
AN2707
Rev. 0, 4/2004

Software Drivers for Tango3
RF Transmitter and Romeo2
RF Receiver ICs

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By John Logan
8/16-Bit Division
East Kilbride, Scotland

Introduction

This application note describes a set of software drivers for the MC33493 RF
transmitter (codename Tango3) and the MC33591/2/3/4 RF receiver ICs
(codename Romeo2). The drivers are designed to allow a designer to quickly
develop a new application using these RF ICs with minimum effort, or to add
RF functionality to an existing design. The drivers are written in the C
programming language. The Tango3 driver can be configured to use any
HCS08 MCU. The Romeo2 driver can be configured to use any HC08 MCU
with an SPI interface. Each driver allows the user to select different MCU I/O
pins, timer channels, and clocking options, to allow easy implementation. Full
source code listings and example applications are available from Motorola's
web site at http://www.freescale.com.

The drivers provide the following features.

• Low CPU load and low MCU resource usage

• Transmission/reception of variable length messages with 0–127 data
bytes

• Automatic checksum based error detection for each message

• Easy configuration options for carrier frequency, data rate, and other
setup parameters.

• Support for networks with multiple transmitters/receivers

The drivers are primarily aimed at systems that use both Tango3 and Romeo2.
However, each can be used separately, if required.

This document makes frequent references to the Tango3 and Romeo2 device
datasheets; the reader should read these documents before using these
drivers. Both datasheets are available for download from Motorola's web site at
http://www.freescale.com.

For More Information On This Product,

 Go to: www.freescale.com

conductor, Inc., 2004. All rights reserved.

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Contents

Page
Introduction ... 1
Contents ... 2
Communication Concept .. 3
Message Formats ... 4

Sending Messages With Header Detect .. 5
Sending Messages Without Header Detect ... 5
Reducing Power Consumption ... 6
Tone Signalling .. 7
Message Encoding ... 7
Manchester Encoding .. 8
Bit Decoding ... 9

Tango3 Driver ... 9
Tango3 Hardware Connections ... 9
Tango3 MCU Resources .. 11
Tango3 Driver Description ... 12
Tango3 Driver Services .. 17
Tango3 Driver Configuration .. 20

Adding the Tango3 Driver to an Application ... 27
Using the Tango3 Driver in an Application ... 31
Romeo2 Driver .. 33

Romeo2 Hardware Connection .. 33
Romeo2 Driver Description .. 34
Romeo2 Driver Services .. 38
Romeo2 Driver Configuration ... 41

Adding the Romeo2 Driver to an Application .. 46
Using the Romeo2 Driver in an Application .. 50

Trademarks .. 51
2 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Communication Concept

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Communication Concept

Tango3 and Romeo2 allow RF communications in the ISM (Industrial,
Scientific, and Medical) bands 315 MHz, 434 MHz, 838 MHz, and 915 Mhz.
Data rates up to 11 kbits/second are supported. This set of drivers provides a
simple communications protocol to allow transfer of variable length messages
with up to 127 bytes of data. The drivers support creation of networks with
multiple receivers and transmitters.

Figure 1 shows a simple example lighting network with three lighting fixtures
(each with a Romeo2 receiver) and one remote control (with a Tango3
transmitter). Each receiver is assigned a unique 8-bit identifier (ID). The
transmitter can send messages to each receiver by changing the ID in the
transmitted message. Additional transmitters and receivers could easily be
added to this system.

Figure 1. Simple RF Network

HC08
MCU

Romeo
receiver

SPI

HC08
MCU

Romeo
receiver

SPI

HC08
MCU

Tango
transmitter

Keypad

ID = 0x10

ID = 0x20

HC08
MCU

Romeo
receiver

SPI

ID = 0x30

ID = 0x10

ID = 0x20

ID = 0x30

•Each receviver has an ID number
•A transmitter can send messages with any ID number
•A transmitter can communicate with any receiver

Lamp

Lamp

Lamp

Remote control unit
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 3

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Message Formats

The drivers support the messaging formats defined in the Romeo2 datasheet.
Communications using ID or tone signalling, with or without the header field are
supported.

NOTE: The Romeo2 driver uses Romeo2's on-board data manager hardware.

The drivers extend the message formats shown in the datasheet, by defining
length, data and checksum fields for each message.

A message contains the following fields.

Preamble — The Preamble is a fixed format field that allows Romeo2 to
determine the timing of bits on the RF link. A Preamble field is required before
each ID and Header field. See Romeo2 datasheet for more detailed
information.

ID — Each Romeo2 device can be assigned an 8-bit ID number. It will only
receive messages with this particular ID. This allows each Romeo2 device in
an RF network to have a unique ID. A Tango3 transmitter can send messages
with any ID. The ID field can also be used to implement Tone signalling, a
simplified message format where each receiver uses the same fixed ID. See
Tone Signalling on page 7 for more detailed information.

NOTE: The ID word must not contain the bit sequences '0110' or '1001'. These bit
sequences are used as the header word field. See the Romeo2 datasheet for
more detailed information.

Header — The Header field is a 4-bit fixed format field. It notifies Romeo2 that
message data is next. The header field is fixed to '0110' in this driver
implementation. When Romeo2 receives the Header byte, it expects to receive
the Length and Data fields next. It is possible to send messages with or without
this field.

Length — The Length field is a byte containing the length of the Data field.

Data — The Data field comprises 0–127 data bytes.

Checksum — The Checksum field is a byte containing a checksum of the ID
and data fields. The checksum value is calculated by adding all bytes in the ID
and Data fields, using modulo 256 addition. (In MCU assembly language, this
equates to adding the bytes using the 'Add with Carry' instruction.)

EOM (End of Message) — The EOM field is a fixed format field that indicates
the end of a message.
4 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Message Formats

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: Preamble, Header, Checksum and EOM are handled by the software drivers;
the application programmer does not have to specify these fields.

NOTE: The Preamble and ID fields can be repeated.

Sending Messages
With Header Detect

Figure 2 shows a message frame transmitted by Tango3 and the received data
that Romeo2 passes to the MCU using its SPI interface. Tango3 transmits a
Preamble then the ID field. When Romeo2 receives a valid ID, it will wait to
receive a Header field. When it receives a Header, it then expects to receive
Length, Data, Checksum and EOM fields. While waiting for the Header field, it
will ignore all other data. Note that its possible to have a delay between the ID
field and the next preamble and header fields.

Using this message format, Romeo3 does not pass the ID field to the MCU on
the SPI interface. It passes only the Length, Data and Checksum fields. This
reduces the load on the SPI interface.

It is also possible to repeat the Preamble and ID fields multiple times. This is
discussed below.

Figure 2. Message Format Using ID and Header

Sending Messages
Without Header
Detect

The header field is used to determine the start of the Length field. Romeo2
transmits all data, received after the header field, on its SPI interface, typically
to an MCU. However, it is possible to send messages without using the header
field.

Tango3 transmits a message containing Preamble, ID, Length, Data,
Checksum and EOM fields. The ID field may be repeated to ensure that
Romeo2 detects the ID, if it is using its Strobe oscillator as discussed below in
Reducing Power Consumption on page 6 (the number of repeats is
programmable in the software driver). Once Romeo2 has detected the ID field,

ID Length Data0 Data127……… ChecksumPreamble Header EOM

Generated by driver

Supplied by application/programmer

RF Signal From Tango3

Length Data0 Data127………

SPI output (Romeo2 to MCU)
Key

Checksum

Preamble
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 5

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

it will pass all following data to the MCU via the SPI interface. See Figure 3. If
the ID field is repeated, this will mean that ID bytes are also passed to the MCU.

This message format requires more CPU time to decode the received data,
since it must handle the ID field.

Figure 3. Message Format Without Header Detection

Reducing Power
Consumption

To reduce power consumption in the system, the drivers can utilize two
features of the Romeo2 device: the strobe oscillator; and the ability to repeat
the ID field. The Romeo2 datasheet includes a full description of the strobe
oscillator function.

The strobe oscillator function cycles Romeo2 between the very low power
SLEEP mode and a RUN mode, thereby reducing the total current
consumption. As mentioned previously, it is possible to repeat the Preamble
and ID sections of the message. If Tango3 transmits a sequence of short
Preamble + ID messages over a period longer than the strobe oscillator’s
SLEEP period, Romeo2 will detect at least one of these messages in RUN
mode. When this has been detected, Romeo2 will override its Strobe oscillator,
and will remain in RUN mode until it receives the remaining message fields.
Figure 4 shows the sequence.

IDPreamble IDPreamble ID Length Data0 Data127……… Checksum EOM

Transfer without header byte

……

Generated by driver

Supplied by application/programmer

Key

ID ID Length Data0 Data127……… Checksum………

Rf signal from Tango3

SPI output (Romeo2 to MCU)

ID detected

ID ID
6 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Message Formats

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4. RUN/SLEEP Mode Cycling

Tone Signalling Tone signalling is used in systems where all the receiver nodes must wake up
and check each RF message. For example, in the simple lighting network
shown in Figure 1, it could be desirable to control all the lights simultaneously.
To do this, each node is assigned an ID of 0x00 or 0xff (i.e., the ID is all '1's or
all '0''s). Then, all receivers will accept each message sent at the same time.

Figure 5 shows a message frame with Tone signalling. The Romeo2 IC
supports Tones of any length greater than eight bits. This software driver allows
the user to set the length of a Tone to multiples of eight bits by repeating the ID
field multiple times

Figure 5. Message Format Using Tone Signalling

Message Encoding Figure 6 shows the flow of data and the encoding stages for a message
transfer.

For Tango3 to transmit a message, the application must provide the ID, length
and Data fields of the message in a transmit buffer and call the correct driver
routines. The software driver reads the message from this buffer and the
message is encoded using the Manchester coding method prior to
transmission. The message is then transmitted using Frequency Shift Keying

IDP IDP IDP P Length Data0 Data7……… ChecksumHeader EOM

RUN SLEEP RUN

ID detected, Romeo kept in RUN mode
Strobe pin level

Rf signal From Tango3

IDP

TONE Length Data0 Data127……… ChecksumPreamble Header EOM

Generated by driver

Supplied by application/programmer

RF Signal From Tango3

Length Data0 Data127………

SPI output (Romeo2 to MCU)
Key

Checksum
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 7

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(FSK) modulation or On/Off Keying (OOK) modulation. Romeo2 receives the
FSK/OOK signal, removes the Manchester encoding and passes the message
to the software driver via the SPI interface. The software driver writes the
message to a RAM buffer where the CPU can read the message. The Romeo2
driver must be correctly configured to match the message format, data rate and
RF carrier frequency used by the Tango3 transmitter.

Figure 6. Data Flow and Message Encoding Steps in Message Transfer

Manchester
Encoding

For Tango3 to transmit RF data, it must be supplied with a bitstream containing
the data in Manchester encoded format. A Manchester encoded bit is
represented by a sequence of two opposite logic levels. A '0' bit of data is
encoded as sequence '01', a '1' bit of data is encoded as sequence '10'. Figure
7 shows what will be seen on Tango3's DATA input when transmitting the data
sequence '11001' using Manchester encoding. Note that there is always a level
transition in the middle of a bit, but not always a transition on a bit boundary.

On the MCU, a timer I/O pin with an output compare function is used to
generate each bit. The timer modulus (or timebase) is set to match the
timebase of the Manchester encoded data. The output compare function is set
to half the timebase. By controlling the level of the I/O pin when output compare
occurs or the timer 'rolls over' to zero, the driver can generate the correct
sequence. Figure 7 shows the relationship between the timer counter value
and the generated output.

Manchester encoding is performed by the Tango3 software driver.

Tango3

Driver
Machester
encodes

msg,
transmits to

Tango3

Romeo2

HC08 CPU

Tango3
driver

Ram
buffer

CPU writes msg
to ram buffer

Driver reads
Msg from buffer

Tango3 sends
FSK or OOK

modulated data

HC08 CPU

Romeo2
driver

Ram
buffer

CPU reads msg
from ram buffer

Driver writes
msg to buffer

Decoded msg
To mcu via SPI

interface

Romeo2
decodes

FSK/OOK
and removes
Manchester

encoding

Tango3

Driver
Machester
encodes

msg,
transmits to

Tango3

Romeo2

HC08 CPU

Tango3
driver

Ram
buffer

CPU writes msg
to ram buffer

Driver reads
Msg from buffer

Tango3 sends
FSK or OOK

modulated data

HC08 CPU

Romeo2
driver

Ram
buffer

CPU reads msg
from ram buffer

Driver writes
msg to buffer

Decoded msg
To mcu via SPI

interface

Romeo2
decodes

FSK/OOK
and removes
Manchester

encoding
8 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7. Bit Encoding Using MCU Timer Channel.

Bit Decoding Romeo2's built-in data manager decodes the Manchester encoded data
internally. It transmits decoded bits on its SPI interface.

Tango3 Driver

Tango3 Hardware
Connections

Figure 8 shows the interface between the Tango3 IC and an MCU.

1 1 0 0

Timer modulus (timebase)

½ timer modulus

t

Timer counter Value

Output Compare value

1

Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 9

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 8. Tango3 Interface to MCU

A description of each connection between the MCU and Tango3 is given below.

DATA — The data to be transmitted over the RF link is passed to Tango3 on
this line. It is encoded using Manchester encoding, as defined in the Tango3
datasheet, to be compatible with Romeo2's data manager. This data is
generated using a timer channel on the MCU.

ENABLE — When this signal is at logic 1, the Tango3 IC is enabled and can
transmit data. When this signal is logic 0, Tango3 is disabled and placed in a
low power consumption mode.

DATACLK — This signal allows Tango3 to provide the MCU with an accurate
clock signal, which can be used as an accurate timebase for generating data
bits for transmission. This is useful with MCUs that use a low-accuracy clock
source, such as, for example, an RC oscillator. When Tango3 is enabled
(ENABLE = 1), DATACLK is active; when Tango3 is disabled (ENABLE = 0),
DATACLK is at logic 0.

The software driver can be configured to use or ignore DATACLK.

Tango

MCU

DATA

DATACLK

ENABLE

RFOUT

BAND

MODE

3V

TANGO Interface to MCU

Timer channel

Timer clk in

I/O pin

Required

Optional
DATACLK, MODE and BAND connections to MCU are optional
10 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BAND — This signal sets the operating band for Tango3, which defines the RF
carrier frequency. This signal is usually hard-wired to a particular value but can
also be controlled by the MCU. At logic 1, the RF carrier frequency is set to 32
times the Tango3 crystal frequency; at logic 0, the RF carrier frequency is set
to 64 times the Tango3 crystal frequency.

The software driver can be configured to use or ignore BAND. BAND can be
hard-wired to Vdd or ground if the carrier frequency is fixed.

NOTE: Pull-up or pull-down resistors are required only if the MCU is required to
override the hard-wired values.

MODE — This signal sets the modulation mode for Tango3. This signal is
usually hard-wired to a particular value, but can also be controlled by the MCU.
When MODE is at logic 1, FSK modulation is selected; when MODE is at logic
0, OOK modulation is selected.

The software driver can be configured to use or ignore MODE. MODE can be
hard-wired to Vdd or ground if the modulation mode is fixed.

NOTE: Pull-up or pull-down resistors are required only if the MCU is required to
override the hard-wired values.

ENABLEPA — This signal is present on Motorola's Tango3 RF evaluation
module. It allows the MCU to control an additional amplifier stage to boost the
RF transmit power. When ENABLEPA is at logic 1, the power amplifier is
enabled; when at logic 0, the power amplifier is disabled. The software driver
can be configured to use or ignore ENABLEPA.

Tango3 MCU
Resources

The Tango3 driver requires the following minimum MCU resources.

• One timer channel and its associated I/O pin used in output compare
mode. The interrupt vector for this timer channel will also be used. The
timer channel is connected to Tango3's DATA pin.
The Tango3 driver will set the modulus value for the timer associated
with the timer channel chosen.

• One I/O pin connected to Tango3's ENABLE pin. This allows the MCU
to enable/disable Tango3, which can be useful for reducing current
consumption in an application. Alternatively, the designer could tie the
ENABLE pin directly to Vdd to permanently enable Tango3.

The following MCU resources may also be used.

• One timer channel configured as a clock input and connected to
Tango3's DATACLK pin. (Some HC08 MCUs allow a timer pin to be
used as a clock input source.) This allows Tango3 to provide the MCU
with an accurate clock source, which can be used by the MCU to
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 11

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

generate accurate data on Tango3's DATA pin. This is especially useful
with MCUs that use low-cost RC or internal clock sources, which are
inherently inaccurate.

• One I/O pin connected to Tango3's MODE pin. This allows the MCU to
select OOK or FSK operation. Alternatively, the designer could tie the
MODE pin directly to Vdd or ground, to select OOK or FSK mode,
respectively.

• One I/O pin connected to Tango3's BAND pin. This allows the MCU to
select high or low band operation. Alternatively, the designer could tie
the BAND pin to Vdd or ground, to select low or high band operation,
respectively.

• One I/O pin connected to Tango3’s ENABLEPA pin. (Note: This pin is
provided for use with Motorola's Tango3 RF module, which features an
on-board power amplifier.)

Tango3 Driver
Description

This section provides a description of the Tango3 driver application interface
and run-time services.

The Tango3 driver provides a set of runtime services using C function calls that
allow the user to transmit messages. The services are listed below.

TangoInitialise — Configures the Tango3 driver (must be called when MCU
resets).

TangoEnable — Enables driver (and Tango3 hardware) for transmission.

TangoDisable — Disables driver (and Tango3 hardware).

TangoDriverStatus — Returns current state of driver.

TangoSendPreamble_ID — Driver transmits message preamble and ID fields.

TangoSendData — Driver transmits Header, Length, Data and EOM fields.

TangoSendMessageNoHeader — Driver transmits a message frame with no
header field.

TangoTimerInterrupt — Provides the driver with a link to the MCU’s timer
interrupt.

Messages are constructed in a RAM buffer prior to transmission. The driver can
send messages with or without a Header field as describes in Sending
Messages With Header Detect on page 5 and Sending Messages Without
Header Detect on page 5. Figure 10 shows a flowchart for sending a message
with a header field, Figure 11 shows a flowchart for sending a message without
a header field.
12 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The Tango3 driver defines a transmission buffer in RAM. The MCU writes
messages to the buffer, and the driver reads messages from this buffer and
transmits them on the RF link. The buffer contains the message ID, Length and
Data fields as shown in Figure 9. Note storage for the checksum field is not
required. The Tango3 driver generates the checksum field internally and
appends it to the message during transmission.

The size of the buffer can be programmed by the user, using the
TANGO_MAX_DATA_SIZE parameter in the Tango.H header file. The buffer
should be made large enough to receive the largest message being
transferred. See TANGO_MAX_DATA_SIZE on page 22 for details.

The application must not write to the transmission buffer while a message is
being transmitted. This could lead to corruption of the transmitted message.
The user can check if a transmission is in progress using the
TangoDriverStatus() service. See TangoDriverStatus on page 18.

Figure 9. Tango3 Transmission Buffer

Internal processing of the driver occurs when the main application calls any of
the run-time services, or after transmission of each bit when the driver is
transmitting a message. Since transmission of each bit is controlled by a timer
channel interrupt on the MCU, the user must link the TangoTimerInterrupt
service to the timer channel interrupt. An example of this is shown in Adding
the Tango3 Driver to an Application on page 27.

ID

Length

Data0

...

Data127

$xxxx

7 4 3 0

...

...
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 13

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10. Sending a Message With a Header Field

Call TangoInitialise to
initilise driver

Call TangoEnable to
power up Tango3

Driver status
==

TANGO_READY?

N

Y

Put message in transmit buffer

Call TangoSendPreamble_ID

Set a variable IdRepeat to number
of times ID+Preamble will be sent

Decrement IDRepeat

IDRepeat
== 0 ?

Call TangoSendData

Driver status
==

TANGO_READY?

N

Y

Driver status
==

TANGO_READY?

N

Y

Call TangoDisable

Want to send
another message ?

Y

N

Start

End

N

Y

Y

Call TangoInitialise to
initilise driver

Call TangoEnable to
power up Tango3

Driver status
==

TANGO_READY?

N

Y

Put message in transmit buffer

Call TangoSendPreamble_ID

Set a variable IdRepeat to number
of times ID+Preamble will be sent

Decrement IDRepeat

IDRepeat
== 0 ?

Call TangoSendData

Driver status
==

TANGO_READY?

N

Y

Driver status
==

TANGO_READY?

N

Y

Call TangoDisable

Want to send
another message ?

Y

N

Start

End

N

Y

Y

14 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11. Sending a Message Without a Header Field

Call TangoInitialise to
initilise driver

Call TangoEnable to
power up Tango3

Driver status
==

TANGO_READY?

N

Y

Put message in transmit buffer

Call TangoSendMessageNoHeader
With correct number of ID repeats

Driver status
==

TANGO_READY?

N

Y

Call TangoDisable

Want to send
another message ?

Y

N

Start

End

Call TangoInitialise to
initilise driver

Call TangoEnable to
power up Tango3

Driver status
==

TANGO_READY?

N

Y

Put message in transmit buffer

Call TangoSendMessageNoHeader
With correct number of ID repeats

Driver status
==

TANGO_READY?

N

Y

Call TangoDisable

Want to send
another message ?

Y

N

Start

End
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 15

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

After the driver has been initialized, it can be in one of four states.

TANGO_DISABLED — Driver disabled, Tango3 IC is powered down

TANGO_READY — Driver enabled, Tango3 IC is powered up and ready to
send data

TANGO_IN_ENABLE_DELAY — Driver enabled, Tango3 is currently
powering up and is not available to send messages

TANGO_BUSY — Driver enabled, Tango3 is currently transmitting a message

Figure 12 shows the various states the driver will return when the
TangoDriverStatus service is called.

Figure 12. States Returned by the TangoDriverStatus Service

TANGO_DISABLED

TANGO_IN_
ENABLE_DELAY

Call
TangoInitialise()
MUST DO THIS
TO INITIALISE
DRIVER!!

Call TangoEnable()

TANGO_READY

2ms after TangoEnable called

TANGO_BUSY

Call TangoSendPreamble_ID or
TangoSendData or
TangoSendMessageNoHeader

End of
TangoSendPreamble_ID,
TangoSendData or
TangoSendMessageNoHeader

Call TangoDisable()

Call TangoDisable()

Call TangoDisable()

TANGO_DISABLED

TANGO_IN_
ENABLE_DELAY

Call
TangoInitialise()
MUST DO THIS
TO INITIALISE
DRIVER!!

Call TangoEnable()

TANGO_READY

2ms after TangoEnable called

TANGO_BUSY

Call TangoSendPreamble_ID or
TangoSendData or
TangoSendMessageNoHeader

End of
TangoSendPreamble_ID,
TangoSendData or
TangoSendMessageNoHeader

Call TangoDisable()

Call TangoDisable()

Call TangoDisable()
16 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tango3 Driver
Services

This section provides descriptions of each service provided by the Tango3
driver.

TangoInitialise

Syntax: void TangoInitialise(void);

Parameters: None

Return: None

Description: The TangoInitialise service performs initialization of the
Tango3 IC and software driver. It does not enable the
Tango3 IC (i.e., the ENABLE pin is held low) to maintain
low power consumption. It performs the following
operations:

• Sets the driver status to TANGO_DISABLED

• Configures the MCU timer for use with Tango3
(Note that it does not switch the timer on)

• Configures MODE and BAND pins, if used

Notes: This service should be called before any other Tango3
driver services; otherwise, the result of any other Tango3
driver service and the Tango3 driver will be unpredictable.

TangoEnable

Syntax: void TangoEnable(void);

Parameters: None

Return: None

Description: The TangoEnable service powers up the Tango3 IC and
starts a 2 ms time-out count. During the timeout, the
driver status is set to TANGO_IN_ENABLE_DELAY. At
the end of the 2 ms timeout, the driver status is set to
TANGO_READY. At this point, Tango3 is powered up
and ready to send data.

Notes: Typically, the application will call the TangoEnable
service to start up the Tango3 IC. During the 2 ms timeout
it can load a message into the transmit buffer and call the
TangoStatus service to check if the 2 ms timeout has
finished. When TangoStatus returns the value
TANGO_READY, the application is ready to transmit the
message.
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 17

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TangoDisable

Syntax: void TangoDisable(void);

Parameters: None

Return: None

Description: The TangoDisable service sets the driver status to
TANGO_DISABLED and powers down the Tango3 IC. If
the TANGO_TIMER_DISABLE option is chosen in the
Tango.h header file, the MCU timer will be switched off.

Notes: If TangoDisable is called while a message is being
transmitted, transmission will halt immediately.

TangoDriverStatus

Syntax: unsigned char TangoDriverStatus(void);

Parameters: None

Return: • TANGO_DISABLED (Tango3 IC is powered down)

• TANGO_READY (Tango3 IC is powered up and
ready to send data)

• TANGO_IN_ENABLE_DELAY (Tango3 is
currently powering up and is not available to send
messages)

• TANGO_BUSY (Tango3 is currently transmitting a
message)

Description: The TangoDriverStatus service provides the application
with the current status of the Tango3 driver.

Notes: The application must not write to the transmit buffer when
status is TANGO_BUSY. Doing so will result in incorrect
data being transmitted.
18 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TangoSendPreamble_ID

Syntax: void TangoSendPreamble_ID(void);

Parameters: None

Returns: None

Description The TangoSendPreamble_ID service triggers
transmission of a message containing a Preamble field
and an ID field. The ID is read from the Tango3
transmission buffer. The driver status is set to
TANGO_BUSY during transmission of this message.

Notes: This service and the TangoSendData service are used to
send messages, using the format described in the section
on Sending Messages With Header Detect on page 5.
The service should be called only when the Romeo2 RX
IC is configured to detect Header bytes in a message
sequence (i.e., the option ROMEO_HE_VALUE is set to
1 in the Romeo.h header file).

TangoSendData

Syntax: void TangoSendData(void);

Parameters: None

Returns: None

Description: The TangoSendData service triggers transmission of a
message containing Preamble, Header, Length, Data,
Checksum and EOM fields. Length and Data are read
from the transmit buffer. The checksum is calculated prior
to transmission.

Notes: This service and the TangoSendPreamble_ID service are
used to send messages using the format described in the
section on Sending Messages With Header Detect on
page 5. The service should be called only when the
Romeo2 RX IC is configured to detect Header bytes in a
message sequence (i.e., the option ROMEO_HE_VALUE
is set to 1 in the Romeo.h header file).
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 19

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tango3 Driver
Configuration

The Tango3 driver has a static configuration at compile time. Its configuration
cannot be changed during run time. The driver configuration is defined in a
header file Tango.H. Configuration options are available for the following.

• Message format

• Message data rate

• Message modulation format (OOK or FSK)

• Carrier frequency

• MCU resources

TangoSendMessageNoHeader

Syntax: void TangoSendMessageNoHeader(unsigned char
idRepeat)

Parameters: idRepeat, a specified number of times

Returns: None.

Description: The TangoSendMessageNoheader service triggers
transmission of a message containing Preamble, ID,
Length, Data, Checksum and EOM fields. The ID field is
transmitted idRepeat+1 times.

Notes: This service is used to send messages using the 'No
Header Detect' format described in Sending Messages
Without Header Detect on page 5. The service should
be called only when the Romeo2 RX IC is configured to
not use header bytes (i.e., the option
ROMEO_HE_VALUE is set to 0 in the Romeo.h header
file).

TangoTimerInterrupt

Syntax: void TangoTimerInterrupt(void)

Parameters: None

Description: This function controls the actual processing of the Tango3
driver. It is called by the interrupt vector of the timer
channel used to generate data for the Tango3 IC. In the
CodeWarrior parameter file, this interrupt vector must be
directed to this function. This function MUST be included
used to ensure proper operation of the software driver.
20 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

These configuration options are set using a number of #define statements in
the Tango.h header file. Using these #defines, the driver can be configured to
run on any HCS08 MCU.

When starting a project using the Tango3 driver, the files ‘Tango.H’ and
‘Tango.C’ should be placed in the project directory, and a #include ‘Tango.H’
statement should be inserted in the main application file.

The Tango.H file contains 17 #define statements that must be configured to
ensure correct operation of the driver. Thirteen #defines are mandatory, and
four are optional, depending on the application’s hardware configuration.
These are described below.

TANGO_TIMER_ADDRESS

Description: This defines the address of the timer status and control
register, in the MCU's memory map. The timers on all
HCS08 MCUs have the same layout of control registers.
The driver uses this base address to access the timer
control registers.

Values: Address in range 0x0000 - 0xffff

Example:

#define TANGO_TIMER_ADDRESS 0x30 /* 1st timer register at address 0x30*/

TANGO_TIMER_CHANNEL

Description: This defines the timer channel used to output data on the
DATA line.

Values: Channel number in the range 0–15.

Example:

#define TANGO_TIMER_CHANNEL 1 /* Use timer channel 1 */
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 21

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TANGO_MAX_DATA_SIZE

Description: This defines the maximum number of data bytes that can
be transferred. This value is used to calculate the size of
the message transmit buffer. (The transmit buffer will be
TANGO_MAX_DATA_SIZE + 2 bytes.)

Values: Number in range 0–127.

Example:

#define TANGO_MAX_DATA_SIZE 8 /* Max size of data field = 8 bytes*/

TANGO_TIMER_CLOCK_SOURCE

Description: This defines the clock used to control the timer.

Values: 1 = Bus clock
2 = XCLK
3 = External clock source

Example:

#define TANGO_TIMER_CLOCK_SOURCE 3 /* Ext clk src for timer selected*/

TANGO_TIMER_CLOCK_SPEED

Description: This defines the clock speed in Hz of the timer if an
internal clock is chosen. When an external clock is used,
this definition can be deleted.

Values: Integer from 0 to MCU bus speed/4.

Example:

#define TANGO_TIMER_CLOCK_SPEED 2000000 /* Timer clk = 2 MHz */
22 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TANGO_TIMER_PRESCALE

Description: This defines the prescaler value of the timer used to send
data to Tango3. Generally this will be set to ‘1’. (Note: If
an external clock source is being used, this value will be
forced to ‘1’ by the driver.)

Values: See datasheet for S08 MCU.

Example:

#define TANGO_TIMER_PRESCALE 1 /* Specify timer prescaler value */

TANGO_TIMER_DISABLE

Description: This allows the driver to switch off the MCU timer when it
is not required to drive Tango3. This can reduce power
consumption. However, in some applications it may be
required that the timer continue running. (Note: The driver
will always start the timer when it is required.)

Values: 0 = Timer remains running after transmission of data.
1 = Timer is disabled after transmission of data.

Example:

#define TANGO_TIMER_DISABLE 1 /* Allows driver to turn off timer after use */

TANGO_MODE_VALUE

Description: This defines the type of modulation used in RF
transmissions: On Off Keying (TANGO_OOK) or
Frequency Shift Keying (TANGO_FSK).

Values: TANGO_OOK denotes OOK modulation.
TANGO_FSK denotes FSK modulation.

Example:

#define TANGO_MODE_VALUE TANGO_OOK /* OOK modulation*/
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 23

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TANGO_BAND_VALUE

Description: This defines if Tango3 is used in high band or low band
configuration.
High band: modulation frequency = crystal frequency/32
Low band: modulation frequency of crystal frequency/64

Values: TANGO_HIGH_BAND denotes high band.
TANGO_LOW_BAND denotes low band.

Example:

#define TANGO_BAND_VALUE TANGO_HIGH_BAND /* High band selected */

TANGO_CRYSTAL_FREQUENCY

Description: This defines the speed (in Hz) of the crystal used by the
Tango3 IC.Typical values at supported RF frequencies
are:

/* 315 MHz — 98400000 */
/* 434 MHz — 13560000 */
/* 868 MHz — 13560000 */

Values: Integer in range 0–10000000

Example:

#define TANGO_CRYSTAL_FREQUENCY 13560000 /* Crystal freq=13.56 MHz */

TANGO_DATA_RATE

Description: This defines the data rate in bps (before Manchester
encoding).

Values: Integer in range 0–11000

Example:

#define TANGO_DATA_RATE 1000 /* Data rate = 1 kbps */
24 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Tango3 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following #define statements are dependent on the hardware configuration
of your system and may not be required. If not required, delete these entries
from the header file.

TANGO_ENABLE

Description: This defines the I/O pin used to control Tango3's ENABLE
pin. If ENABLE is not controlled by the MCU in your
system, delete this #define from the header file.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define TANGO_ENABLE PTAD_PTAD0 /*Port A pin 0 */

TANGO_ENABLE_DDR

Description: This defines the data direction bit for the I/O pin used to
control Tango3's Enable pin. If Enable is not controlled by
the MCU in your system, delete this #define from the
header file.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define TANGO_ENABLE_DDR PTADD_PTADD0 /* DDR for Port A pin 0 */
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 25

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TANGO_MODE

Description: This defines the I/O pin used to control Tango3's MODE
pin. If MODE is not controlled by the MCU in your system,
delete this #define from the header file.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define TANGO_MODE PTAD_PTAD1 /* Port A pin 1 */

TANGO_MODE_DDR

Description: This defines the data direction bit for the I/O pin used to
control Tango3's MODE pin. If MODE is not controlled by
the MCU in your system, delete this #define from the
header file.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define TANGO_MODE_DDR PTADD_PTADD1 /* DDR for PortA pin 1 */

TANGO_BAND

Description: This defines the I/O pin used to control Tango3's BAND
pin. If BAND is not controlled by the MCU in your system,
delete this #define from the header file.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define TANGO_BAND PTAD_PTAD2 /* Port A pin 2 */
26 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Adding the Tango3 Driver to an Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Adding the Tango3 Driver to an Application

To add the Tango3 driver to an application:

1. Add Tango.h and Tango.c files to project (in CodeWarrior, right click on
sources folder, then add files).

2. Add line #include ‘Tango.h’ to main application program file.

3. Add line 'extern unsigned char tangoTransmitBuffer();' to main
application program file.

4. Decide which I/O pins in your application will control Tango3 functions.
Modify the Tango.H file to link these pins to Tango3.

5. Decide which timer channel will be used to generate data for Tango3.
Modify the Tango.H file to link these pins to Tango3.

6. Modify project parameter file to link timer channel to
TangoTimerInterrupt service

7. Modify Tango.H file to define timer speed and other parameters.

The files are now added to the project.

Figure 13 is a screen shot of an application template with Tango3 files included
and showing the main application program file with correct entries added.

Figure 14 is a screenshot of the project parameter file showing how to include
the TangoTimerInterrupt function call. In this example, it is linked to timer 1,
channel 0.

Figure 15 shows an example Tango.H header file. This has been configured
for use with an MC9S08GB60 MCU. Tango3 is configured for 434 MHz
operation with a data rate of 1 kbps. Timer 0, channel 1 is used on the MCU.

TANGO_BAND_DDR

Description: This defines the data direction bit for the I/O pin used to
control Tango3's BAND pin. If BAND is not controlled by
the MCU in your system, delete this #define from the
header file.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define TANGO_BAND_DDR PTADD_PTADD2 /* DDR for PortA pin 2 */
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 27

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 13. Application Template with Tango3 Files Included

Tango.H file
TangoTransmitBuffer[]
declaration

Tango.H and Tango.C added to project
28 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Adding the Tango3 Driver to an Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 14. Project Parameter File

TangoTimerInterrupt entry
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 29

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 15. Example Tango3.H file

/**/
/* THIS SECTION CONTAINS VALUES YOU MUST DEFINE! */
/* */
#include <MC9S08GB60.h> /* Include peripheral declarations */

#define TANGO_TIMER_ADDRESS 0x30 /* Location of 1st timer register */
#define TANGO_TIMER_CHANNEL 1 /* Define which timer channel to use */
 /* Note:timer channels start from 0 */

#define TANGO_MAX_DATA_SIZE 127 /* Max size of data */

 /* Set TANGO Mode */
#define TANGO_MODE_VALUE TANGO_OOK /* TANGO_OOK or TANGO_FSK */

 /* Set timer clock speed in Hz */
#define TANGO_TIMER_CLOCK_SPEED 2000000

#define TANGO_TIMER_CLOCK_SOURCE 3 /* Use to set clock source for timer */
 /* 1 = Bus clock */
 /* 2 = XCLK */
 /* 3 = Ext clock */

#define TANGO_CRYSTAL_FREQUENCY 13560000 /* Crystal frequency (in Hz) */
 /* Typical values used */
 /* RF Output */
 /* 315MHz - 98400000 */
 /* 434MHz - 13560000 */
 /* 868MHz - 13560000 */

#define TANGO_TIMER_PRESCALE 1 /* Specify timer prescaler value */
 /* NOTE: If using DATACLK from */
 /* Tango ic, prescaler will be forced */
 /* to 1 */

#define TANGO_TIMER_DISABLE 1 /* Allows driver to turn off timer after use */
 /* Delete this #define if you want timer to */
 /* stay on */

 /* Set Tango Band */
 /* TANGO_HIGH_BAND or TANGO_LOW_BAND */
#define TANGO_BAND_VALUE TANGO_HIGH_BAND

 /* Set Tango data rate in Hz (before */
#define TANGO_DATA_RATE 1000 /* Manchester encoding) */

#define TANGO_ENABLE PTAD_PTAD0 /* Define pin used for enable */
#define TANGO_ENABLE_DDR PTADD_PTADD0 /* If hardwired,delete #defines */

/**/
/* These may be omitted depending on the hardware setup */

#define TANGO_MODE PTAD_PTAD1 /* Define pin used for mode select */
#define TANGO_MODE_DDR PTADD_PTADD1 /* If hardwired,delete #defines */

#define TANGO_BAND PTAD_PTAD2 /* Define pin for band select */
#define TANGO_BAND_DDR PTADD_PTADD2 /* If hardwired,delete #defines */

//#define TANGO_ENABLE_PA /* Define pin used for Power amp enable */
//#define TANGO_ENABE_PA_DDR /* If hardwired, delete #defines */
/**/
30 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Using the Tango3 Driver in an Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using the Tango3 Driver in an Application

1. At the start of your application, you must call function 'TangoInitialise()'.
This configures the driver and the MCU's timer. Note, to save power, this
function does not switch on the Tango3 IC.

2. Before sending commands using Tango3, you must call 'TangoEnable'.
This powers up Tango3 (if the ENABLE pin is being used) and starts a
2 ms delay to allow Tango3 to start.

3. Application can now send messages in the two formats described in
Sending Messages With Header Detect on page 5 and Sending
Messages Without Header Detect on page 5.

To send a message with no header, put the message in the transmit buffer in
RAM, then call TangoSendMessageNoHeader().

The application can check the current state of the driver by calling
TangoStatus().

Figure 16 shows a simple application that will send a continuous stream of
messages using Tango3. Each message contains one data byte and the value
of the data byte is incremented.

Figure 15 shows the contents of the Tango.h file for this example.
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 31

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 16. Example Tango3 Application.
32 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Romeo2 Driver

Romeo2 Hardware
Connection

Figure 17 shows the interface between the Romeo2 IC and an MCU.

Figure 17. Romeo2 Interface to MCU

MOSI, MISO, SCLK — These are SPI data and clock connections. The SPI link
allows the MCU to configure Romeo2, and also allows Romeo2 to pass data
received on the RF link to the MCU.

RESETB — This signal controls the state of Romeo2 and the direction of data
on the SPI interface. When RESETB is at logic 0, Romeo2 is a slave on the SPI
link; the MCU can write or read data to or from Romeo2’s internal registers.
When RESETB is logic 1, Romeo2 is the master on the SPI bus; it sends data
received on RF to the MCU via the SPI.

SS (Slave Select) — This pin on the MCU must be held low when the MCU is
configured as an SPI slave. In most systems, this pin will be tied to ground
using a pull-down resistor.

MCU

ROMEO

MISO
MOSI
SCLK

RESETB

MISO
MOSI
SCLK

RESETB

STROBE

Required

Optional

MISO
MOSI
SCLK

SS
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 33

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Romeo2 Driver
Description

This section provides a description of the Romeo2 driver application interface
and run-time services.

The Romeo2 driver provides a set of runtime services using C function calls
that allow the user to receive messages. The services are listed below.

RomeoInitialise — Configure the Romeo2 driver (must be called when MCU
resets)

RomeoEnable — Enables driver (and Romeo2 hardware) for transmission

RomeoDisable — Disables driver (and Romeo2 hardware)

RomeoStatus — Returns current state of driver

RomeoStrobeHigh — Driver sets Romeo2's STROBE pin high

RomeoStrobeLow — Driver sets Romeo2's STROBE pin low

RomeoStrobeTriState — Driver tristates Romeo2's STROBE pin

RomeoChangeConfig — Allows driver to reconfigure Romeo2's internal
registers

RomeoSPIRxInt — Provides the driver with a link to the MCU's SPI interface
receive interrupt.

The Romeo2 driver defines a receive buffer in RAM. The Romeo2 driver writes
complete messages to this buffer after reception from the RF link. The buffer
contains the message Length and Data fields and a Buffer Full status flag, as
shown in Figure 18. The size of the buffer can be programmed by the user,
using the ROMEO_MAX_DATA_SIZE parameter in the Romeo.H header file.
You should make the buffer large enough to receive the largest message being
transferred. See ROMEO_MAX_DATA_SIZE on page 42 for details.

Note that storage for the ID and Checksum fields is not required. Each Romeo2
device has a fixed ID defined at compile time, so no additional storage is
required. The Romeo2 driver calculates the Checksum field for each message
internally, and compares it with the actual checksum received. If there is an
error, the driver status is updated to ROMEO_CHECKSUM_ERROR.

The application must not read from the receive buffer, nor read the Buffer Full
flag, before calling the RomeoStatus service to check if a new valid message
is waiting. To do so could result in reading a corrupted message (the driver may
store a new message in the buffer, while the application is reading the previous
message). After the application has successfully read the message, it must
clear the Buffer Full flag.
34 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 18. Romeo2 Receive Buffer

If a message is received and the receive buffer is full (BF flag = 1), the last
received message will be discarded and the driver status will be set to
ROMEO_OVERRUN.

After the driver has been initialized, it can be in one of five states (listed below).

ROMEO_DISABLED — Driver disabled, Romeo2 IC in low power mode.

ROMEO_MSG_READY — Driver enabled, message ready in data buffer.

ROMEO_OVERRUN — Driver enabled, input buffer full, previous message
received has been lost.

ROMEO_CHECKSUM_ERROR — Driver enabled, last message received has
a checksum error.

ROMEO_NO_MSG — Driver enabled, no messages waiting.

Figure 19 shows a flowchart for configuring the driver to receive messages.

Figure 20 shows the various states the driver will return, when the
RomeoStatus service is called.

Internal processing of the driver occurs when the main application calls any of
the run-time services, and after reception of data on the SPI interface. Since
reception of data is controlled by an SPI interrupt on the MCU, the user must
link the RomeoSPIRxInt service to the SPI interrupt. An example of this is given
in Adding the Romeo2 Driver to an Application on page 46.

Length

Data0

...

Data127

$xxxx

7 4 3 0

...

...

BF
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 35

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 19. Configuring the Driver to Receive Messages

Start

Call
RomeoInitialise

Call
RomeoEnable to enable

driver for reception

Driver status
=

ROMEO_MSG_READY ?

Call RomeoStatus

Read msg from receive
buffer

Clear buffer Full flag
In receive buffer

Start

Call
RomeoInitialise

Call
RomeoEnable to enable

driver for reception

Driver status
=

ROMEO_MSG_READY ?

Call RomeoStatus

Read msg from receive
buffer

Clear buffer Full flag
In receive buffer
36 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 20. States Returned by the RomeoStatus Service

ROMEO_DISABLED

ROMEO_OVERRUN ROMEO_CHECKSUM_ERROR

ROMEO_NO_MSG

ROMEO_MSG_READY

Call RomeoInitialise()
MUST DO THIS TO
INITIALISE DRIVER

Msg received with no error
While Buffer Full flag set

Buffer Full
flag cleared

Buffer Full
flag cleared Msg received with

checksum error

Msg received with
checksum error

Buffer Full
flag cleared

Call
RomeoEnable()Call

RomeoDisable()

Call
RomeoDisable()

Call
RomeoDisable()

Call
RomeoDisable()

Call
RomeoDisable()

Msg received

ROMEO_DISABLED

ROMEO_OVERRUN ROMEO_CHECKSUM_ERROR

ROMEO_NO_MSG

ROMEO_MSG_READY

Call RomeoInitialise()
MUST DO THIS TO
INITIALISE DRIVER

Msg received with no error
While Buffer Full flag set

Buffer Full
flag cleared

Buffer Full
flag cleared Msg received with

checksum error

Msg received with
checksum error

Buffer Full
flag cleared

Call
RomeoEnable()Call

RomeoDisable()

Call
RomeoDisable()

Call
RomeoDisable()

Call
RomeoDisable()

Call
RomeoDisable()

Msg received
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 37

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Romeo2 Driver
Services

This section provides descriptions of each service provided by the Romeo2
driver.

RomeoInitialise

Syntax: void RomeoInitialise(void);

Parameters: None

Return: None

Description: The RomeoInitialise service performs initialization of the
Romeo2 IC and software driver. It performs the following
operations.

• Configures Romeo2 with options defined in
Romeo.H file using SPI

• Sets the driver status to ROMEO_DISABLED

Notes: This service should be called before any other Romeo2
driver services. Otherwise, the result of any other
Romeo2 driver service and the Romeo2 driver will be
unpredictable.

RomeoEnable

Syntax: void RomeoEnable(void);

Parameters: None

Return: None

Description: The RomeoEnable service enables Romeo2 to receive
messages. The Strobe line, if under driver control, is
taken high to force Romeo2 into RUN mode. Romeo2's
SPI interface is configured to make Romeo2 the master,
so that it can pass data to the MCU. The driver status is
set to ROMEO_NO_MSG.
38 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RomeoDisable

Syntax: void RomeoDisable(void);

Parameters: None

Return: None

Description: The RomeoDisable service disables passing of data from
Romeo2 to the MCU and forces the Strobe line low to
keep Romeo2 in SLEEP mode. The driver state is set to
ROMEO_DISABLED.

RomeoStatus

Syntax: unsigned char RomeoStatus(void);

Parameters: None

Returns: • ROMEO_DISABLED — driver disabled, Romeo2
IC in low power mode

• ROMEO_MSG_READY — driver enabled,
message ready in data buffer

• ROMEO_OVERRUN — driver enabled, input
buffer full, previous message received has been
lost

• ROMEO_CHECKSUM_ERROR — driver
enabled, last message received has a checksum
error

• ROMEO_NO_MSG — driver enabled, no
messages waiting

Description: The RomeoStatus service returns the current state of the
Romeo2 driver.
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 39

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RomeoStrobeHigh

Syntax: void RomeoStrobeHigh(void);

Parameters: None

Returns: None

Description: The RomeoStrobeHigh service sets the Strobe pin (if
under driver control) to logic 1. This service can be called
by the application to allow RUN/SLEEP mode cycling of
the Romeo IC, to reduce power consumption

RomeoStrobeLow

Syntax: void RomeoStrobeLow(void);

Parameters: None

Returns: None

Description: The RomeoStrobeLow service sets the Strobe pin (if
under driver control) to logic 0. This service can be called
by the application to allow RUN/SLEEP mode cycling of
the Romeo2 IC, to reduce power consumption.

RomeoStrobeTriState

Syntax: void RomeoStrobeTriState(void);

Parameters: None

Returns: None

Description: The RomeoStrobeTriState service sets the Strobe pin (if
under driver control) to a high impedance state. This
service can be called by the application to allow
RUN/SLEEP mode cycling of the Romeo2 IC, to reduce
power consumption.
40 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Romeo2 Driver
Configuration

The Romeo2 driver has a static configuration at compile time. Its configuration
cannot be changed during run time. The driver configuration is defined in a
header file ‘Romeo.h’. Configuration options are available for:

• Message format

• Message data rate

• Message modulation format (OOK or FSK)

• Carrier frequency

• Strobe oscillator function

• MCU resources

RomeoChangeConfig

Syntax: void RomeoChangeConfig(unsigned char cr1, unsigned
char cr2, unsigned char cr3);

Parameters: cr1,cr2,cr3

Returns: None

Description: The RomeoChangeConfig service allows the application
to directly change the contents of the Romeo2 IC’s
internal 8-bit registers cr1, cr2 and cr3. This gives the user
the option to change carrier frequency, switch on/off the
strobe function, or change other functions. Please consult
the Romeo2 IC datasheet for a full description of the
contents of these registers.

RomeoSPIRxInt

Syntax: interrupt void RomeoSPIRxInt(void);

Parameters: None

Returns: None

Description: This function is called by the interrupt vector of the SPI
interface used to communicate with the Romeo2 IC. In the
CodeWarrior parameter file, the SPI interrupt vector must
be directed to this function. This function MUST be
included to ensure proper operation of the software
driver.
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 41

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

These configuration options are set using a number of #define statements in
the Romeo.h header file. Using these #defines, the driver can be configured to
run on any HC08 MCU with an SPI interface.

When starting a new project using the Romeo2 driver, you should place files
‘Romeo.H’ and ‘Romeo.C’ in the project directory and a #include ‘Romeo.H’
statement in the main application file.

The Romeo.H file contains a number of #define statements that must be
configured to ensure correct operation of the driver. These are described
below:

ROMEO_SPI_ADDRESS

Description: This defines the start address of the SPI control registers
in the MCU's memory map.

Values: Integer in range 0x0000–0xffff

Example:

#define ROMEO_SPI_ADDRESS 0x10 /* Address varies from MCU to MCU */

ROMEO_MAX_DATA_SIZE

Description: This defines the maximum number of data bytes that can
be transferred. This value is used to calculate the size of
the message receive buffer (receive buffer will be
ROMEO_MAX_DATA_SIZE + 1 byte.)

Values: Number in range 0–127

Example:

#define ROMEO_MAX_DATA_SIZE 8 /* Max size of data field = 8 bytes */
42 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROMEO_RESET

Description: This defines the I/O pin used to control Romeo2's RESET
pin.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define ROMEO_RESET PTA_PTA0 /* Port A pin 0 used for RESET */

ROMEO_RESET_DDR

Description: This defines the data direction bit for the I/O pin used to
control Romeo2's RESET pin.

Values: Any I/O pin configurable as an output can be used. Use
the naming convention specified in the CodeWarrior
header files.

Example:

#define ROMEO_RESET_DDR PTA_PTA0 /* DDRA for Port A pin 0 */

ROMEO_MODE_VALUE

Description: This defines the modulation type used in RF
transmissions - ON/OFF Keying (ROMEO_OOK) or
Frequency Shift Keying (ROMEO_FSK)

Values: ROMEO_OOK = OOK modulation
ROMEO_FSK = FSK modulation

Example:

#define ROMEO_MODE_VALUE ROMEO_OOK /* OOK modulation */
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 43

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROMEO_BAND_VALUE

Description: This defines if Romeo2 is used in high band or low band
configuration.

Values: ROMEO_HIGH_BAND = high band selected
ROMEO_LOW_BAND = low band selected

Example:

#define ROMEO_BAND_VALUE ROMEO_HIGH_BAND /* High band selected */

ROMEO_SOE_VALUE

Description: This defines if the Strobe oscillator is enabled on Romeo2

Values: 0 = disabled
1 = enabled

Example:

#define ROMEO_SOE_VALUE 1 /* Strobe oscillator enabled*/

ROMEO_HE_VALUE

Description: This defines if Romeo2 uses the header detect
messaging format.

Values: 0 = no header byte present in messages
1 = header detect messaging used

Example:

#define ROMEO_HE_VALUE 0 /* 0 = No header word used*/

ROMEO_ID_VALUE

Description: This defines the ID word used for this particular Romeo2
IC.

Values: Integer in range 0 - 0xff that does not contain binary
sequence 0110

Example:

#define ROMEO_ID_VALUE 0x55 /* ID word set to 0x55 */
44 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Romeo2 Driver

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROMEO_SPI_CLOCK_SPEED

Description: This defines the speed of the SPI clock.

Values: Integer in range 0 - 20000000

Example:

#define ROMEO_SPI_CLOCK_SPEED 8000000/* SPI clock is 8MHz */

ROMEO_SR_VALUE

Description: This defines the ratio SLEEP time over RUN time for the
strobe oscillator.

Values: 0 - strobe ratio = 3
1 - strobe ratio = 7
2 - strobe ratio = 15
3 - strobe ratio = 31

Example:

#define ROMEO_SR_VALUE 1 /* Sleep time is 7 x RUN time */

ROMEO_DR_VALUE

Description: This defines the data rate of received messages before
Manchester encoding

Values: 0 = 1.0 - 1.4kbaud
1 = 2.0 - 2.7kbaud
2 = 4.0 - 5.3kbaud
3 = 8.6 - 10.6kbaud

Example:

#define ROMEO_DR_VALUE 0 /* Datt in range 1.0 - 1.4 kbaud */
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 45

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Adding the Romeo2 Driver to an Application

To add the Romeo2 driver to an application:

1. Add Romeo.h and Romeo.c files to project (in CodeWarrior, right click
on sources folder, then add files).

2. Add line #include ‘Romeo.h’ to main application program file.

3. Add line 'extern unsigned char romeoReceiveBuffer[];' to main
application program file.

4. Decide which I/O pins in your application will control Romeo2 functions.
Modify the Romeo.H file to link these pins to Romeo2.

ROMEO_MG_VALUE

Description: This defines the gain of Romeo2's mixer stage.

Values: 0 = Normal gain
1 = -17dB (typical)

Example:

#define ROMEO_MG_VALUE 0 /* Mixer gain is norma */

ROMEO_MS_VALUE

Description: This #define switches the position of the MIXOUT pin.

Values: 0 - MIXOUT at mixer output
1 - MIXOUT at IF input

Example:

#define ROMEO_MS_VALUE 0 /* MIXOUT pin to mixer output */

ROMEO_PG_VALUE

Description: This define sets the gain of the phase comparator.

Values: 0 - high gain mode
1 - low gain mode

Example:

#define ROMEO_PG_VALUE 1 /* Phase comparator set to low gain mode */
46 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Adding the Romeo2 Driver to an Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5. Modify Romeo.H file to define timer speed, and other parameters.

The files are now added to the project

Figure 21 is a screenshot of a CodeWarrior application template, with Romeo2
files included, and showing the main application program file with correct
entries added.

Figure 22 is a screenshot of the project parameter file showing how to include
the RomeoSPIRxInt function call.

Figure 23 shows an example Romeo.H header file. This has been configured
for use with an MC68HC908GZ60 MCU Romeo2 is configured for 434 MHz
operation with a data rate of 1–1.4 kbps.

Figure 21. Romeo2 Application Template

Romeo.H header file

RomeoReceiveBuffer[] declaration

Romeo.C and Romeo.H files added to
project
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 47

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 22. Project Parameter File

RomeoSPIRxInt entry
48 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Adding the Romeo2 Driver to an Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 23. Example Romeo.h File

/***/
/* THIS SECTION CONTAINS VALUES YOU MUST DEFINE! */
/***/
#include <MC68HC908GZ60.h> /* include peripheral declarations */

/* Specify start adress of SPI registers */
#define ROMEO_SPI_ADDRESS 0x10 /* Address varies from mcu to mcu */

/* Set length of data field in receive data buffers */
#define ROMEO_MAX_DATA_SIZE 8 /* Max length of data field in msg */

/* Set Romeo reset pin */
#define ROMEO_RESET PTG_PTG0 /* Define pin used for Reset */
#define ROMEO_RESET_DDR DDRG_DDRG0

/* Set Romeo mode */
#define ROMEO_MODE_VALUE ROMEO_OOK /* ROMEO_OOK = OOK reception */
 /* ROMEO_KSF = FSK reception */
/* Set Romeo band */
#define ROMEO_BAND_VALUE 1 /* 0 = lower band */
 /* 1 = higher band */
/* Enable/disable Strobe osc */
#define ROMEO_SOE_VALUE 1 /* 0 = strobe oscillator disabled */
 /* 1 = strobe oscillator enabled */

/* Header word present select */
#define ROMEO_HE_VALUE 1 /* 0 = No header word used */
 /* 1 = Header word present */

/* Define ID word value */
#define ROMEO_ID_VALUE 0x55 /* ID word recognised by Romeo */

/* SPI clock speed */
#define ROMEO_SPI_CLOCK_SPEED 8000000

/* Strobe Ratio value */
#define ROMEO_SR_VALUE 1 /* 0 = strobe ratio 3 */
 /* 1 = strobe ratio 7 */
 /* 2 = strobe ratio 15 */
 /* 3 = strobe ratio 31 */
/* Data rate */
#define ROMEO_DR_VALUE 0 /* 0 = 1.0 - 1.4kbaud */
 /* 1 = 2.0 - 2.7kbaud */
 /* 2 = 4.0 - 5.3kbaud */
 /* 3 = 8.6 - 10.6kbaud */
/* Mixer gain */
#define ROMEO_MG_VALUE 0 /* 0 = Normal */
 /* 1 = -17dB (typical) */
/* MS switch */
#define ROMEO_MS_VALUE 0 /* 0 = to mixer output */
 /* 1 = to IF input */

/* Phase comparator gain */
#define ROMEO_PG_VALUE 1 /* 0 = high gain mode */
 /* 1 = low gain mode */

/***/
/* These may be omitted depending on hardware setup */
/***/
#define ROMEO_STROBE PTG_PTG1 /* #defines for STROBE pin */
#define ROMEO_STROBE_DDR DDRG_DDRG1 /* If hardwired,delete #defines */

#define ROMEO_AGC PTG_PTG3 /* #defines for AGC pin */
#define ROMEO_AGC_DDR DDRG_DDRG3 /* If hardwired,delete #defines */

#define ROMEO_AGC_VALUE 1 /* 1 -> slow, OOK */
 /* 0 -> fast, FSK */

/*These are required for use with Motorola's rf modules */
#define ROMEO_ENABLELNA PTG_PTG2 /* #defines for LNA pin */
#define ROMEO_ENABLELNA_DDR DDRG_DDRG2 /* If hardwired,delete #defines */
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 49

For More Information On This Product,
 Go to: www.freescale.com

AN2707

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using the Romeo2 Driver in an Application

1. The application must first call RomeoInitialise() to configure the driver
correctly.

2. The application must then call RomeoEnable() to enable the Romeo2 IC
to receive messages and the driver to process them.

3. After RomeoEnable() has been called, the application should poll the
status of the driver using RomeoStatus(). If the status is
ROMEO_MSG_READY, or ROMEO_OVERRUN, a message is waiting
in romeoReceiveBuffer.

4. After a message has been read from the receive buffer, the Buffer Full
flag in the receive buffer (bit 8 in byte 0 of buffer) should be cleared to
indicate the receive buffer is now available for new messages.

Figure 24 shows a simple example using the Romeo2 driver that receives all
messages.

Figure 23 shows the contents of the Romeo.h file for this example.
50 Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs

For More Information On This Product,
 Go to: www.freescale.com

AN2707
Using the Romeo2 Driver in an Application

,

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 24. Example Romeo2 Application

Trademarks • Freescale and the Freescale logo are registered trademarks of Freescale
Inc.

• CodeWarrior® is a registered trademark of MetroWerks, a wholly owned
subsidiary of Freescale Semiconductor, Inc.
Software Drivers for Tango3 RF Transmitter and Romeo2 RF Receiver ICs 51

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2707
For More Information On This Product,

 Go to: www.freescale.com

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

RXZB30
logo

	Introduction
	Contents
	Communication Concept
	Message Formats
	Sending Messages With Header Detect
	Sending Messages Without Header Detect
	Reducing Power Consumption
	Tone Signalling
	Message Encoding
	Manchester Encoding
	Bit Decoding

	Tango3 Driver
	Tango3 Hardware Connections
	Tango3 MCU Resources
	Tango3 Driver Description
	Tango3 Driver Services
	Tango3 Driver Configuration

	Adding the Tango3 Driver to an Application
	Using the Tango3 Driver in an Application
	Romeo2 Driver
	Romeo2 Hardware Connection
	Romeo2 Driver Description
	Romeo2 Driver Services
	Romeo2 Driver Configuration

	Adding the Romeo2 Driver to an Application
	Using the Romeo2 Driver in an Application
	Trademarks

