
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

This application note is offered as a supplement to the
reference manuals of the PowerQUICC II Pro and
PowerQUICC III integrated communications processors that
incorporate the SEC 2.0. The purpose is to assist the user in
understanding and creating descriptors in the event that the
user has more specific requirements than those covered by
the SEC 2.0 reference device driver. This application note
assumes the reader is already basically familiar with the SEC
2.0 architecture, as explained in the applicable device
reference manual.

Contents
1. SEC 2.0 Data Packet Descriptor Overview 2
2. Descriptor Structure . 2
3. Descriptor Header . 3
4. Execution Unit MODE_DATA 5
5. Selecting Descriptor Type—DESC_TYPE 12
6. Direction Bit . 14
7. Notification Bit . 15
8. Descriptor Format: Pointer Dwords 15
9. Use of Specific Descriptor Types 22

10. Conclusion . 47
11. Revision History . 48
A. Protocol Examples . 49

SEC 2.0 Descriptor Programmer’s Guide
by Networking and Multimedia Group

Freescale Semiconductor, Inc.
Austin, TX

Document Number: AN2755
Rev. 1, 04/2010

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

2 Freescale Semiconductor

SEC 2.0 Data Packet Descriptor Overview

1 SEC 2.0 Data Packet Descriptor Overview
The SEC 2.0 has DMA capability to off-load data movement and encryption operations from the
PowerQUICC CPU core. As the system controller, the CPU core of the PowerQUICC maintains a record
of current secure sessions, as well as the corresponding keys and contexts of those sessions. Once the CPU
core has determined a security operation is required, it can either directly write keys, context, and data to
the SEC (SEC in target mode), or the CPU core can create a “data packet descriptor” to guide the SEC
through the security operation, with the SEC acting as an internal bus master. The descriptor can be created
in main memory, any memory local to the SEC, or written directly to the data packet descriptor buffer in
the SEC crypto-channel.

2 Descriptor Structure
SEC descriptors are conceptually similar to descriptors used by most devices with DMA capability. The
descriptors have a fixed length of 64 bytes, that is, eight long-words, consisting of one “header dword” and
seven “pointer dwords.” Figure 1 shows the descriptor format.

The header dword specifies the security operation to be performed, the execution unit(s) needed, and the
modes for each execution unit. The pointer dwords, all of which have the same format, contain pointer and
length information for locating input or output data parcels (such as keys, context, or text-data). The large
number of pointers provided in the descriptor allows for multi-algorithm operations that require fetching
of multiple keys, as well as fetch and return of contexts. Any pointer dword that is not needed can be given
a length of zero, and the channel will skip over the corresponding operations.

SEC descriptors include scatter/gather capability, which means that each pointer in a descriptor can be
either a direct pointer to a contiguous parcel of data, or can be a pointer to a “link table” which is a list of
pointers and lengths used to assemble the data parcel. When a link table is used to read input data, this is
referred to as a “gather” operation; when used to write output data, it is referred to as a “scatter” operation.

0 15 16 17 23 24 31 32 63

Header Dword Header Reserved

Pointer Dword 0 Length0 J1 Extent0 - Pointer0

Pointer Dword 1 Length1 J2 Extent1 - Pointer1

Pointer Dword 2 Length2 J3 Extent2 - Pointer2

Pointer Dword 3 Length3 J4 Extent3 - Pointer3

Pointer Dword 4 Length4 J5 Extent4 - Pointer4

Pointer Dword 5 Length5 J6 Extent5 - Pointer5

Pointer Dword 6 Length6 J7 Extent6 - Pointer6

Figure 1. Descriptor Format

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 3

Descriptor Header

3 Descriptor Header
Descriptors are created by the host to guide the SEC through required cryptographic operations. The
descriptor header defines the operations to be performed, the mode for each operation, and the ordering of
the inputs and outputs in the body of the descriptor. The SEC 2.0 device drivers allow the host to create
proper headers for each cryptographic operation. Figure 2 shows the descriptor header.

Table 1 defines the descriptor header fields.

0 3 4 11 12 15 16 23 24 28 29 30 31

Field Op_0 Op_1 Desc_Type — DIR DN

Subfield EU_SELECT MODE_DATA EU_SELECT MODE_DATA — — — —

Reset 0x0000_0000

R/W R/W

Addr Channel_X 0x0_080

Figure 2. Descriptor Header

Table 1. Descriptor Header Field Descriptions

Bits Name Description

0–11 Op_0 Op_0 contains two subfields, EU_SELECT and MODE_DATA. Figure 3 shows the subfield detail.
EU_SELECT[0–3]—Programs the channel to select a primary EU of a given type. Table 2 lists the possible
EU_SELECT values.
MODE_DATA[4–11]—Programs the primary EU mode data.
The mode data is specific to the chosen EU. This data is passed directly to bits 0–7 of the specified EU
mode register.

12–23 Op_1 Op_1 contains two subfields, EU_SELECT and MODE_DATA. Figure 3 shows the subfield detail.
EU_SELECT[12–15]—Programs the channel to select a secondary EU of a given type. Table 2 lists the
possible EU_SELECT values.
MODE_DATA[16–23]—Programs the secondary EU mode data.
The mode data is specific to the chosen EU. This data is passed directly to bits 0–7 of the specified EU
mode register.
The MDEU is the only valid secondary EU. Values for Op_1 EU_SELECT other than 0011 (MDEU) or 0000
(No EU selected) will result in an unrecognized header error condition. Selecting 0011 (MDEU) for both
primary and secondary EU will also create an error condition.

24–28 Desc_Type Descriptor Type—Each type of descriptor determines the following attributes for the corresponding data
length/pointer pairs: the direction of the data flow, which EU is associated with the data, and which internal
EU address is used.
Table 6 lists the valid types of descriptors.

29 — Reserved

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

4 Freescale Semiconductor

Descriptor Header

Figure 3 shows the two sub fields of Op_n.

The following rules govern the choices for these fields:

• EU_SEL0 values of “No EU selected” or “Reserved” result in an “Unrecognized Header Error”
condition during processing of the descriptor header.

• The only valid choices for EU_SEL1 are “No EU selected” or MDEU. Any other choice results in
an “Unrecognized Header” error condition.

• If EU_SEL1 is MDEU, then EU_SEL0 must be DEU, AESU, or AFEU. All other values of
EU_SEL0 result in an “Unrecognized header” error condition.

The full range of permissible EU_Select values is shown in Table 2.

30 DIR Direction: direction of overall data flow:
0 Outbound
1 Inbound
This, along with the DESC_TYPE field, helps determine the sequence of actions to be performed by the
channel and selected EUs.

31 DN Done notification flag
Setting this bit indicates whether to perform notification upon completion of this descriptor. The notification
can take the form of an interrupt, modified header write back, or both depending upon the state of the
INTERRUPT_ENABLE and WRITEBACK_ENABLE control bits in the crypto-channel configuration
register.
0 Do not signal DONE upon completion of this descriptor (unless globally programmed to do so via the

crypto-channel configuration register.)
1 Signal DONE upon completion of this descriptor
Note: The SEC can be programmed to perform DONE notification upon completion of each descriptor,
upon completion of any descriptor, or completion of the final descriptor in a chain. This bit provides for the
second case.
When the crypto-channel requests a write of the descriptor header back to system memory, the most
significant byte (big endian) of the header is always read as set to 0xFF, and the remaining 24 bits are not
changed.

0 3 4 11

Op_n

EU_SELECT MODE_DATA

Figure 3. Op_n sub fields

Table 2. EU_Select Values

Value EU Select

0000 No EU selected

0001 AFEU

0010 DEU

0011 MDEU

Table 1. Descriptor Header Field Descriptions (continued)

Bits Name Description

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 5

Execution Unit MODE_DATA

4 Execution Unit MODE_DATA
The SEC execution units are programmed via the descriptor header. The MODE_DATA portion of the
Op_n field in the descriptor header is written to bits 56–63 of the mode register in the execution unit
selected by the EU_SELECT field in Op_n. A complete explanation of the execution unit registers can be
found in the applicable device reference manual, however, the mode register for each EU is provided in
this section for convenience.

4.1 PKEU Mode Register
This register specifies the internal PKEU routine to be executed. For the root arithmetic routines, PKEU
has the capability to perform arithmetic operations on subsegments of the entire memory. This is
particularly useful for operations such as ECDH (elliptic curve Diffie-Hellman) key agreement
computation, where the point multiplication results are converted from projective to affine by multiplying
the projective result by the result of the external inverse computation. By using regAsel and regBsel, for
example, parameter memory A subsegment 2 can be multiplied into parameter memory B subsegment 1.
Figure 4 and Figure 5 detail two definitions.

0100 RNG

0101 PKEU

0110 AESU

others Reserved

1111 Reserved for header writeback

Address 0xC000 Access: Read/Write

0 55 56 63

R
— MODE

W

Reset All zeros

Figure 4. PKEU Mode Register: Definition 1

Address 0xC000 Access: Read/Write

0 55 56 59 60 63

R
— MODE RegSEL

W

Reset All zeros

Figure 5. PKEU Mode Register: Definition 2

Table 2. EU_Select Values (continued)

Value EU Select

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

6 Freescale Semiconductor

Execution Unit MODE_DATA

Table 3 lists mode register routine definitions. Parameter memories are referred to for the base address, as
shown.

Table 3. Mode Register Routine Definitions

Routine Mode [56-59] Mode [60–61] Mode [62–63]

Reserved 0000 00 00

Clear memory 0000 0 01

Modular exponentiation 0000 00 10

R2 mod N 0000 00 11

RnRp mod N 0000 01 00

MULTKPTOQ 0000 01 01

MULTKPTOQf2M 0000 01 10

MULTKPTOQxyz 0000 01 11

MULTKPOTOQ 0000 10 00

FPADDPTOQ 0000 10 01

FPDOUBLEQ 0000 10 10

F2MADDPTOQ 0000 10 11

F2MDOUBLEQ 0000 11 00

F2m R2 CMD 0000 11 01

F2m INV CMD 0000 11 10

MOD INV CMD 0000 11 11

Modular addition 0001 regAsel1

00 = A0
01 = A1
10 = A2
11 = A3

1 regAsel and regBsel here refer to the specific segment of parameter memory A and B.

regBsel1

00 = B0
01 = B1
10 = B2
11 = B3

Modular subtraction 0010

Modular multiplication with single reduction 0011

Modular multiplication with double reduction 0100

Polynomial addition 0101

Polynomial multiplication with single reduction 0110

Polynomial multiplication with double reduction 0111

Single Step Exponentiation (combines R2 mod N+ mod mult + mod exp) 1000 00 00

Note:

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 7

Execution Unit MODE_DATA

4.2 DEU Mode Register
Shown in Figure 6, the mode register is used to control operation of the DEU and contains 64 bits.

Table 4 describes DEU mode register fields.

4.3 AFEU Mode Register
The mode register, shown in Figure 7, is used to control operation of AFEU and contains 3 bits.

Offset 0x2000 Access: Read/Write

0 52 53 55 56 60 61 62 63

R
— BURST SIZE — CE TS

E
DW

Reset All zeros

Figure 6. DEU Mode Register

Table 4. DEU Mode Register Field Descriptions

Bits Name Description

0–52 — Reserved

53–55 BURST SIZE BURST SIZE implements flow control to allow larger than FIFO sized blocks of data to be processed with
a single key/IV. The DEU signals to the channel that a “Burst Size” amount of data is available to be
pushed to or pulled from the FIFO.
The inclusion of this field in the DEU mode register is to avoid confusing a user who may read this register
in debug mode. Burst size should not be written directly to the DEU.

56–60 — Reserved

61 CE CBC/ECB
If set, DEU operates in cipher-block-chaining mode. If not set, DEU operates in electronic codebook
mode.
0 ECB mode
1 CBC mode

62 TS Triple/Single DES
If set, DEU operates the Triple DES algorithm; if not set, DEU operates the single DES algorithm.
0 Single DES
1 Triple DES

63 ED Encrypt/decrypt
If set, DEU operates the encryption algorithm; if not set, DEU operates the decryption algorithm.
0 Perform decryption
1 Perform encryption

Offset 0x8000 Access: Read/Write

0 52 53 55 56 60 61 62 63

R
— BURST SIZE — CS DC PP

W

Reset All zeros

Figure 7. AFEU Mode Register

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

8 Freescale Semiconductor

Execution Unit MODE_DATA

Table 5 describes AFEU mode register fields.

4.4 MDEU Mode Register
The MDEU mode register, displayed in Figure 8, is used to control operation of the MDEU and contains
6 bits.

Table 5. AFEU Mode Register Field Descriptions

Bits Name Description

0–52 — Reserved

53–55 BURST SIZE BURST SIZE implements flow control to allow larger than FIFO sized blocks of data to be processed with
a single key/context. The AFEU signals to the channel that a ‘burst size’ amount of data is available to be
pushed to or pulled from the FIFO.
The inclusion of this field in the AFEU Mode Register is to avoid confusing a user who may read this
register in debug mode. Burst size should not be written directly to the AFEU.

56–60 — Reserved

61 CS Context Source
If set, this causes the context to be moved from the input FIFO into the S-box prior to starting
encryption/decryption. Otherwise, context should be directly written to the context registers. Context
Source is only checked if the prevent permute bit is set.
0 Context not from FIFO
1 Context from input FIFO

62 DC Dump Context
If set, this causes the context to be moved from the S-box to the output FIFO following assertion AFEU’s
done interrupt.
0 Do not dump context
1 After cipher, dump context

63 PP Prevent Permute
Normally, AFEU receives a key and uses that information to randomize the S-box. If reusing a context
from a previous descriptor, this bit should be set to prevent AFEU from reperforming this permutation step.
0 Perform S-Box permutation
1 Do not permute

Address 0x6000 Access: Read/Write

0 52 53 55 56 57 58 59 60 61 62 63

R
— BURST SIZE Cont — INT HMAC PD ALG

W

Reset All zeros

Figure 8. MDEU Mode Register

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 9

Execution Unit MODE_DATA

Table 6 describes MDEU mode register signals.

4.4.1 Recommended Settings for MDEU Mode Register
The most common task likely to be executed via the MDEU is HMAC generation. HMACs are used to
provide message integrity within a number of security protocols, including IPSec, and SSL/TLS. When
the HMAC is being generated by a single descriptor (the MDEU acting as sole or secondary EU), the
following mode register bit settings should be used:

Table 6. MDEU Mode Register Field Descriptions

Bits Signal Description

0–52 — Reserved

53–55 BURST SIZE The implements flow control to allow larger than FIFO sized blocks of data to be processed with a single
key/context. The MDEU signals to the channel that a “Burst Size” amount of data is available to be
pushed to the FIFO.
The inclusion of this field in the MDEU Mode Register is to avoid confusing a user who may read this
register in debug mode. Burst size should not be written directly to the MDEU.

56 Cont Continue
Used during HMAC/HASH processing when the data to be hashed is spread across multiple descriptors
0 Do not continue—operate the MDEU in auto completion mode.
1 Preserve context to operate the MDEU in Continuation mode.

57–58 — Reserved

59 INT Initialization Bit
Causes an algorithm-specific initialization of the digest registers. Most operations will require this bit to
be set. Only operations that load context from a known intermediate hash value would not initialize the
registers.
0 Do not initialize
1 Initialize the selected algorithm’s starting registers

60 HMAC Identifies the hash operation to execute
0 Perform standard hash
1 Perform HMAC operation. This requires a key and key length information.

61 PD If set, PD configures the MDEU to automatically pad partial message blocks.
0 Do not autopad
1 Perform automatic message padding whenever an incomplete message block is detected.

62–63 ALG Message Digest algorithm selection
00 SHA-160 algorithm (full name for SHA-1)
01 SHA-256 algorithm
10 MD5 algorithm
11 Reserved

Table 7. Mode Register—HMAC Generated by Single Descriptor

Bits Field Value

0 Cont 0 (off)

3 Init 1(on)

4 HMAC 1 (on)

5 PD 1 (on)

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

10 Freescale Semiconductor

Execution Unit MODE_DATA

When the HMAC is being generated for a message that is spread across a chain of descriptors, the
following mode register bit settings should be used:

All descriptors other than the final descriptor must output the intermediate message digest for the
following descriptor to reload as MDEU context.

4.5 RNG Mode Register
The RNG mode register is used to control the RNG. One operational mode, randomizing, is defined.
Writing any other value than 0 to 56:63 results in a data error interrupt that’s reflected in the RNG Interrupt
Status Register. The mode register also reflects the value of burst size, which is loaded by the
crypto-channel during normal operation with the SEC as an initiator. Burst size is not relevant to target
mode operations, where the CPU pushes and pulls data from the execution units.

The mode register is cleared when the RNG is reset or re-initialized and is shown in Figure 9.

4.5.1 AESU Mode Register
The AESU mode register, shown in Figure 10, contains 7 bits that are used to program the AESU. It also
reflects the value of burst size, which is loaded by the crypto-channel during normal operation with the
SEC as an initiator. Burst size is not relevant to target mode operations, where the CPU pushes and pulls
data from the execution units.

The mode register is cleared when the AESU is reset or re-initialized. Setting a reserved mode bit will
generate a data error. If the mode register is modified during processing, a context error will be generated.

Table 8. Mode Register—HMAC Generated for a Message Across a Chain of Descriptors

Bits Field
Value

First Descriptor Middle Descriptor(s) Final Descriptor

0 Cont 1 (on) 1 (on) 0 (off)

3 Init 1 (on) 0 (off) 0 (off)

4 HMAC 1 (on) 0 (off) 1 (on)

5 PD 0 (off) 0 (off) 1 (on)

Address 0xA000 Access: Read/Write

0 52 53 55 56 63

R
— BURST SIZE —

W

Reset All zeros

Figure 9. RNG Mode Register

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 11

Execution Unit MODE_DATA

Table 9 describes AESU mode register signals.

Address 0x4000 Access: Read/Write

0 52 53 55 56 57 58 59 60 61 62 63

R
— BURST SIZE ECM FM INIMT RDK CM ED

W

Reset All zeros

Figure 10. AESU Mode Register

Table 9. AESU Mode Register Signals

Bits Signal Description

0–52 — Reserved

53–55 BURST SIZE The implements flow control to allow larger than FIFO sized blocks of data to be processed with a single
key/context. The AESU signals to the channel that a “Burst Size” amount of data is available to be
pushed to the FIFO.
The inclusion of this field in the AESU Mode Register is to avoid confusing a user who may read this
register in debug mode. Burst size should not be written directly to the AESU.

56–57 ECM Extend cipher mode: Used in combination with CM to define the mode of AES operation. See Table 10
for mode bit combinations.

58 FM Final MAC (FM)
Processes final message block and generates final MAC tag at end of message processing (CCM mode
only)
0 Do not generate final MAC tag
1 Generate final MAC tag after CCM processing is complete.

59 IM Initialize MAC(IM)
Initializes AESU for new message (CCM mode only)
0 Do not initialize (context will be loaded by CPU)
1 Initialize new message with nonce

60 RDK Restore Decrypt Key (RDK)
Specifies that key data write will contain pre-expanded key (decrypt mode only). See note on use of RDK
bit.
0 Expand the user key prior to decrypting the first block
1 Do not expand the key. The expanded decryption key will be written following the context switch.

61–62 CM Cipher mode
Used in combination with ECM to define the mode of AESU operation. See Table 10 for mode bit
combinations.

63 ED Encrypt/Decrypt
If set, AESU operates the encryption algorithm; if not set, AESU operates the decryption algorithm.
This bit is ignored if CM is set to “11” - CTR Mode.
0 Perform decryption
1 Perform encryption

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

12 Freescale Semiconductor

Selecting Descriptor Type—DESC_TYPE

NOTE: Restore Decrypt Key (RDK)
In most networking applications, the decryption of an AES-protected packet
will be performed as a single operation. However, if circumstances dictate
that the decryption of a message should be split across multiple descriptors,
the AESU allows the user to save the decrypt key, and the active AES
context, to memory for later re-use. This saves the internal AESU
processing overhead associated with regenerating the decryption key
schedule (approximately 12 AESU clock cycles for the first block of data to
be decrypted).

The use of RDK is completely optional, as the input time of the preserved
decrypt key may exceed the 12 cycles required to restore the decrypt key for
processing the first block.

To use RDK, the following procedure is recommended:

The descriptor type used in decryption of the first portion of the message is
0100 (aesu_key_expand_output). The AESU mode must be Decrypt. See
the “SEC Lite Descriptors” chapter in the MPC885 PowerQUICC Family
Reference Manual for more information. The descriptor will cause the SEC
Lite to write the contents of the context registers and the key registers
(containing the expanded decrypt key) to memory.

To process the remainder of the message, use a normal descriptor type
(descriptor type selected based on need for simultaneous HMAC
generation, and so forth) and set the restore decyrpt key mode bit. Load the
context registers and the expanded decrypt key with the previously saved
key and context data from the first message. The key size is written as before
(16, 24, or 32 bytes).

5 Selecting Descriptor Type—DESC_TYPE
The SEC 2.0 accepts 16 fixed-format descriptors. The Desc_Type field in the descriptor header advises the
crypto-channel of the predetermined ordering of keys, context, and null fields. The ordering of inputs and
outputs in the length/pointer pairs (as defined by Desc_Type) is shown in Table 14.

Table 10. AES Cipher Modes

Mode ECM CM

ECB 00 00

CBC 00 01

Res xx 10

CTR 00 11

SRT1 01 11

CCM 10 00

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 13

Selecting Descriptor Type—DESC_TYPE

Table 11 shows the permissible values for the Desc_Type field in the descriptor header. Note: When
compared to the SEC 1.0 descriptor types (SEC 1.0 is the integrated security core found in the Motorola
MPC8272), fewer descriptor types are listed. Many of the permissible SEC 1.0 descriptor types aren’t
operationally useful, and exist for test and debug purposes. The SEC 2.0 eliminates many of the descriptor
types which were not operationally useful, and adds several new types which offer optimized processing
for specific security protocols. Descriptor types from the SEC 1.0, which have “0” in the last bit, are listed
first, followed by new SEC 2.0 types, which have “1” in the last bit.

NOTE
SEC 1.0 descriptors do not run unmodified on the SEC 2.0, due to a
formatting change. SEC 2.0 descriptors which have a “0” in the last bit use
the same inputs are SEC 1.0 descriptors, and are easily mapped to SEC 2.0
descriptors. The SEC 2.0 descriptor format allows SEC 2.0 descriptors to
support scatter/gather, and don’t require the use of the “Next Descriptor
Pointer” field to process descriptor chains. Chaining is automatic via the
channel Fetch FIFOs.

Table 11. Descriptor Types

Value (Binary) Descriptor Type Notes

0000_0 aesu_ctr_nonsnoop AESU CTR non-snooping 1

0001_0 common_nonsnoop_no_afeu Common, nonsnooping, non-PKEU, non-AFEU 1

0010_0 hmac_snoop_no_afeu Snooping, HMAC, non-AFEU 2

0011_0 — Reserved

0100_0 — Reserved

0101_0 common_nonsnoop_afeu Common, nonsnooping, AFEU

0110_ 0 — Reserved

0000_0 aesu_ctr_nonsnoop AESU CTR nonsnooping

0001_0 common_nonsnoop Common, nonsnooping, non-PKEU, non-AFEU

0010_0 hmac_snoop_no_afeu Snooping, HMAC, non-AFEU

0011_0 — Reserved

0100_0 — Reserved

0101_0 common_nonsnoop_afeu Common, nonsnooping, AFEU

0110_ 0 — Reserved

0111_0 — Reserved

1000_0 pkeu_mm PKEU-MM

1001_0 — Reserved

1010_0 — Reserved

1011_ 0 — Reserved

1100_0 hmac_snoop_aesu_ctr AESU CTR hmac snooping 2

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

14 Freescale Semiconductor

Direction Bit

6 Direction Bit
As mentioned in Table 1, bit 30 advises the channel of the ‘direction’ of communication applicable to a
given descriptor operation. The path data must take between the symmetric EU and the hashing EU
depends on whether the data is being prepared for transmission, or has just been received. The Direction
Bit is used to control the type of “snooping” which must occur between the primary and secondary EU.
The rationale for “in-snooping” vs. “out-snooping” is found in security protocols which perform both
encryption and integrity checking, such IPSec. Upon transmission of an IPSec ESP packet, the
“encapsulator” must encrypt the packet payload, then calculate an HMAC over the header plus encrypted
payload. Because the MDEU cannot generate the HMAC without the output of the primary EU (the one
performing encryption, typically the DEU or AESU), the MDEU must “out-snoop”.

Upon receiving an IPSec packet, the “decapsulator” must calculate the HMAC over the encrypted portion
of the packet prior to decryption. This allows the MDEU to source its data from the input FIFO of the
primary EU, without waiting for the primary EU to finish its task.

Note that slightly different portions of an IPSec packet would pass through the primary and secondary
EUs, in both the “In-Snooping” and “Out-Snooping” cases. These off-sets are dealt with by providing
different starting pointers and byte lengths to the channel in the body of the descriptor.

1101_0 — Reserved

1110_0 — Reserved

1111_0 — Reserved

0000_1 ipsec_esp IPsec ESP mode encryption and hashing

0001_1 802.11i AES ccmp CCMP encryption and hashing, suitable for 802.11i

0010_1 srtp SRTP encryption and hashing

0011_1 pkeu_assemble pkeu_assemble Elliptic Curve Cryptography

0100_1 pkeu_ptmul pkeu_ptmul Elliptic Curve Cryptography

0101_1 pkeu_ptadd_dbl pkeu_ptadd_dbl Elliptic Curve Cryptography

others — Reserved

Note:
1. Type 0000_0 is for AES-CTR operations. Type 0001_0 also supports AES-CTR, however to use AES-CTR with 0001_0, the

user must prepend zeros to the AES-Ctx before loading the AES context registers.
2. Type 1100_0 is for AES-CTR operations with HMAC. Type 0010_0 also supports AES-CTR with HMAC, however to use

AES-CTR with 0010_0, the user must prepend zeros to the AES-Ctx before loading the AES context registers.

Table 11. Descriptor Types (continued)

Value (Binary) Descriptor Type Notes

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 15

Notification Bit

Figure 11 provides an overview of the snooping concept.

Figure 11. Snooping

7 Notification Bit
The Notification Bit in the SEC descriptor header can be set to cause the channel to signal DONE upon
completion of any descriptor with the Notification Bit set. This provides an alternative to signalling DONE
upon completion of each descriptor, as would occur if the Notification Type (bit 61 in the CCCR) is set to
Global. The “DONE” notification can take the form of an interrupt or modified header write back or both
depending upon the state of the INTERRUPT_ENABLE and WRITEBACK_ENABLE control bits in
Crypto Channel Configuration Register.

When the channel signals DONE via header writeback, the most significant byte of the original header (at
its original location in system memory) will always read as set to 0xFF, and the remaining 56 bits will not
be modified.

8 Descriptor Format: Pointer Dwords
The descriptor contains seven “pointer dwords” which define where in memory the SEC should access its
input and output data parcels. The channel determines how it will use each of the pointer dwords based on
the “Descriptor Type” and “Direction” fields in the header. The channel accesses the first data parcel by
starting at a location given by a POINTER value, and accessing a number of bytes given by a LENGTH
or EXTENT value. EXTENT, which is short for ‘Extension’ is also a length field, and this field is used
to as an offset to trigger changes in data processing when multiple operations are performed by the same
descriptor. A typical use of EXTENT is to allow a single pointer to point to a range of data (data parcel)
to be hashed and encrypted, with the LENGTH field providing the total data length, and the EXTENT
length indicating how many bytes should be hashed without encryption, as is often required for headers in
security protocol packets. EXTENT can also be used to output integrity check values, which are typically
appended to the end of the encrypted and hashed data range. Although the EXTENT field exists in each

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

16 Freescale Semiconductor

Descriptor Format: Pointer Dwords

Pointer DWORD of the SEC descriptor, current usage is limited to Pointer DWORDs 4–6. Figure 12
shows the pointer Dword.

On occasion, a descriptor field may not be applicable to the requested service. With seven length/pointer
pairs, it is possible that not all descriptor fields will be required to load the required keys, context, and
text-data. (Some operations, for example, don’t require context.) Therefore, when processing descriptors,
the SEC will skip entirely any pointer that has an associated LENGTH of zero.

If the channel procedure calls for reading a parcel using a nonzero LENGTH field, but the POINTER field
is zero, the length value is written to the EU but no data parcel is fetched from the bus.

The J bit in each pointer dword is used to enable the scatter/gather feature. If a data parcel to be read or
written by SEC is in one contiguous block of memory locations, then the scatter/gather feature is not
needed. In this case the POINTER should be set to point directly at the first byte of the parcel, and the J
bit should be 0. On the other hand, if the data parcel is stored in several separate segments of memory, then
the scatter/gather capability is needed to assemble or distribute the complete parcel. In this case the
POINTER should be set to point to a “link table”, and the J bit should be 1. For link table format, see
Section 8.1, “Link Table Format.”

8.1 Link Table Format
Link tables implement scatter/gather capability. For “gather” operations, a link table specifies a list of
“memory segments” that are to be concatenated in the process of assembling data parcels. For “scatter”
operations, a link table specifies a list of memory segments into which the output data should be written.

0 15 16 17 23 24 31 32 63

R
LENGTH J EXTENT — POINTER

W

Figure 12. Pointer Dword

Table 12. Pointer DWORD Field Definitions

Bits Name Description

0–15 LENGTH Length
A number of bytes in the range 0 to 65535. The use of this field depends on the “Descriptor Type” and
“Direction” in the header dword. A value of zero causes the channel to skip this dword.

16 J Jump
Determines whether to “jump” to a link table whenever the POINTER field in this same lword is used.
0 The POINTER field points to data.
1 The POINTER field points to a link table, and scatter/gather is enabled.

17–23 EXTENT Extent
A number of bytes in the range 0 to 127. The use of this field depends on the “Descriptor Type” and
“Direction” in the header dword.

24–31 — Reserved

32–63 POINTER Pointer
A memory address.

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 17

Descriptor Format: Pointer Dwords

Scatter or gather of a data parcel may be specified by a single link table or by a chain of link tables that are
linked together with pointers (see Figure 14).

The link table or chain of link tables accessed through some descriptor POINTER must specify enough
memory segments to hold all the data that will be accessed through that pointer. In most cases, only a single
data parcel is accessed through a given POINTER, and the chain of link tables specifies just that parcel. In
other cases, the descriptor POINTER is used multiple times to access a sequence of data parcels, and the
chain of link tables must supply data for the entire sequence. In such cases, the end of each parcel must
also be at the end of a memory segment. In other words, a single memory segment must not straddle two
data parcels. An example of proper construction of link tables is illustrated in Figure 13.

A link table may contain any number of long word entries. There are two kinds of entries, “regular” entries
and “next” entries. Each “regular” entry specifies a memory segment by means of a 36-bit starting address
(SegAdr) and a 16-bit length (SegLen). A “next” entry is used at the end of a link table to specify that the
list of memory segments is continued in another link table. In a “next” entry, the N bit is set and the SegAdr
field gives the address of the next link table. A chain of link tables may contain any number of link tables.

Whether the list of memory segments is in a single link table or split into several link tables, the last entry
in the last link table is a “regular” entry with the R (return) bit set. The R bit signifies the end of link table
operations so that the channel returns to the descriptor for its next pointer (if any). Link tables are
illustrated in Figure 13.

0 15 16 21 22 23 24 31 32 63

R
SEGLEN — R N — SEGADR

W

Figure 13. Link Table Entry Format

Table 13. Link Table Field Definitions

Name Description

SEGLEN Length:
When N = 0, a number in the range 1 to 65535, specifying the number of bytes in the memory segment. pointed to
by SEGADR. A value of 0 will cause an error bit to be set in the Channel Pointer Status Register—GER for a gather
operation or SER for a scatter operation.
When N = 1, ignored.

— Reserved

R Return:
When N = 0:
0 No special action.
1 This is the last entry in the chain of link tables. If this entry does not specify the right number of bytes to complete

the last data parcel, a GER or SER error will be set in the Channel Pointer Status Register.
When N = 1, ignored.

N Next:
0 No special action.
1 This is the last long word in the current link table. The SEGADR field is the address of the next link table in the

chain.

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

18 Freescale Semiconductor

Descriptor Format: Pointer Dwords

Figure 14 illustrates various ways that a descriptor may specify data parcels:

The first pointer dword in the descriptor specifies Parcel A using the simplest method—the parcel is
specified directly through Pointer0 and Length0.

The next pointer dword uses a chain of link tables to specify Parcel B. Since J=1, Pointer1 is used as the
address of a link table. The link table specifies several “regular” entries specifying data segments to be
concatenated. The last word of the link table is a “next” entry indicating that the list continues in the next
link table. The last entry in the last link table of the chain has the R bit set.

The last cases illustrate how one pointer in a descriptor can be used to specify multiple parcels. Pointer2
and Length2 specify Parcel C, then Parcel D follows immediately afterwards, with length specified by
Extent2. Pointer3 is used for three data parcels (E, F, and G), this time using link tables.

— Reserved

SEGADR Segment address
A memory address.

Table 13. Link Table Field Definitions (continued)

Name Description

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 19

Descriptor Format: Pointer Dwords

Figure 14. Descriptors, Link Tables, and Data Parcels

For any sequence of data parcels accessed by a link table or chain of link tables, the combined lengths of
the parcels (the sum of their LENGTH and/or EXTENT fields) must equal the combined lengths of the link
table memory segments (SEGLEN fields). Otherwise the channel sets the appropriate error bit in the
Channel Pointer Status Register—GER for gather error or SER for scatter error (see Section 1.6.1.2 of the
SEC 2.0 Chapter in the MPC85xx User’s Manual).

Example (from Figure 14): To demonstrate use of a link table, assume that the current descriptor type calls
for the channel to access a data parcel using Pointer3 and Extent3 fields, and assume that J3=1. Due to the
J3 value, Pointer3 is not used as a data address but instead used as the address of a link table. The channel
begins by reading the first four long words starting at Pointer3 into an internal “link table buffer”.

Using the first entry of the link table, the channel starts accessing the data parcel by reading SEGLEN bytes
beginning at SEGADR. If the required data parcel size (Extent3) is greater than this first SegLen, the

Length0 J=0 Pointer0 Parcel A
Length0

Header dword

Descriptors

Length1 J=1 Pointer1

Length2 J=0 Extent2 Pointer2

Length3 J=1 Extent3 Pointer3

Extent4

Link Tables

N=1

N=1

R=1

Parcel B
Length1

N=1

R=1

Parcel C
Length2

Parcel D
Extent2

Parcel E
Extent3

Parcel F
Length3

Parcel G
Extent4

Data
Segments

Data
Parcels

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

20 Freescale Semiconductor

Descriptor Format: Pointer Dwords

channel moves on to the next entry of the link table, and reads SEGLEN bytes starting at SEGADR. While
there are more bytes to be read in the data parcel, this process continues. If the channel’s link table buffer
is exhausted, the channel reads the next four long words of the link table into its link table buffer. If a link
table entry is encountered in which the N bit is set, the channel uses the SEGADR field in that word to find
the next link table in the chain. The last byte of the required parcel size (Extent3) must coincide with the
last byte of a memory segment, or unpredictable results may occur.

Now assume that the channel accesses its next data parcel using Pointer3 again, this time with length given
by Length3. In this case the channel continues to the next line of the link table, and begins reading the
memory segment specified there. As before, the channel concatenates memory segments from as many
link table entries as necessary to obtain the required number of bytes (Length3).

Similarly, the next data parcel is obtained by using Pointer3 yet again, this time with length given by
Extent4.

Assume that for the current descriptor type, the Extent4 data parcel is the last one to be accessed through
Pointer3. Then the link table entry that supplies the last memory segment for Extent4 has the R bit set,
signifying that this is the last entry in the chain of link tables.

8.2 Pointer DWORD Format by Descriptor Type
Table 14 shows how the length/pointer pairs should be used with the various descriptor types to load keys,
context, and data into the execution units, and how the required outputs should be unloaded. Note: Some
outputs are optional.

Table 14. Descriptor Length/Pointer Mapping

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

0000_0
aesu_ctr_

nosnoop

Length
Reserved Primary EU

Context In
Confidentiality

Key
Data In Data Out Primary EU

Context Out
Reserved

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0001_0
common_

nosnoop for

Confidentialit

y algorithms,

AES-CCM,

and RNG

Length
Reserved Primary EU

Context In
Confidentiality

Key
Data In Data Out Primary EU

Context Out
Reserved

Extent

Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0001_0
common_

nosnoop for

Hash and

HMAC

Length
Reserved Primary EU

Context In
Integrity Key Data In Reserved CICV (or

Hash) Out
Reserved

Extent
Reserved Reserved Reserved Reserved Reserved Reserved Reserved

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 21

Descriptor Format: Pointer Dwords

0001_0
common_

nosnoop for

KEU f9, STEU

f9,

AES-XCBC,

AES-CMAC

Length
Reserved Primary EU

Context In
Integrity Key Data In Reserved Primary EU

Context Out
CICV Out

Extent

Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0010_0
hmac_snoop

_no_afeu

Length
Integrity

Key
Integrity Only

Data
Confidentiality

Key
Primary EU
Context In

Data In Data Out CICV Out

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0101_0
common_

nosnoop_

afeu

Length
Reserved Context In

(via In FIFO)
Confidentiality

Key
Data In Data Out Context Out

(via Out
FIFO)

Reserved

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

1000_0

pkeu_mm

Length “N” In “B” In “A” In “E” In “B” Out Reserved Reserved

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

1100_0
hmac_snoop

_

aesu_ctr

Length
Integrity

Key
Integrity Only

Data
Confidentiality

Key
Primary EU
Context In

Data In Data Out CICV Out

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0000_1

ipsec_esp

Length Integrity
Key

Integrity Only
Data

Primary EU
Context In

Confidentialit
y Key

Data In Data Out Primary EU
Context Out

Extent Reserved Reserved Reserved Reserved Reserved CICV Out Reserved

0001_1

802.11i AES

ccmp

Length
Reserved Primary EU

Context In
Confidentiality

Key
Integrity Only

Data
Data In Data Out Primary EU

Context Out

Extent Reserved Reserved Reserved Reserved Reserved CICV Out Reserved

0010_1

srtp

Length
Integrity

Key
Primary EU
Context In

Confidentiality
Key

Data In Data Out CICV Out Primary EU
Context Out

Extent
Reserved Reserved Reserved Integrity Only

Data
Integrity Only

Trailer
Reserved Reserved

0011_1

pkeu_build

Length “A0” In “A1” In “A2” In “A3” In “B0” In “B1” In “Build” Out

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

0100_1

pkeu_ptmul

Length “N” In “E” In “Build” In “B1” Out “B2” Out “B3” Out Reserved

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Table 14. Descriptor Length/Pointer Mapping (continued)

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

22 Freescale Semiconductor

Use of Specific Descriptor Types

8.2.1 Null Fields
On occasion, a descriptor field may not be applicable to the requested service. With seven length/pointer
pairs, it is possible that not all descriptor fields will be required to load the required keys, context, and data.
(Some operations do not require context, others may only need to fetch a small, contiguous block of data.)
Therefore, when processing data packet descriptors, the SEC will skip entirely any pointer that has an
associated length of zero.

9 Use of Specific Descriptor Types
The remainder of this document describes in greater detail how specific descriptor types should be used to
accelerate various common cryptographic operations and security protocols. The data associated with any
given descriptor could be located in non-contiguous memory, a situation which could be managed via the
scatter/gather capabilities of the SEC 2.0 descriptors. The purpose of the examples below are to illustrate
the use of specific descriptor header and the definition of the associated inputs and outputs, and to reduce
the complexity of the explanation, scatter/gather is never invoked.

9.1 Descriptor Type 0001_0
Descriptor Type 0001_0 is used for a wide variety of functions, most of which do not require all the Pointer
DWORDS to be used. A few “non-obvious” uses of this descriptor type are highlighted in Table 15.

0101_1

pkeu_ptadd_

db

Length “N” In “Build” In “B2” In “B3” In “B1” Out “B2” Out “B3” Out

Extent
Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Others Reserved

Table 15. Descriptor Type 0001_0 Length/Pointer Mapping

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

Use

0001_0
common_

nosnoop

Length nil nil nil nil Data Out nil nil RNG Only

Extent undefined undefined undefined nil nil nil undefined

0001_0
common_

nosnoop

Length
nil MDEU

Ctx-In (opt)
nil Data In nil Hash out nil Hash Only

Extent undefined undefined undefined nil nil nil undefined

0001_0
common_

nosnoop

Length
nil MDEU

Ctx-In (opt)
HMAC Key Data In nil HMAC

out
nil HMAC Only

Extent undefined undefined undefined nil nil nil undefined

Table 14. Descriptor Length/Pointer Mapping (continued)

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 23

Use of Specific Descriptor Types

For RNG operations, there is no key, context, or data to send into the SEC, so only a single length/pointer
pair is needed to cause the random data to be written out.

For hash only operations, the length and location of the data to be hashed is designated with Pointer
DWORD 4, with Pointer DWORD 6 used to designate the length and location of the hash value to be
output. There is no requirement for the SEC 2.0 to write out the full length hash as defined by the hash
algorithm. Pointer DWORD 2 is used if the requested hash operation is a continuation of a hash operation
from a previous descriptor. The MDEU Context In in this case would be the intermediate hash, which
would have been written out using Pointer DWORD 6 in a previous hash only descriptor.

HMAC only operations are similar to hash only operations, however Pointer DWORD 3 is used to load
the HMAC key. The HMAC itself is written out via Pointer DWORD 6. If an HMAC calculation is spread
across multiple descriptors, all descriptors after the first would need to load the MDEU Context registers
via Pointer DWORD 2. This requires the first descriptor to output the MDEU context, or Message Digest,
rather than an HMAC, with Pointer DWORD 6.

Certain protocols don’t rely on the HMAC function provided by the MDEU to generate MACs, or message
integrity check values. The only supported case of this is the SEC 2.0 is AES-CCM mode, in which the
AESU can both encrypt and integrity check data in a single pass, without snooping data to another EU.
Table 17 provides an example of this method.

9.2 Descriptor Type 0001_0 Examples
The descriptor shown in Table 16 uses Descriptor Type 0001_0 to completely sets up the DEU for an
encryption operation; loads the keys, context, and data; writes the permuted data back to memory; and
(optionally) writes the altered context (IV) back to memory. (This may be necessary when DES is
operating in CBC mode.) Upon completion of the descriptor, the DEU is automatically cleared and
released. A test descriptor for this operation is provided in Section A.1, “3DES_CBC_ENC,” of the
Appendix.

0001_0
common_

nosnoop
Length

Reserved Primary EU
Context In

Confidentiality
Key

Data In Data Out Primary
EU

Context
Out

Reserved Self Integrity
Checking
operations

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Table 16. Representative Descriptor DPD_Type 0001_0_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_0_3DES_CBC_Encrypt

Reserved 0x0000_0000 —

Length 0 Length Nill

Table 15. Descriptor Type 0001_0 Length/Pointer Mapping (continued)

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

Use

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

24 Freescale Semiconductor

Use of Specific Descriptor Types

9.2.1 Descriptor Type 0001_0 Additional Examples
The descriptor shown in Table 17 uses Descriptor Type 0001_0 to completely sets up the AESU for an
encryption operation in CCM mode; loads the keys, context, and data; writes the permuted data back to
memory; and writes the altered context (IV) back to memory. This altered context include the MIC, which
software can append to the 802.11i frame, or use to verify the received MIC. This is the original SEC 1.0
method for performing AES-CCM operations. Existing SEC 1.0 descriptors of type 0001 can be converted
in a straightforward manner to SEC 2.0 descriptors of type 0001_0. A test descriptor for this operation is
provided in Section A.2 of the Appendix.

Pointer 0 Pointer Nill

Length 1 Length Number of Bytes of IV to be written to DEU IV register (always 8)

Pointer 1 Pointer Address of IV

Length 2 Length Number of Bytes of Key to be written to DEU Key register (must be 16 or 24)

Pointer 2 Pointer Address of Key

Length 3 Length Number of bytes to be ciphered

Pointer 3 Pointer Address of data to be ciphered

Length 4 Length Bytes to be written (should be equal to Length of Data-in)

Pointer 4 Pointer Address where ciphered data is to be written

Length 5 Length (Optional) Number of Bytes of IV to be written to memory space (always 8)

Pointer 5 Pointer (Optional) Address where IV is to be written

Length 6 Length Nill

Pointer 6 Pointer Nill

Table 17. Representative Descriptor DPD_Type 0001_0_AES-CCM_Encrypt

Field Value/Type Description

Header 0x6B10_0010 DPD_Type 0001_0_AES_CCM_Encrypt

Reserved 0x0000_0000 —

Length 0 Length Nill

Pointer 0 Pointer Nill

Length 1 Length Number of Bytes of AES Context to be written to AESU Context registers (always 56)

Pointer 1 Pointer Address of Context

Length 2 Length Number of Bytes of Key to be written to AESU Key register (must be 16)

Pointer 2 Pointer Address of Key

Length 3 Length Number of bytes to be ciphered

Pointer 3 Pointer Address of data to be ciphered

Table 16. Representative Descriptor DPD_Type 0001_0_3DES_CBC_Encrypt (continued)

Field Value/Type Description

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 25

Use of Specific Descriptor Types

9.2.2 HMAC-MD-5 (In-Bound/Out-Bound IPSec AH)
The descriptor shown in Table 18 uses Descriptor Type 0001_0 to completely sets up the MDEU for an
HMAC operation using the MD-5 algorithm. The descriptor loads the HMAC keys, and data to be
HMAC’d, then writes the calculated HMAC value back to memory. This is the original SEC 1.0 method
for performing HMAC only operations. Existing SEC 1.0 descriptors of type 0001 can be converted in a
straightforward manner to SEC 2.0 descriptors of type 0001_0. A test descriptor for this operation is
provided in Section A.3 of the Appendix.

Length 4 Length Bytes to be written back to memory (should be equal to Length of Data-in)

Pointer 4 Pointer Address where ciphered data is to be written

Length 5 Length Number of Bytes of AES Context to be written to memory (always 56)

Pointer 5 Pointer Address where AES Context is to be written

Length 6 Length Nill

Pointer 6 Pointer Nill

Table 18. Representative Descriptor DPD_Type 0001_0_HMAC-MD-5

Field Value/Type Description

Header 0x31E0_0010 DPD_Type 0001_0_HMAC_MD-5

Reserved 0x0000_0000 Pointer to Next Descriptor

Length 0 Length Nill

Pointer 0 Pointer Nill

Length 1 Length Nill

Pointer 1 Pointer Nill

Length 2 Length Number of bytes of HMAC key to be written to MDEU Key register

Pointer 2 Pointer Address of HMAC key

Length 3 Length Number of bytes of data to be written to MDEU Input FIFO

Pointer 3 Pointer Address of data

Length 4 Length Nill

Pointer 4 Pointer Nill

Length 5 Length Number of bytes of HMAC to be written out to memory (always 16 MD-5)

Pointer 5 Pointer Address where HMAC is to be written

Length 6 Length Nill

Pointer 6 Pointer Nill

Table 17. Representative Descriptor DPD_Type 0001_0_AES-CCM_Encrypt (continued)

Field Value/Type Description

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

26 Freescale Semiconductor

Use of Specific Descriptor Types

The descriptor header encodes the information required to select the MDEU for Op_0, and no EU for
Op_1. The Op_0 Mode Data configured the MDEU to operate in HMAC-MD-5 mode. Because all the data
necessary to calculate the HMAC in a single descriptor is available, Initialize, and Autopad are set, while
Continue is off.

The descriptor header also encodes the descriptor type 0001, which defines the input and output ordering
for “common_nonsnoop_no_afeu”. This is the descriptor type used for most operations which don’t
require a secondary EU. Following some null pointers, the HMAC key is loaded, followed by the length
and pointer to the data over which the HMAC will be calculated.

The data is brought into the MDEU input FIFO, and when the final byte of data to be HMAC’d has been
processed through the MDEU, the descriptor will cause the MDEU to write the HMAC to the indicated
area in memory. The SEC will write the entire 16 bytes HMAC-MD-5 to memory, and depending on
whether the packet is in-bound or out-bound, the CPU will either insert the most significant 12 bytes of
the HMAC generated by the SEC into the packet header (out-bound) or compare the HMAC generated by
the SEC with the HMAC which was received with the in-bound packet (obviously in-bound). If the
HMACs match, the packet integrity check passes.

9.3 Descriptor Type 0010_0 Example
The descriptor shown in Table 19 uses Descriptor Type 0010_0 to completely sets up the DEU and MDEU
for a decryption and HMAC verification operation equivalent to IPSec ESP mode. The descriptor loads
the keys, context, and data; writes the permuted data back to memory; as well as the calculated HMAC for
comparison by the CPU. This is the original SEC 1.0 method for performing IPSec operations. Existing
SEC 1.0 descriptors of type 0010 can be converted in a straightforward manner to SEC 2.0 descriptors of
type 0010_0. A test descriptor for this operation is provided in Section A.4, “3DES_HMAC_SHA_1.”

Table 19. Representative Descriptor DPD_Type 0010_0_3DES-HMAC-SHA-1 Decrypt

Field Value/Type Description

Header 0x2063_1C22 DPD_Type 0010_0_3DES_CBC_HMAC_SHA-1 Decrypt

Reserved 0x0000_0000 —

Length 0 Length Number of bytes of HMAC Key to be written to MDEU Key register

Pointer 0 Pointer Address of HMAC Key

Length 1 Length Number of bytes to be HMAC’d but not ciphered

Pointer 1 Pointer Address of data to be HMAC’d

Length 2 Length Number of bytes of key to be written to DEU Key register (must be 16 or 24)

Pointer 2 Pointer Address of key

Length 3 Length Number of bytes of IV to be written to DEU IV register (always 8)

Pointer 3 Pointer Address of IV

Length 4 Length Number of bytes of ciphertext to be decrypted
Note: For this descriptor type, the MDEU will also process this data, so that the total data
processed through the HMAC function will be Length 2 + Length 5

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 27

Use of Specific Descriptor Types

The descriptor header encodes the information required to select the DEU for Op_0, and the MDEU for
Op_1. The Op_0 Mode Data configured the DEU to operate in 3DES, CBC, Decrypt mode. The Op_1
Mode Data configured the MDEU to operate in HMAC-SHA-1 mode. Because all the data necessary to
calculate the HMAC in a single dynamic descriptor is available, Initialize, and Autopad are set, while
Continue is off.

The descriptor header also encodes the descriptor type 0010_0, which defines the input and output
ordering for “hmac_snoop_no_afeu”. The HMAC key is loaded first, followed by the length and pointer
to the data over which the HMAC will be calculated. The 3DES key is loaded next, followed by the 3DES
IV. The data to be decrypted and HMAC’d is only brought into the SEC a single time, with the DEU and
MDEU selectively reading the portions of the data stream corresponding to their data of interest.

Ciphertext is brought into the DEU input FIFO, with the MDEU “in-snooping” the portion of the data it
has been told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this
data is written back to system memory as needed. When the final byte of data to be HMAC’d has been
processed through the MDEU, the descriptor will cause the MDEU to write the HMAC to the indicated
area in memory. The SEC will write the requested number of HMAC bytes to memory, and the CPU will
compare the most significant 12 bytes of the HMAC generated by the SEC with the HMAC which was
received with the in-bound packet. If the HMACs match, the packet integrity check passes.

9.4 Descriptor Type 1000_0 Example
The descriptor shown in Table 20 uses Descriptor Type 1000_0 to completely sets up the PKEU for an
RSA sign or verify operation, a basic function in IKE, SSL, and certificate signature operations. The
descriptor loads A -the data (message to be encrypted or decrypted), N -modulus, and E -public or private
exponent; and writes B-Out -the encrypted/decrypted message back to memory. This descriptor is similar

Pointer 4 Pointer Address of ciphertext to be decrypted
Note: This address must be the first address after Pointer 2 + Length 2, so that data being
ciphered is contiguous to the data being HMAC’d only.

Length 5 Length Number of bytes of plaintext to be written out to memory (should be equal to Length 5)

Pointer 5 Pointer Address where plaintext is to be written

Length 6 Length Number of bytes of HMAC to be written to memory
Note: Cannot be greater than the number of bytes produced by the HMAC algorithm (16 for
MD-5, 20 for SHA-1). May be smaller than algorithm size, ie, 12 bytes to match length of IPSec
Authentication Data

Pointer 6 Pointer Address where HMAC is to be written

Table 19. Representative Descriptor DPD_Type 0010_0_3DES-HMAC-SHA-1 Decrypt (continued)

Field Value/Type Description

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

28 Freescale Semiconductor

Use of Specific Descriptor Types

to the original SEC 1.0 method for performing IPSec operations, however ordering of the inputs (N, B, A,
and E) is different. A test descriptor for this operation is provided in Section A.5, “RSA_SSTEP.”

9.5 SEC 2.0 Specific Descriptors
The SEC 2.0 has several descriptor types which aren’t straightforward mappings of the SEC 1.0
descriptors. These descriptors were defined to offer improved support for current and emerging security
protocols, such as IPSec, 802.11i, and SRTP. An example of each, with comparison of the SEC 1.0 method,
is provided below.

9.6 Descriptor Type 0000_1: IPsec_ESP
The IPsec_ESP descriptor type is designed to efficiently process IPsec ESP packets with separate
encryption and integrity algorithms.

Table 20. Representative Descriptor DPD_Type 1000_0_PK_MM_Encrypt

Field Value/Type Description

Header 0x5800_0080 DPD_Type 1000_0 PK_MM using RSA_SSTEP to Encrypt out-bound message using Public Key

Reserved 0x0000_0000 —

Length 0 Length Number of significant bytes in N -Modulus (leading zeros not significant)

Pointer 0 Pointer Address of N-Modulus

Length 1 Length Null

Pointer 1 Pointer Null

Length 2 Length Number of bytes of A -data/message to be ciphered

Pointer 2 Pointer Address of A- data/message

Length 3 Length Number of bytes of E - public key (public exponent)

Pointer 3 Pointer Address of E- public key

Length 4 Length Number of significant bytes in B-Out -Encrypted Message out. Should be the same as Length 1

Pointer 4 Pointer Address where B-Out -Encrypted Message is to be written

Length 5 Length Null

Pointer 5 Pointer Null

Length 6 Length Null

Pointer 6 Pointer Null

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 29

Use of Specific Descriptor Types

Table 21 summarizes the IPsec ESP descriptor format.
`

9.6.1 IPsec-ESP Outbound

Figure 15 shows the diagram for the IPsec ESP outbound packet pointer.

Figure 15. IPsec ESP Outbound Packet Pointer Diagram

Note: If the IV is in the packet (explicit IV), then the IV is the same as the last part of the ICV-only header. In this case the L1
and L2 regions may overlap in memory, as shown above.

Table 21. IPsec ESP Descriptor Format Summary

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6 Usage

0000_1

ipsec_esp

Length

Integrity
Key

Integrity
Only Data

Primary
EU

Context In

Confidentiality
Key

Data In Data Out Primary
EU

Context
Out

IPsec_
ESP

Extent Reserved Reserved Reserved Reserved Reserved CICV Out Reserved

-------------- L1 -------------- ----------------------------------- L4 --------------------------------------

---- L2 -----

-- 4n --

INPUT ESP Hdr Payload Padding Pad
Ln

Nxt
HdrIV (if any)

8 4n n 0–255 1 1

---------------- <cipher block size> × n (n > 0) ------------------

ENCRYPT

↓

-- 4n -- --- 4n ----

OUTPUT ESP Hdr Payload Padding Pad
Ln

Nxt
Hdr

CICV

IV (if any)

8 4n 4n 12

ICV AP

------------------------------------- L5 ------------------------------------ ---- E5 ---

P1

P5

P4P2

P5+L5

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

30 Freescale Semiconductor

Use of Specific Descriptor Types

The data processing steps (as managed by the channel) are as follows:

1. Starting at address P0, fetch L0 bytes of the integrity algorithm key (not shown).

2. Starting at address P1, fetch L1 bytes of authentication only data (the ESP header). The SEC
Channel computes the overall authentication datasize from L1 + L4.

3. Starting at address P2, fetch L2 bytes of encryption IV. User SW is expected to place the IV in the
proper location within the packet prior to the start of SEC ESP processing.

4. Starting at address P3, fetch L3 bytes of the encryption algorithm key (not shown)

5. Starting at P4, SEC fetches L4 bytes of plaintext and feeds them to the selected cipher EU input
FIFO.

6. SEC write L5 bytes of ciphertext to P5.

7. After the cipher EU has finished encryption, the MDEU finishes computation of the CICV
(HMAC). The SEC writes E5 bytes of CICV to the end of the encrypted data.

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 31

Use of Specific Descriptor Types

9.6.2 IPsec-ESP Inbound

Figure 16 shows the diagram for the IPsec ESP inbound packet pointer.

Figure 16. IPsec ESP Inbound Packet Pointer Diagram

Note:
1 If the IV is in the packet (explicit IV), then the IV is the same as the last part of the ICV-only header. In this case the L1 and L2

regions may overlap in memory, as shown above.

The data processing steps (as managed by the channel) are as follows:

1. Starting at address P0, fetch L0 bytes of the integrity algorithm key (not shown).

2. Starting at address P1, fetch L1 bytes of authentication only data (the ESP header). The SEC
Channel computes the overall authentication datasize from L1 + L4.

3. Starting at address P2, fetch L2 bytes of encryption IV. The location of the IV in IPsec packet is
defined by the standard.

4. Starting at address P3, fetch L3 bytes of the decryption algorithm key (not shown)

5. Starting at P4, SEC fetches L4 bytes of ciphertext and feeds them to the selected cipher EU input
FIFO.

-------------- L1 -------------- ----------------------------------- L4 --------------------------------------

----- L2 ----

-- 4n ---

INPUT ESP Hdr Payload Padding Pad
Ln

Nxt
HdrIV (if any)

8 4n <cipher block size> × n (n > 0)

ICV AP

DECRYPT

↓

-- 4n -- --- 4n ----

OUTPUT ESP Hdr Payload Padding Pad
Ln

Nxt
Hdr

CICV
OutIV (if any)

8 4n n 0–255 1 1 12

---------------------------------- L5 -- ---- E5 ---

P1

P5

P4P2

P5+L5

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

32 Freescale Semiconductor

Use of Specific Descriptor Types

6. SEC write L5 bytes of plaint text to P5.

7. The MDEU recalculates the CICV (HMAC). The SEC writes E5 bytes of CICV to the end of the
encrypted data.
Note that E5 is written directly to the end of the decrypted data (P5 + L5). If a packet is being
decrypted in place (for example, if the same buffer is being used for packet data in and data out,
P5 = P4), then E5 would overwrite the original ICV (located at P4 + L4), which would not be
desirable, since the host needs to compare the received ICV and CICVs. The solutions are to
either use a different buffer for output (P5 != P4), or for the host to use the SEC's “scatter”
capability to cause the CICV to be written to some more convenient place.

An example of a Type 0000_1 descriptor can be found in Section A.6, “IPSec_ESP.”

9.6.3 Descriptor Type 0001_1 for AES-CCM
Descriptor type 0001_1 is the preferred descriptor type for AES-CCM operations. Descriptor type 0001_0
can also be used, but 0001_1 has some advantages in dealing with Integrity Only Data, and in treatment
of the MIC (ICV).

Table 22 shows the AES-CCM context register values. The encrypt and decrypt outputs are only shown
for reference, as the register contents change from the start of the operation till its completion. There is no
need to output all the context registers with descriptor pointer 6 unless the packet is being processed with
continuing descriptors. If continuing descriptors are used, all 56 bytes of AES context needs to be output
in order to be reloaded by the subsequent descriptor, otherwise only the first 24B need to ne output, as
described in subsequent sections.

For 802.11i (WiFi) the Context includes the following:

B0 = 0x59 || 13-byte Nonce || 2-byte Payload Length

Initial Counter = 0x01 || 13-byte Nonce || 0x0000

For both B0 and the Counter, the Nonce = 1-byte PRI || 6-byte Address 2 || 6-byte Packet Number

Table 22. AES Context Registers for CCM

Context Register
(Byte Address)

Encrypt Input Encrypt Output Decrypt Input Decrypt Output

1 (0x34100) B0 MAC B0 Computed MAC

2 (0x34108) 0 Typically 0

3 (0x34110) 0 Encrypted MIC Received MIC Decrypted MIC

4 (0x34118) Typically 0 Typically 0

5 (0x34120) Counter* Running Counter Counter* Running Counter

6 (0x34128)

7 (0x34130) Counter Modulus
Exponent*

Counter Modulus
Exponent

Counter Modulus
Exponent*

Counter Modulus
Exponent

Note: The counter modulus for CCM cipher mode is currently defined as 2128 making the exponent 128. This value has been
made programmable to support the various values used for counter modulus exponent in AES-CTR and AES-CCM modes.
Because this is a programmable field, it must included in the IV each time the IV is loaded.

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 33

Use of Specific Descriptor Types

For 802.11i (WiMax) the Context includes the following:

B0 = 0x19 || 13-byte Nonce || 2-byte Payload Length

Counter = 0x01 || 13-byte Nonce || 0x0000

For both B0 and the Counter, the Nonce = Bits 0:39 of GMH (GMH less Header Checksum) ||
0x0000_0000 || 4-byte Packet Number, where Packet Number is 0x01_00_00_00 for PN=1

9.6.3.1 Type 0001_1 for IEEE Std 802.11i™_aes_ccmp

This descriptor type is suitable for IEEE 802.11i (WiFi) security. Table 23 summarizes the 802.11i
AES-CCMP descriptor format.

Table 24 shows the descriptor header values for AES-CCM encrypt and decrypt.

9.6.3.2 IEEE 802.11i Outbound

From the SEC’s perspective, 802.11i processing is the same as other types of protocol processing; the SEC
fetches and executes a descriptor. 802.11i requires more complex data preparation on the part of software,
including the construction of the Authentication Only Data, the CCM Header, and the MAC Header.

Unlike other protocols in which the Authentication Only Data is the same as a transmitted header, the
802.11i AAD is a constructed value which adds fields not found in the MAC Header, removes a field that
is in the MAC Header, and applies a mask to two other MAC Header fields.

Table 23. Descriptor Format Summary for IEEE 802.11i_aes_ccmp

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

Usage

0001_1

802.11i AES

ccmp

Length

Reserved Primary
EU

Context In

Confidentiality
Key

Integrity
Only Data

Data In Data Out Primary
EU

Context
Out

IEEE 802.11i

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Table 24. Descriptor Header Values for WiMax with AES-CCM

Operation Descriptor Header

AES-CCM Encrypt 0x6b10_0019

AES-CCM Decrypt 0x6b00_001B

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

34 Freescale Semiconductor

Use of Specific Descriptor Types

Figure 17 shows the construction of the 802.11i (WiFi) AAD used during datagram authentication.

Notes on AAD construction:

1. ALEN field—This is the length of the AAD field, less the ALEN field itself and the PAD required
to make the whole AAD an integral number of 16B blocks. Realistically, there are 2 possible values
for ALEN and PAD:

a) Optional Address 4 not used. ALEN = 22 bytes, Padding = 8 bytes

b) Optional Address 4 used. ALEN = 28 bytes, Padding = 14 bytes

2. An explanation of Frame Control and Sequence Control masking is beyond the scope of this
document.

The SEC’s data processing steps for IEEE 802.11i (AES-CCM) outbound packet processing are as
follows. All references to P, L, and E are as shown in Figure 18.

1. With P1 and L1, load the 56-byte AES-CCM Context, which is constructed as shown in Table 22.

2. With P2 and L2, load the 16-byte Confidentiality Key (not shown). This is actually a combined
Confidentiality/Integrity Key, as it is also used to generate the MIC (CICV).

3. Starting at P3, read L3 bytes of the constructed AAD. The AESU automatically uses the “Alen”
field to determine if any additional data (beyond the constructed AAD value) is also included in
the authentication only data for MIC generation.

4. With P4 and L4, read the plaintext payload data. The SEC encrypts the data while simultaneously
generating the MIC, which is itself encrypted.

5. With P5 and L5, write the ciphertext payload data. Setting P5 = P4 causes ciphertext to overwrite
the plaintext. If this is not desired, set P5 to the address of a new buffer.

6. With P6 and L6, write out the first 24 bytes of the AES context register. Bytes 17–24 are the MIC,
which must be copied by software to the end of the encrypted payload. Once the MIC has been
copied, the 24 bytes of context can be discarded.

Frm Ctl:
2 bytes

DUR/ID:
2 bytes

Addr
1:6 bytes

Addr 2:
6 bytes

Addr 3:
6 bytes

Seq Ctl: 2 bytes Addr 4: 6 bytes
(optional)

apply mask apply mask

ALEN:
2 bytes

Frm Ctl:
2 bytes

Addr 1:6 bytes Addr 2:
6 bytes

Addr 3:
6 bytes

Seq Ctl:
2 bytes

Addr 4: 6 bytes
(optional)

Pad (zeros)
8 or 14 bytes

Figure 17. Construction of AAD from MAC Header

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 35

Use of Specific Descriptor Types

Figure 18. IEEE 802.11i (AES-CCM) Outbound Packet Pointer Diagram

P1

--------------- L1 ------------------

AES Context -------------------------- L4 ------------------------

INPUT MAC Header CCMP
Header

Payload

24 or 30 8 1-2304

SW prepares AAD

including ALEN and Pad

-------------- L3 -------------------

----------- 16n --------------------

Alen AAD 0-Pad

2 22–28 8 or 14

ICV ICV

AES
Context

MIC

8 8 8

ENCRYPT

SW copies MIC
to end of packet

OUTPUT Payload MIC

1–2304 8

------------------------- L5 -------------------------

P5

P3

P4

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

36 Freescale Semiconductor

Use of Specific Descriptor Types

9.6.3.3 IEEE 802.11i Inbound

Figure 19 shows the diagram for the IEEE 802.11i (AES-CCM) inbound packet pointer.

Figure 19. IEEE 802.11i (AES-CCM) Inbound Packet Pointer Diagram

The data processing steps (as managed by the channel) are as follows:

The SEC’s data processing steps for IEEE 802.11i (AES-CCM) inbound packet processing are as follows.
All references to P, L, and E are as shown in Figure 19.

1. With P1 and L1, load the 56-byte AES-CCM Context, which is constructed as shown in Table 22.
As shown in Figure 19, the received MIC needs to be copied to the AES Context. The received
MIC is typically 8B, however if larger, the received MIC can overflow into DWORD 4 of the AES
Context Registers.

2. With P2 and L2, load the 16-byte Confidentiality Key (not shown). This is actually a combined
Confidentiality/Integrity Key, as it is also used to generate the MIC (CICV).

P1

--------------- L1 ------------------

AES Context ----------------- L4 ----------------

INPUT MAC Header CCMP
Header

Payload MIC

24 or 30 8 1-2304 8

-------------- L3 ------------------ DECRYPT

----------- 16n -------------------

Alen AAD 0-Pad Payload

2 22–38 8 or 14 SW
compare

ICV ICV AES
Context

MAC 0 MIC

8 8 8

OUTPUT Payload

1–2304

P5

------------------------ L5 -----------------------

P4

P3

SW prepares AAD

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 37

Use of Specific Descriptor Types

3. Starting at P3, read L3 bytes of the constructed AAD. The AESU automatically uses the “Alen”
field to determine if any additional data (beyond the constructed AAD value) is also included in
the authentication only data for MIC generation.

4. With P4 and L4, read the ciphertext payload data. The SEC decrypts the data, while
simultaneously regenerating the MIC for comparison.

5. With P5 and L5, write the plaintext payload data. L5 = L4.

6. With P6 and L6, write out the first 24 bytes of the AES context register. Bytes 0-7 are the
calculated MAC, bytes 17–24 are the decrypted MIC. Software must compare these two values,
and if they match, the received packet passes the integrity check. Once the MIC comparison has
been completed, the 24 bytes of context can be discarded.

An example of a Type 0001_1 descriptor can be found in Section A.7, “AES_CCM.”

9.6.3.4 Descriptor Type 0001_1: AES-CCM for WiMax

AES-CCM, as required for WiMax security, is also performed using type 0001_1. Unlike 802.11i and
IPsec with AES-CCM, WiMax does not treat the PDU header as Integrity Only Data. Header fields are
included in the Nonce which becomes part of the IV, so any changes to the header during transmission
would be cause the packet to fail to decrypt and fail the integrity check due to a bad MIC.

Table 25 summarizes the descriptor type 0001_1 descriptor format as it applies to AES-CCM for WiMax.

Table 25 shows the descriptor header values for AES-CCM encrypt and decrypt.

Table 25. Descriptor Format Summary for AES-CCM for WiMax

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6 Usage

0001_1

AES-CCM for

WiMax

Length

Reserved Primary
EU

Context In

Confidentiality
Key

Integrity
Only Data
(Reserved
for WiMax)

Data In Data Out Primary
EU

Context
Out

WiMax

Extent Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Table 26. Descriptor Header values for WiMax with AES-CCM

Operation Descriptor Header

AES-CCM Encrypt 0x6b10_0019

AES-CCM Decrypt 0x6b00_001B

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

38 Freescale Semiconductor

Use of Specific Descriptor Types

9.6.3.5 AES-CCM for WiMax encrypt

Figure 20 shows the diagram for AES-CCM MIC generation and encryption.

Figure 20. AES-CCM Encrypt

The data processing steps for AES-CCM encryption and MIC generation (as managed by the channel) are
as follows:

1. With P1 and L1, load the 56-byte AES-CCM Context, which is constructed as shown in Table 22.

2. With P2 and L2, load the 16-byte Confidentiality Key (not shown). This is actually a combined
Confidentiality/Integrity Key, as it is also used to generate the MIC.

3. For WiMax, there is no Integrity Only Data, so P3 and L3 are 0.

4. With P4 and L4, read the plaintext payload data. The SEC encrypts the data while simultaneously
generating the MIC, which is itself encrypted.

5. With P5 and L5, write the ciphertext payload data. L5 = L. P5 can be used to overwrite the
plaintext, or the data can be written to a new buffer.

6. With P6 and L6, write out the first 24 bytes of the AES context register. Bytes 17–24 are the
computed MIC, which software must append to the end of the payload. Once the MIC has been
appended, the 24 bytes of context can be discarded.

P1

AES Context

P4

L4

Input Generic MAC Header
(6 bytes)

ESH
(optional)

PN Payload

Encrypt

MIC AES
Context

MIC

8 8 8

P5 SW copy

Output
Generic MAC Header

(6 bytes)
ESH

(optional)
PN Encrypted Payload MIC

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 39

Use of Specific Descriptor Types

9.6.3.6 AES-CCM for WiMax decrypt

Figure 21 shows the diagram for AES-CCM MIC generation and encryption.

Figure 21. AES-CCM Decrypt

The data processing steps for AES-CCM decryption with hardware MIC as managed by the channel are
as follows:

1. With P1 and L1, load the 56-byte AES-CCM Context, which is constructed as shown in Table 22.
As shown in Figure 21, the received MIC needs to be copied to the AES Context. The received
MIC is typically 8B, however it is larger, the received MIC can overflow into DWORD 4 of the
AES Context Registers.

2. With P2 and L2, load the 16-byte Confidentiality Key. This is actually a combined
Confidentiality/Integrity Key, as it is also used to generate the MIC.

3. For WiMax, there is no Integrity Only Data, so P3 and L3 are 0.

4. With P4 and L4, read the ciphertext payload and encrypted MIC data. The SEC decrypts the data
and MIC while simultaneously recalculating the MIC.

5. With P5 and L5, write the ciphertext payload data. L5 = L4.

6. With P6 and L6, write out the first 24 bytes of the AES context register. Bytes 0-7 are the
calculated MAC, bytes 17–24 are the decrypted MIC. Software must compare these two values,
and if they match, the received packet passes the integrity check. Once the MIC comparison has
been completed, the 24 bytes of context can be discarded.

P1

---------- L1---------

AES Context

P4

Input Generic MAC
Header (6 bytes)

ESH
(optional)

PN Encrypted Payload MIC

Decrypt

MIC

P5

L5 SW Compare

Output Generic MAC
Header (6 bytes)

ESH
(optional)

PN Payload

P6 AES Context

MAC 0 MIC

8 8 8

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

40 Freescale Semiconductor

Use of Specific Descriptor Types

9.6.4 Descriptor Type 0010_1: SRTP
Although other common or snooping descriptor types can be used to perform SRTP, this is the preferred
descriptor type as it offers the ability to calculate the HMAC over both initial Integrity Only Data (the
SRTP header) and trailing integrity only data (roll over counter).

Table 27 summarizes the SRTP descriptor format.

The Primary EU Context in Pointer DWORD 1 is the 24-byte AES context shown in Table 28.

Table 27. SRTP Descriptor Format Summary

Descriptor
Type

Field
Type

Pointer
Dword0

Pointer
Dword1

Pointer
Dword2

Pointer
Dword3

Pointer
Dword4

Pointer
Dword5

Pointer
Dword6

Usage

0010_1

srtp

Length

Integrity
Key

Primary
EU

Context In

Confidentiality
Key

Data In Data Out CICV Out Primary
EU

Context
Out

SRTP

Extent
Reserved Reserved Reserved Integrity

Only Data
Integrity Only

Trailer
Reserved Reserved

Table 28. AES Context Registers for SRT versus CTR Mode

Context Register (Byte Address) 0010_1 with CTR

1 (0x34100) Counter

2 (0x34108)

3 (0x34110) Counter modulus exponent

4 (0x34118) —

5 (0x34120)

6 (0x34128)

7 (0x34130)

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 41

Use of Specific Descriptor Types

9.6.4.1 Descriptor Type 0010_1 SRTP Outbound

Figure 22 shows the diagram SRTP outbound packet pointer.

Figure 22. SRTP Outbound Packet Pointer Diagram

The data processing steps (as managed by the channel) are as follows:

1. Starting at address P0, fetch L0 bytes of the integrity algorithm key (not shown).

2. Starting at address P1, fetch L1 bytes of AES Context (not shown, should always be 24B).

3. Starting at address P2, fetch L2 bytes of encryption algorithm key (not shown).

4. Starting at P3, SEC fetches E3 bytes of plaintext packet data, which are treated as authentication
only data. The SEC continues fetching L4 bytes of plaintext which are fed to both the encryption
and integrity algorithms.

5. SEC write L4 bytes of ciphertext to P4. When it reaches the end of the ciphertext output, the SEC
reads E4 bytes of ROC (rollover counter) and feeds it to the integrity algorithm. The ROC must be
located at P3+L3+L4, contiguous with the Pad Ln field of the packet.

6. Authentication Tag output: Finish computation of the Authentication Tag in the MDEU. Obtain
L5 bytes of Authentication Tag from the MDEU and write them to P5.

----- E3 ----- ----------------------------------- L3 ------------------------------------ ---- E4 ----

INPUT
Header Payload Padding Pad

Ln
ROC

4n
(1 ≤ n ≤ 8)

n n 1 4

ENCRYPT

↓

Header Payload Padding Pad
Ln

ROC

ICV AP

OUTPUT
Header Payload Padding Pad

Ln
MKI Authen.

Tag

4n n n l 4n 0 ≤ n ≤ 80

----------------------------------- L4 ------------------------------------ ---- L5 ----

P3

P5P4

P3+E3 P3+E3+L3

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

42 Freescale Semiconductor

Use of Specific Descriptor Types

Figure 23 shows the SRTP outbound descriptor format.

9.6.4.2 Descriptor Type 0010_1 SRTP Inbound

Figure 24 shows the diagram for the SRTP inbound.

Figure 24. SRTP Inbound Packet Pointer Diagram

0 15 16 17 23 24 27 28 31 32 63

Header Dword Descriptor Control Descriptor Feedback

Pointer Dword 0 ICV Key Length J0 — — Eptr0 P0: Address of ICV Key

Pointer Dword 1 AES Context Length J1 — — Eptr1 P1: Address of Cipher Context In

Pointer Dword 2 AES Key Length J2 — — Eptr2 P2: Address of Cipher Key

Pointer Dword 3 Length of Plaintext J3 Hdr Len — Eptr3 P3: Header • Plaintext • Trailer

Pointer Dword 4 Ciphertext Length J4 Trlr Len — Eptr4 P4: Address of Ciphertext

Pointer Dword 5 AuthTag Length J5 — — Eptr5 P5: Address of Authen. Tag Out

Pointer Dword 6 Cipher Ctxt Length J6 — — Eptr6 P6: Cipher Context Out

Length J Extent — Eptr Pointer

Figure 23. SRTP Outbound Descriptor Format

----- E3 ----- ----------------------------------- L3 ------------------------------------ ---- E4 ----

------- 4n ----- ----- 4 -----

INPUT
Header Payload Padding Pad

Ln
ROC

4n
(1 ≤ n ≤ 8)

n n 1 4

ICV AP

DECRYPT

↓

OUTPUT
Header Payload Padding Pad

Ln
ROC Authen.

Tag

4n n n 1 4 4n

----------------------------------- L4 ------------------------------------ ----- L5 --

P3

P4 P5

P3+E3 P3+E3+L3

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 43

Use of Specific Descriptor Types

The data processing steps (as managed by the channel) are as follows:

1. Starting at address P0, fetch L0 bytes of the integrity algorithm key (not shown).

2. Starting at address P1, fetch L1 bytes of AES Context (not shown, should always be 24B).

3. Starting at address P2, fetch L2 bytes of decryption algorithm key (not shown).

4. Starting at P3, SEC fetches E3 bytes of ciphertext packet data, which are treated as authentication
only data. The SEC continues fetching L4 bytes of ciphertext which are fed to both the decryption
and integrity algorithms.

5. SEC write L4 bytes of plaintext to P4. When it reaches the end of the ciphertext output, the SEC
reads E4 bytes of ROC (rollover counter) and feeds it to the integrity algorithm. The ROC must be
located at P3+L3+L4, contiguous with the Pad Ln field of the packet.

6. Authentication Tag output: Finish computation of the Authentication Tag in the MDEU. Obtain
L5 bytes of Authentication Tag from the MDEU and write them to P5. P5 should be chosen so as
not to overwrite the received Authentication Tag, otherwise SW won’t be able to perform the
comparison.

Figure 25 shows the SRTP inbound descriptor format.

An example of a Type 0010_1 descriptor can be found in Appendix A, “Protocol Examples,” including
Section A.8, “SRTP.”

9.7 SSLv3.1/TLS1.0 Processing
The SEC is capable of assisting in SSL record layer processing, however for SSL v3.0 and earlier, this
support is limited to acceleration of the encryption only. The MDEU does not calculate the version of
HMAC required by early versions of SSL. SSLv3.1 and TLSv1.0 use the same HMAC version as IPSec
(specified in RFC2104), which the SEC MDEU supports, allowing it to off-load both bulk encryption and
authentication from the CPU.

SSLv3.1 and TLSv1.0 (henceforth referred to as TLS) record layer encryption/decryption is more
complicated for hardware than IPSec, due to the order of operations mandated in the protocol. TLS
performs the HMAC function first, then attaches the HMAC (which is variable size) to the end of the

0 15 16 17 23 24 27 28 31 32 63

Header Dword Descriptor Control Descriptor Feedback

Pointer Dword 0 ICV Key Length J0 — — Eptr0 P0: Address of ICV Key

Pointer Dword 1 AES Context Length J1 — — Eptr1 P1: Address of Cipher Context In

Pointer Dword 2 AES Key Length J2 — — Eptr2 P2: Address of Cipher Key

Pointer Dword 3 Length of Ciphertext J3 Hdr Len — Eptr3 P3: Header • Plaintext • Trailer

Pointer Dword 4 Plaintext Length J4 Trlr Len — Eptr4 P4: Address of Plaintext

Pointer Dword 5 AuthTag Length J5 — — Eptr5 P5: Address of Authen. Tag Out

Pointer Dword 6 Cipher Ctxt Length J6 — — Eptr6 P6: Cipher Context Out

Length J Extent — Eptr Pointer

Figure 25. SRTP Inbound Descriptor Format

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

44 Freescale Semiconductor

Use of Specific Descriptor Types

payload data. The payload data, HMAC, and any padding added after the HMAC are then encrypted.
Parallel encryption and authentication of TLS “records” cannot be performed using the SEC snooping
mechanisms which work for IPSec.

Performing TLS record layer encryption and authentication with the SEC requires two descriptors. For
out-bound records, one descriptor is used to calculate the HMAC, and a second is used to encrypt the
record, HMAC, and padding. For inbound records, the first descriptor decrypts the record, while the
second descriptor is used to recalculate the HMAC for validation by the CPU.

The following examples and explanations cover TLS outbound and inbound processing using dynamic
assignment.

9.7.1 Out-Bound TLS Descriptor 1

The first descriptor performs the HMAC of the record header and the record payload. In the example
shown, the HMAC is generated using the MD-5 algorithm.

The primary EU is the MDEU, with its mode bits set to cause the MDEU to initialize its context registers,
perform auto-padding if the data size is not evenly divisible by 512 bits, and calculate an HMAC-MD-5.

At the conclusion of Out-bound TLS Descriptor 1, the crypto-channel has calculated the HMAC, placed
it in memory, and has reset and released the MDEU.

Table 29. Out-Bound TLS Descriptor 1

Field Value / Type Description

Header 0x31E0_0010 DPD_Type 0001_0 HMAC_MD-5

Reserved 0x0000_0000 Nill

Length 0 Length Nill

Pointer 0 Pointer Nill

Length 1 Length Nill

Pointer 1 Pointer Nill

Length 2 Length Number of bytes of HMAC key to be written to MDEU Key register

Pointer 2 Pointer Address of HMAC key

Length 3 Length Number of bytes of data to be written to MDEU Input FIFO

Pointer 3 Pointer Address of data

Length 4 Length Nill

Pointer 4 Pointer Nill

Length 5 Length Number of bytes of HMAC to be written out to memory (always 16 bytes for MD-5)

Pointer 5 Pointer Address where HMAC is to be written

Length 6 Length Nill

Pointer 6 Pointer Nill

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 45

Use of Specific Descriptor Types

9.7.2 Out-Bound TLS Descriptor 2
The second descriptor performs the encryption of the record, HMAC, pad length, and any padding
generated to disguise the size of the TLS record. A test descriptor for this operation is provided in
Section A.9, “ARC4.”

Not surprisingly, in-bound TLS processing reverses the order of operations of out-bound processing.

9.7.3 In-Bound TLS Descriptor 1

The first descriptor performs the decryption of the record, HMAC, pad length, and any padding generated
to disguise the size of the TLS record.

Table 30. Out-Bound TLS Descriptor 2

Field Value/ Type Description

Header 0x1000_0050 AFEU, new key, don’t dump context, perform permute

Reserved 0x0000_0000 Nill

Length 0 Length Nill

Pointer 0 Pointer Nill

Length 1 Length Nill

Pointer 1 Pointer Nill

Length 2 Length Length of ARC-4 key

Pointer 2 Pointer Pointer to ARC-4 Key

Length 3 Length Length of data to be read and permuted

Pointer 3 Pointer Pointer to data in memory

Length 4 Length Length of data to be written after permutation

Pointer 4 Pointer Pointer to memory buffer for write back

Length 5 Length Nill

Pointer 5 Pointer Nill

Length 6 Length Nill

Pointer 6 Pointer Nill

Table 31. In-Bound TLS Descriptor 1

Field Value/Type Description

Header 0x1000_0050 AFEU, new key, don’t dump context, perform permute

Reserved 0x0000_0000 Nill

Length 0 Length Nill

Pointer 0 Pointer Nill

Length 1 Length Nill

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

46 Freescale Semiconductor

Use of Specific Descriptor Types

NOTE
ARC-4 does not have a concept of Encrypt vs. Decrypt. As a stream cipher,
ARC-4 generates a key stream which is XOR’d with the input data. If the
input data is plaintext, the output is ciphertext. If the input data is ciphertext
(which was previously XOR’d with the same key), the result is plaintext.

The primary EU is the AFEU, with its mode bits set to cause the AFEU to load the key and initialize the
AFEU S-box for data permutation.

At the conclusion of In-bound TLS Descriptor 1, the AFEU has decrypted the TLS record so that the
payload and HMAC are readable. The negotiation of the TLS session should provide the receiver with
enough information about the session parameters (hash algorithm for HMAC, whether padding is in use)
to create In-Bound Descriptors 2 and dispatch it to the same channel’s Fetch FIFO prior to completion of
In-Bound Descriptor 1.

Alternatively, the SEC could signal DONE at the conclusion of In-Bound Descriptor 1 to allow the CPU
to inspect the decrypted record, and generate the descriptor necessary to validate the HMAC. If this is the
case, In-Bound Descriptor 2 does not need to be linked to In-Bound Descriptor 1, and could even be
processed by a different crypto-channel.

9.7.4 In-Bound TLS Descriptor 2

The second descriptor performs the HMAC of the record header and the record payload. In the example
shown, the HMAC is generated using the MD-5 algorithm.

Pointer 1 Pointer Nill

Length 2 Length Length of ARC-4 key

Pointer 2 Pointer Pointer to ARC-4 Key

Length 3 Length Length of data to be read and permuted

Pointer 3 Pointer Pointer to data in memory

Length 4 Length Length of data to be written after permutation

Pointer 4 Pointer Pointer to memory buffer for write back

Length 5 Length Nill

Pointer 5 Pointer Nill

Length 6 Length Nill

Pointer 6 Pointer Nill

Table 31. In-Bound TLS Descriptor 1 (continued)

Field Value/Type Description

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 47

Conclusion

The primary EU is the MDEU, with its mode bits set to cause the MDEU to initialize its context registers,
perform auto-padding if the data size is not evenly divisible by 512 bits, and calculate an HMAC-MD-5.

The descriptor header doesn’t designate a secondary EU, so the setting of the Snoop Type bit is ignored.

At the conclusion of In-bound TLS Descriptor 2, the crypto-channel has calculated the HMAC, placed it
in memory, and has reset and released the MDEU. The CPU can compare the HMAC generated by
In-Bound TLS Descriptor 2 with the HMAC that came as part of the record. If the HMACs match, the
record is known to have arrived unmodified, and can be passed to the Application Layer.

10 Conclusion
The SEC 2.0 is capable of accelerating a wide range of common cryptographic operations. Users can take
advantage of the SEC 2.0 Reference Device Driver provided by Freescale, or with the understanding of
SEC descriptor construction provided by this application note, users can create their own device driver or
optimized cryptographic macro routines.

Table 32. In-Bound TLS Descriptor 2

Field Value/ Type Description

Header 0x31E0_0010 MDEU, HMAC, MD-5, Autopad

Reserved 0x0000_0000 Nill

Length 0 Length Nill

Pointer 0 Pointer Nill

Length 1 Length Nill

Pointer 1 Pointer Nill

Length 2 Length Length of MD-5 key

Pointer 2 Pointer Pointer to MD-5 Key

Length 3 Length Length of data to be read and permuted

Pointer 3 Pointer Pointer to data in memory

Length 4 Length Nill

Pointer 4 Pointer Nill

Length 5 Length Length of HMAC to be written to memory (16 bytes for MD-5)

Pointer 5 Pointer Pointer to memory location for HMAC write

Length 6 Length Nill

Pointer 6 Pointer Nill

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

48 Freescale Semiconductor

Revision History

11 Revision History
Table 33 provides a revision history for this application note.

Table 33. Document Revision History

Rev.
Number

Date Substantive Change(s)

1 04/2010 • Updated terminology.
 • Updated Section 9.6, “Descriptor Type 0000_1: IPsec_ESP.”
 • Updated Section 9.6.3, “Descriptor Type 0001_1 for AES-CCM.”
 • Updated Section 9.6.4, “Descriptor Type 0010_1: SRTP.”
 • Updated Section A.7, “AES_CCM.”
 • Updated Section A.8, “SRTP.”

0.2 02/08/05 • Updated Figure 14, “Descriptors, Link Tables, and Data Parcels.”
 • Added Appendix A, “Protocol Examples.”

0.1 01/21/05 General content updates

0 01/17/05 Initial public release

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 49

Revision History

Appendix A Protocol Examples
The following are real examples of the descriptors shown in several of the tables. Not all tables have a
matching example descriptor in the case of redundancy.

A.1 3DES_CBC_ENC
encrypt_type : desa

begin_descriptor:

 // descriptor type = common_nonsnoop_no_afeu

 // cipher function = triple-des-cbc

 // direction = outbound

 // done notification = off

 // primary cha = desa

 20700010 // Header word 1

 0 // Header word 2

 0 // 0 Length (unused)

 0 // Extent (unused)

 0 // Nil pointer 0

 8 // 1 Length of cipher context in = 8

 0 // Extent (unused)

 @p1 // Pointer to cipher context in

 18 // 2 Length of cipher key = 24

 0 // Extent (unused)

 @p2 // Pointer to key

 68 // 3 Length of cipher data = 104

 0 // Extent (unused)

 @p3 // Pointer to cipher data

 68 // 4 Length of cipher output = 104

 0 // Extent (unused)

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

50 Freescale Semiconductor

Revision History

 @q4 // Pointer to cipher out

 8 // 5 Length of cipher context out = 8

 0 // Extent (unused)

 @q5 // Pointer to auth/context out

 0 // Nil length 6

 0 // Extent (unused)

 0 // Nil pointer 6

end_descriptor

begin_memory p1: // cipher IV in

 9163BD902F531D50

end_memory

begin_memory p2: // cipher key

 83638CA559AC9C3F

A.2 AES_CCM_ENC
encrypt_type : aesa

begin_descriptor:

 // descriptor type = common_nonsnoop_no_afeu

 // cipher function = aes-ccm

 // direction = outbound

 // done notification = off

 // primary cha = aesa

 6b100010 // Header word 1

 0 // Header word 2

 0 // 0 Length (unused)

 0 // Extent (unused)

 0 // Nil pointer 0

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 51

Revision History

 38 // 1 Length of cipher context in = 56

 0 // Extent (unused)

 @p1 // Pointer to cipher context in

 18 // 2 Length of cipher key = 24

 0 // Extent (unused)

 @p2 // Pointer to key

 310 // 3 Length of auth only data + cipher data = 784

 0 // Extent (unused)

 @p3 // Pointer to cipher data

 a0 // 4 Length of cipher output = 160

 0 // Extent (unused)

 @q4 // Pointer to cipher out

 20 // 5 Length of cipher context out = 32

 0 // Extent (unused)

 @q5 // Pointer to auth/context out

 0 // Nil length 6

 0 // Extent (unused)

 0 // Nil pointer 6

end_descriptor

begin_memory p1: // CCMP IV

 56EC035771A136DA

 4E000000000000A0

 //

 0000000000000000

 0000000000000000

 // CCMP counter

A.3 HMAC_MD_5 Out
encrypt_type : mdha

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

52 Freescale Semiconductor

Revision History

begin_descriptor:

 // descriptor type = common_nonsnoop_no_afeu

 // authentication function = hmac-md5

 // direction = outbound

 // done notification = off

 // primary cha = mdha

 31e00010 // Header word 1

 0 // Header word 2

 0 // 0 Length (unused)

 0 // Extent (unused)

 0 // Nil pointer 0

 0 // 1 Length of cipher context in = 0

 0 // Extent (unused)

 0 // Nil pointer 1

 4 // 2 Length of auth key = 4

 0 // Extent (unused)

 @p2 // Pointer to key

 308 // 3 Length of cipher data = 776

 0 // Extent (unused)

 @p3 // Pointer to cipher data

 0 // Nil length 4

 0 // Extent (unused)

 0 // Nil pointer 4

 10 // 5 Length of auth out = 16

 0 // Extent (unused)

 @q5 // Pointer to auth/context out

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 53

Revision History

 0 // Nil length 6

 0 // Extent (unused)

 0 // Nil pointer 6

end_descriptor

begin_memory p2: // auth key

 543203C500000000

end_memory

begin_memory p3: // cipher data in

 7CD566AA543D541D

A.4 3DES_HMAC_SHA_1
encrypt_type : desa

begin_descriptor:

 // descriptor type = hmac_snoop_no_afeu

 // cipher function = triple-des-cbc

 // authentication function = hmac-sha-1

 // direction = inbound

 // done notification = off

 // primary cha = desa

 // secondary cha = mdha

 20631c22 // Header word 1

 0 // Header word 2

 31 // 0 Length of authenticate key = 49

 0 // Extent (unused)

 @p0 // Pointer to auth key

 45 // 1 Length of auth_only_data = 69

 0 // Extent (unused)

 @p1 // Pointer to auth_only_data in

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

54 Freescale Semiconductor

Revision History

 18 // 2 Length of cipher key = 24

 0 // Extent (unused)

 @p2 // Pointer to cipher key

 8 // 3 Length of cipher context in = 8

 0 // Extent (unused)

 @p3 // Pointer to cipher context in

 38 // 4 Length of cipher in = 56

 0 // Extent (unused)

 @p4 // Pointer to cipher in

 38 // 5 Length of cipher out = 56

 0 // Extent (unused)

 @q5 // Pointer to cipher out

 14 // 6 Length of hmac out = 20

 0 // Extent (unused)

 @q6 // Pointer to hmac out

end_descriptor

begin_memory p0: // authentication key

 3408BD82AF03C5E9

 01C59BB6CE71DB35

 F9C14175ACAF79F7

 3C8104299C25F002

 9369AD7EA8BAF85D

 B158E38B1BE67A05

 BD00000000000000

end_memory

begin_memory p1: // auth only data

 746640CA17491D24

 4B573EED816D5CDD

 48ADC44F86272616

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 55

Revision History

 6EBF00594E07C4F2

 14F24ACFD4A90D4A

 A9B1D35C6C85CC0F

 5E17515D881B2B35

 A53C62660421ABD8

 A1227AEEC2000000

end_memory

begin_memory p2: // cipher key

 82CD41B2076632A6

 E7EB3A23ADCC655F

 E1C3173ECB5B3E07

end_memory

begin_memory p3: // cipher IV in

 FA9AB7D9CFA25F33

end_memory

begin_memory p4: // cipher data in

 ADB6EA9B95BFE619

 AEC195DFB32940BE

 3EC54FC35B72C830

 30B0310FFD6633AC

 506A79E759B55D18

 C8B23A44CC1B454F

 8BF4F9911DE29C68

end_memory

begin_memory exp_q5: // cipher data out

 2B81FEA2A88AC074

 B80CE859EAF198F2

 10B8C77E0EBE1EF1

 C118AD63E63EBC86

 67626F335A02D445

 61ED4E103F4ED30D

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

56 Freescale Semiconductor

Revision History

 359D3E686C827329

end_memory

begin_memory exp_q6: // authentication code out

 5B27A503EDFF1DA3

 16CB111110271E19

 5852F3A400000000

end_memory

A.5 RSA_SSTEP
encrypt_type : pkha

begin_descriptor:

 // descriptor type = pkha_mm

 // pkha function = rsa_sstep

 // done notification = off

 // primary cha = pkha

 58000080 // Header word 1

 0 // Header word 2

 10 // 0 Length of N = 16

 0 // Extent (unused)

 @p0 // Pointer to reg N

 0 // Nil length 1

 0 // Extent (unused)

 0 // Nil pointer 1

 10 // 2 Length of A = 16

 0 // Extent (unused)

 @p2 // Pointer to reg A

 d // 3 Length of E = 13

 0 // Extent (unused)

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 57

Revision History

 @p3 // Pointer to reg E

 10 // 4 Length of output = 16

 0 // Extent (unused)

 @q4 // Pointer to output

 0 // Nil length 5

 0 // Extent (unused)

 0 // Nil pointer 5

 0 // Nil length 6

 0 // Extent (unused)

 0 // Nil pointer 6

end_descriptor

begin_memory p0: // reg N

 8F9ABC2052DDBBD6

 899F1817033239CB

end_memory

begin_memory p2: // reg A

 2E41675F09B3986D

 7FE9206FEA76372D

end_memory

begin_memory p3: // reg E

 0F9E2DBBA7C57CFA

 9C52ACA0DB000000

end_memory

begin_memory exp_q4: // expected output data

 89e015aeccd25569

 7049a6466982543c

end_memory

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

58 Freescale Semiconductor

Revision History

A.6 IPSec_ESP
encrypt_type : desa

begin_descriptor:

 // descriptor type = ipsec_esp

 // cipher function = triple-des-cbc

 // authentication function = hmac-sha-1

 // direction = inbound

 // done notification = off

 // primary cha = desa

 // secondary cha = mdha

 20631c0a // Header word 1

 0 // Header word 2

 14 // 0 Length of authenticate key = 20

 0 // Extent (unused)

 @p0 // Pointer to auth key

 10 // 1 Length of auth-only data = 16

 0 // Extent (unused)

 @p1 // Pointer to auth-only data

 8 // 2 Length of cipher context in = 8

 0 // Extent (unused)

 @p2 // Pointer to cipher context in

 10 // 3 Length of cipher key = 16

 0 // Extent (unused)

 @p3 // Pointer to cipher key

 270 // 4 Length of cipher data in = 624

 0 // Extent (unused)

 @p4 // Pointer to cipher data in

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 59

Revision History

 270 // 5 Length of cipher data out = 624

 c // Extent of auth result = 12

 @q5 // Pointer to cipher data out

 8 // 6 Length of cipher context out = 8

 0 // Extent (unused)

 @q6 // Pointer to cipher context out

end_descriptor

begin_memory p0: // authentication key

 0EC76B5E9ECF6AA2

 3ED269F912EA9BB8

 0314872500000000

end_memory

begin_memory p1: // auth-only data in

 B9436C94BA6EFD59

 6308FB5C14FB0690

end_memory

begin_memory p2: // cipher context in

 6308FB5C14FB0690

end_memory

begin_memory p3: // cipher key

 595389E02EDE4F18

 18460AF0130C1BE0

end_memory

begin_memory p4: // cipher data in

 397C32968F978389

 9916BB00BA7B6C1B

 ED1DF1A10C51491C

 655FFA17F530AAE4

 19741D8A9A1ACCC2

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

60 Freescale Semiconductor

Revision History

 687F00415BF2C3B9

 6078D508F412F262

 6AAA9B9CA10D79EB

 690E80E63ECE8432

 9BB3923FD88D3943

 B3059AF8EE7B7A8C

 FE2A21BA4BE5B406

 D6736BBC2C052ABD

 94D827AAC82C3794

 DE5D8A0E61B31880

 D89A74CB2235357A

 6253B814E34714AF

 554219A21AE9EE77

 D51CA0AB6B039829

 2CD3000515F0AE44

 7F7E69B5D8BEC9C3

 DEB4CA653390DF67

 46C4E70FF3FB17A3

 2A507E6A36116C1B

 8B225886A87DF911

 04B630665E612FF2

 46A5DD62B649040A

 35D49E01AEF93FF5

 FF3B8DF53C7D64EA

 29613CB2E62DFD39

 25F6553ED5692F7C

 317D2B5CF1F73759

 344C3244A178AAA3

 BBDD95C2AAA705B6

 B18CA89C17EC447E

 F01DC5608D7C42F8

 3D62F5EB675E1649

 EF6172168D069E53

 1054DDD542C8C059

 24B4F44B173254D3

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 61

Revision History

 CC0D7365DE895C6E

 9F6F3E530AB982AB

 C0942F8DB13797C7

 3A8877AA037066C4

 8CD47091FCD6C669

 5D0C8DFF9398F668

 79DDD39386168155

 A08F0F4425FB6D07

 2A968D969A777B1D

 209C528BE24E8A5B

 32B5500A0CB79419

 C85217A960B69138

 791C96C93532190E

 A7D891D951808923

 1B609F020D83CA91

 373FE8066748D47C

 42ADC02D1D0A5F00

 6EA5CEEBD0400FFE

 DBB34EA59B82F9A8

 F27805B79D34AAA1

 1FA8C1BC5ED4A1D6

 D7FC2041159C5274

 B254032BB2293BD3

 D2B6E98C41B63541

 358311C28E6CD926

 E4FBB0E18A0C4235

 F1524C4BA8992C3E

 1902A0A9F4A6536C

 149BC24177B133B2

 4D76F09D4A54AA1A

 F1D7764D0412A3EF

 D0B6254B4DB9439B

 1FAA63CD2E6EF8D8

 F2AE6092B0FB043B

 53ECD76EF86EE05E

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

62 Freescale Semiconductor

Revision History

 63B6865DEAC16F4E

 1DA15F8E0AB6DE28

 A3DDB4AACF89F5D5

end_memory

begin_memory exp_q5: // cipher data out

 897D2C0277633F99

 E059FAEA7B08C520

 C75037E88271FFA6

 18B4527709832D23

 73FABFAF3C75B4D1

 16302B6B8C5CBC9B

 4649B1675B8D7207

 3E1AABDABAF7CB3E

 4A7D636A42AD9E7E

 F7A154A1F2B58D6F

 D13CED20DAAE9A6D

 EB5B6F999FF81F8B

 49A87C2586D6B51F

 A78960C890AF6C1F

 855757C307FB0A01

 B9EAEF6B113DF435

 760DC4373D210FA3

 B82DFA37CE930BD3

 87543D2C477BABEA

 BD6C5FDDC6ADDF66

 EFFDACF12D2F1F24

 39D2D1E8B9D243E5

 14124BEFCE9D704C

 2046E690B83FF228

 8935F7A68688AC35

 5F2C16C836DDDAA3

 35B993209AADE39E

 81F101B8F934449C

 C2204FEB951D7D6D

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 63

Revision History

 A32044BC646C37FE

 2E36ED455075F312

 D5B16E303B3A23C0

 40922488C09FDA18

 D25A3224E877ED9C

 8D82B09F4732BEF8

 79FA6097408B2637

 714639D522CDA3FC

 43EC8A93D69BC293

 F3316AF8555226EA

 3E5865FF114F731D

 D9F84CBC583F36B8

 C59A1E7BF2893C75

 12BA2A545515245D

 C7A5C70F25981A1A

 DF87490A121FBFDA

 43839617AF4FCE4F

 9AC7D6FCAC3A3637

 F01EFAFBB7E0A96C

 150B97182EC9D06A

 BA556664EA329B03

 58F40316F21B8643

 74D7A5C4FE9E4A76

 78A8B22EB7CBBF3C

 4AFB595F90A1CEBE

 65ACCABF8C536C94

 EE87FC61AA34B561

 A83617CF7008362D

 C2AAAFBD54C389CA

 C2B4A7C11096E190

 E4134B0636A93ECB

 142040E3FFD79207

 3AE70FA41C46CBE5

 35978156502CAF61

 584E5EE11F50F8EB

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

64 Freescale Semiconductor

Revision History

 AF29AE5F28EEED3F

 D2B080DA5B099719

 7CB7BB560C3E7C14

 F95DFB3D82EFA5D9

 94C5D0C14BB87498

 CDB0A9E43E19448E

 CD0125786B8D53A7

 3BA9FCE3C93F00EF

 F2E2EDB7995A96C1

 FBEC001E4E2C4D51

 A1080768F9131072

 EF0FB4ED1A50918E

 430034C3304F98D3

 9CCFF6F06820D6D7

// Get New Link

 // authentication code out

 3CF990619CD2038C

 2ECE1C4600000000

end_memory

begin_memory exp_q6: // cipher context out

 A3DDB4AACF89F5D5

end_memory

A.7 AES_CCM
// Source: IEEE P802.11i / D3.2 Preliminary Draft:

// Annex F.4 CCMP Test Vectors, CCMP test mpdu 1

encrypt_type : aesa

begin_descriptor:

 // Pri Pri Mode Sec Sec Mode Type

 6B100018 //Header 0110 1011-0001 0000 0000-0000 0001-1 000

 // AESA | CCMP |

 // CCM Outbound

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 65

Revision History

 // Final MAC No-

 // Initialize notify

 // Expand key

 // CCM

 // Encrypt

 //

 0 // Writeback value / Reserved

 0 // 0 Length UNUSED

 0 // Extent

 0 // Pointer

 38 // 1 Length of IV in = 56

 0 // Extent

 @p1 // Pointer to IV in

 10 // 2 Length of key = 16 (TK)

 0 // Extent

 @p2 // Pointer to key

 20 // 3 Length of hash-only data = 32

 0 // Extent

 @p3 // Pointer to hash-only data

 14 // 4 Length of cleartext data in = 20

 0 // Extent

 @p4 // Pointer to cleartext data in

 14 // 5 Length of encrypted data out = 20

 0 // Extent

 @q5 // Pointer to encrypted data out

 20 // 6 Length of IV out = 8 (MIC)

 0 // Extent

 @q6 // Pointer to IV out

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

66 Freescale Semiconductor

Revision History

end_descriptor

begin_memory p1: // IV in:

 // Registers 1-2

 // Code Nonce

 // (binary) (hex)

 59005030f1844408 // 01011001 005030f1844408b5039776e70c 0014

 b5039776e70c0014 // | |

 // Header is hash-only Message

 // MAC size = 8 length=20

 // Nonce size = 13

 0000000000000000 // Registers 3-4

 0000000000000000

 // Registers 5-6

 // Code Nonce

 // (binary) (hex)

 01005030f1844408 // 00000001 005030f1844408b5039776e70c 0000

 b5039776e70c0000 // | |

 // Nonce size = 13 Initial

 // Counter=0

 // Register 7

 0000000000000080 // Counter modulus = 2**128

end_memory

begin_memory p2: // Key in

 c97c1f67ce371185

 514a8a19f2bdd52f

end_memory

begin_memory p3: // Hash-only data

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 67

Revision History

 001608400fd2e128

 a57c5030f1844408

 abaea5b8fcba0000 //Should not have 0s at the end.

 //Should make a descriptor in which

 //padding does not start at word boundary

 0000000000000000 // Padding

end_memory

begin_memory p4: // Cleartext data in

 f8ba1a55d02f85ae

 967bb62fb6cda8eb

 7e78a050

end_memory

begin_memory exp-q5: // Encrypted data out

 f3d0a2fe9a3dbf23

 42a643e43246e80c

 3c04d019

end_memory

begin_memory exp_q6: // IV out:

 fcd14abd11309b04 // Registers 1-2: MAC out

 0000000000000000

 7845ce0b16f97623 // Registers 3-4: MIC out

 0000000000000000

end_memory

A.8 SRTP
encrypt_type : aesa

begin_descriptor:

 // descriptor type = srtp

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

68 Freescale Semiconductor

Revision History

 // cipher function = aes-ctr

 // authentication function = hmac-sha-1

 // direction = inbound

 // done notification = off

 // primary cha = aesa

 // secondary cha = mdha

 64631c2a // Header word 1

 0 // Header word 2

 14 // 0 Length of authenticate key = 20

 0 // Extent (unused)

 @p0 // Pointer to auth key

 18 // 1 Length of cipher context in = 24

 0 // Extent (unused)

 @p1 // Pointer to cipher context in

 10 // 2 Length of cipher key = 16

 0 // Extent (unused)

 @p2 // Pointer to cipher key

 90 // 3 Length of cipher data = 144

 10 // ExtentA header length = 16

 @p3 // Pointer to cipher data

 90 // 4 Length of cipher output = 144

 4 // ExtentB ROC length = 4

 @q4 // Pointer to cipher output

 8 // 5 Length of auth result = 8

 0 // Extent (unused)

 @q5 // Pointer to auth result

 10 // 6 Length of cipher context out = 16

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 69

Revision History

 0 // Extent (unused)

 @q6 // Pointer to cipher context out

end_descriptor

begin_memory p0: // authentication key

 FEEBD056EA52493E

 7A78265E9751EA35

 0BF9398200000000

end_memory

begin_memory p1: // initial counter

 404C8CF1F36DD21F

 31DEC14880B20000

 // ctr modulus

 0000000000000050

end_memory

begin_memory p2: // cipher key

 317F037A003BC706

 A58A1BB461DC6F94

end_memory

begin_memory p3: // auth-only header in

 EC5D54CC55BFCC2E

 B781A5FD605645E1

// Get New Link

 // cipher data in

 4B613B5DC90890E1

 78BE5B08E0457563

 ECA9935959A0D5A6

 D602CA3BA8B11F97

 DE07EE07355A9667

 CF735CBB0F4E9EDA

 5483ED8AE8733F8B

 4681FB0B72082836

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

70 Freescale Semiconductor

Revision History

 28DEB4B8A510548B

 28BD7F45190804CF

 63D161742A1792F9

 C3C44E79DA90543B

 296736A77C1B2E85

 A33DCF86D98CA868

 2C444A0D5363A48E

 37B8AAB386383C39

 AF9C48E06A6C1FC1

 626D8E07E8805F75

// Get New Link

 // ROC data in

 1487611200000000

end_memory

begin_memory exp_q4: // cipher data out

 C3FEC9C6B72646F0

 03CB06FCF161A6AE

 1681CBEA1D894903

 310F8137A6ED5911

 B8CFEF9289B3FF73

 E0F49CC3B7F1CCDA

 AEF937BF1A84BFBA

 100BDDAB81256F9A

 8079361727EAC472

 99FBAE056270F9C3

 09E16515632B959E

 2B10D9ED544D4A00

 AC4EE556C4E419B3

 3B8D73C4EA6A72DA

 22C59150C721A2D1

 675CDB3D33CECD6D

 80BB7FF2BEF52036

 BAA19B06A5CE98EC

end_memory

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 71

Revision History

begin_memory exp_q5: // authentication code out

 92CA9003AC92CBEE

end_memory

begin_memory exp_q6: // counter out

 404C8CF1F36DD21F

 31DEC14880B20009

end_memory

A.9 ARC4
encrypt_type : afha

begin_descriptor:

 // descriptor type = common_nonsnoop_afha

 // cipher function = rc4

 // direction = outbound

 // done notification = off

 // primary cha = afha

 10000050 // Header word 1

 0 // Header word 2

 0 // Nil length 0

 0 // Extent (unused)

 0 // Nil pointer 0

 0 // Nil length 1

 0 // Extent (unused)

 0 // Nil pointer 1

 a // 2 Length of cipher key = 10

 0 // Extent (unused)

 @p2 // Pointer to cipher key

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

72 Freescale Semiconductor

Revision History

 89 // 3 Length of cipher data = 137

 0 // Extent (unused)

 @p3 // Pointer to cipher data

 89 // 4 Length of cipher ouput = 137

 0 // Extent (unused)

 @q4 // Pointer to cipher output

 0 // Nil length 5

 0 // Extent (unused)

 0 // Nil pointer 5

 0 // Nil length 6

 0 // Extent (unused)

 0 // Nil pointer 6

end_descriptor

begin_memory p2: // cipher key

 3E044EA17F0D1FFC

 D4E8000000000000

end_memory

begin_memory p3: // cipher data in

 5C88BD0ECD17D165

 C6775CA30B66EEB0

 D1E66E4ACBF44DC7

 4E3D072CC994FA0A

 66A6862E0091DCB7

 B710128B0A304AF8

 6E778076D7566FFF

 9E46A679EA99BA36

 F4EAEB34D3DF9B2D

 3667F2E0663237C9

 E8C218D1477643C0

 6C33D5645114B230

SEC 2.0 Descriptor Programmer’s Guide, Rev. 1

Freescale Semiconductor 73

Revision History

 96DA8F8003C80E1E

 F1F73A30BC9C7EBB

 371EE7BBA878D4DA

 2551F856EEE011E2

 D77AE94A347A9DCB

 E900000000000000

end_memory

begin_memory exp_q4: // cipher data out

 1C851D657AB80F5F

 48AFE0F1D4BF1665

 E33F566AF0BB179D

 1D00DB6D6C351B11

 F5BA3E068BB129AF

 68D14F235D0C5F9F

 64C2E87700ED2733

 EA6E32BFE974E981

 A0173ED7C283B007

 C2988A19A65BD941

 4D665BA7CDBFF8B1

 2D94731F4AD52BDF

 3B7A15488A55CABE

 1CB642C4845ED5CF

 58A4EC9709D3FD9E

 755EA685EB6D212E

 33AA4763A998CD1B

 6200000000000000

end_memory

Document Number: AN2755
Rev. 1
04/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, and PowerQUICC are trademarks of
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by
Power.org. IEEE 802.11i is a trademark of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE). This product is not endorsed or
approved by the IEEE.
© 2010 Freescale Semiconductor, Inc.

	1 SEC 2.0 Data Packet Descriptor Overview
	2 Descriptor Structure
	Figure 1. Descriptor Format

	3 Descriptor Header
	Figure 2. Descriptor Header
	Table 1. Descriptor Header Field Descriptions
	Figure 3. Op_n sub fields
	Table 2. EU_Select Values

	4 Execution Unit MODE_DATA
	4.1 PKEU Mode Register
	Figure 4. PKEU Mode Register: Definition 1
	Figure 5. PKEU Mode Register: Definition 2
	Table 3. Mode Register Routine Definitions

	4.2 DEU Mode Register
	Figure 6. DEU Mode Register
	Table 4. DEU Mode Register Field Descriptions

	4.3 AFEU Mode Register
	Figure 7. AFEU Mode Register
	Table 5. AFEU Mode Register Field Descriptions

	4.4 MDEU Mode Register
	Figure 8. MDEU Mode Register
	Table 6. MDEU Mode Register Field Descriptions
	4.4.1 Recommended Settings for MDEU Mode Register
	Table 7. Mode Register-HMAC Generated by Single Descriptor
	Table 8. Mode Register-HMAC Generated for a Message Across a Chain of Descriptors

	4.5 RNG Mode Register
	Figure 9. RNG Mode Register
	4.5.1 AESU Mode Register
	Figure 10. AESU Mode Register
	Table 9. AESU Mode Register Signals
	Table 10. AES Cipher Modes

	5 Selecting Descriptor Type-DESC_TYPE
	Table 11. Descriptor Types

	6 Direction Bit
	Figure 11. Snooping

	7 Notification Bit
	8 Descriptor Format: Pointer Dwords
	Figure 12. Pointer Dword
	Table 12. Pointer DWORD Field Definitions
	8.1 Link Table Format
	Figure 13. Link Table Entry Format
	Table 13. Link Table Field Definitions
	Figure 14. Descriptors, Link Tables, and Data Parcels

	8.2 Pointer DWORD Format by Descriptor Type
	Table 14. Descriptor Length/Pointer Mapping
	8.2.1 Null Fields

	9 Use of Specific Descriptor Types
	9.1 Descriptor Type 0001_0
	Table 15. Descriptor Type 0001_0 Length/Pointer Mapping

	9.2 Descriptor Type 0001_0 Examples
	Table 16. Representative Descriptor DPD_Type 0001_0_3DES_CBC_Encrypt
	9.2.1 Descriptor Type 0001_0 Additional Examples
	Table 17. Representative Descriptor DPD_Type 0001_0_AES-CCM_Encrypt

	9.2.2 HMAC-MD-5 (In-Bound/Out-Bound IPSec AH)
	Table 18. Representative Descriptor DPD_Type 0001_0_HMAC-MD-5

	9.3 Descriptor Type 0010_0 Example
	Table 19. Representative Descriptor DPD_Type 0010_0_3DES-HMAC-SHA-1 Decrypt

	9.4 Descriptor Type 1000_0 Example
	Table 20. Representative Descriptor DPD_Type 1000_0_PK_MM_Encrypt

	9.5 SEC 2.0 Specific Descriptors
	9.6 Descriptor Type 0000_1: IPsec_ESP
	Table 21. IPsec ESP Descriptor Format Summary
	9.6.1 IPsec-ESP Outbound
	Figure 15. IPsec ESP Outbound Packet Pointer Diagram

	9.6.2 IPsec-ESP Inbound
	Figure 16. IPsec ESP Inbound Packet Pointer Diagram

	9.6.3 Descriptor Type 0001_1 for AES-CCM
	Table 22. AES Context Registers for CCM
	9.6.3.1 Type 0001_1 for IEEE Std 802.11i™_aes_ccmp
	Table 23. Descriptor Format Summary for IEEE 802.11i_aes_ccmp
	Table 24. Descriptor Header Values for WiMax with AES-CCM

	9.6.3.2 IEEE 802.11i Outbound
	Figure 17. Construction of AAD from MAC Header
	Figure 18. IEEE 802.11i (AES-CCM) Outbound Packet Pointer Diagram

	9.6.3.3 IEEE 802.11i Inbound
	Figure 19. IEEE 802.11i (AES-CCM) Inbound Packet Pointer Diagram

	9.6.3.4 Descriptor Type 0001_1: AES-CCM for WiMax
	Table 25. Descriptor Format Summary for AES-CCM for WiMax
	Table 26. Descriptor Header values for WiMax with AES-CCM

	9.6.3.5 AES-CCM for WiMax encrypt
	Figure 20. AES-CCM Encrypt

	9.6.3.6 AES-CCM for WiMax decrypt
	Figure 21. AES-CCM Decrypt

	9.6.4 Descriptor Type 0010_1: SRTP
	Table 27. SRTP Descriptor Format Summary
	Table 28. AES Context Registers for SRT versus CTR Mode
	9.6.4.1 Descriptor Type 0010_1 SRTP Outbound
	Figure 22. SRTP Outbound Packet Pointer Diagram
	Figure 23. SRTP Outbound Descriptor Format

	9.6.4.2 Descriptor Type 0010_1 SRTP Inbound
	Figure 24. SRTP Inbound Packet Pointer Diagram
	Figure 25. SRTP Inbound Descriptor Format

	9.7 SSLv3.1/TLS1.0 Processing
	9.7.1 Out-Bound TLS Descriptor 1
	Table 29. Out-Bound TLS Descriptor 1

	9.7.2 Out-Bound TLS Descriptor 2
	Table 30. Out-Bound TLS Descriptor 2

	9.7.3 In-Bound TLS Descriptor 1
	Table 31. In-Bound TLS Descriptor 1

	9.7.4 In-Bound TLS Descriptor 2
	Table 32. In-Bound TLS Descriptor 2

	10 Conclusion
	11 Revision History
	Table 33. Document Revision History

	Appendix A Protocol Examples
	A.1 3DES_CBC_ENC
	A.2 AES_CCM_ENC
	A.3 HMAC_MD_5 Out
	A.4 3DES_HMAC_SHA_1
	A.5 RSA_SSTEP
	A.6 IPSec_ESP
	A.7 AES_CCM
	A.8 SRTP
	A.9 ARC4

