semaphores
	FIFO
	Receive FIFO

	Power Saving Modes
	STOP
	Wake-up Capabilities

	PSEUDO-STOP
	Wake-up Capabilities

	WAIT
	Wake-up Capabilities

	RUN Mode

	General Setup Guidelines
	Initialize Stack Pointer
	Initialize I/O Ports
	Initialize RAM Variables
	Download XGATE Code
	Interrupt Module
	Peripheral Modules
	The Final Countdown

