
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Freescale Semiconductor
Application Note

The MPC8548 PowerQUICC™ III processor features a 1x/4x
serial RapidIO interface. This document provides guidelines for
basic use of this interface, starting with local and remote
processors setup with basic verification and discovery. It then
describes booting over RapidIO and conducting simple data
transfer tests.

Most of this document applies to any PowerQUICC III system
enabled for serial RapidIO. However, the concepts are illustrated
with a few device-specific examples.

AN2932
Rev. 0, 12/2005

Contents

1 Introduction.. 2
2 RapidIO Basics .. 3
3 Bring-up Procedure .. 8
4 Output from Example Application 39
5 References .. 48

Appendix A:
Notes on Maintenance Transactions...........................49
A.1 Terminology ..49
A.2 Example 1: 4 Mbyte Maintenance Window50
A.3 Example 2: 4 Kbyte Maintenance Window50
A.4 Maintenance Transactions Within

Multi-Switch Systems51

Serial RapidIO Bring-Up
Procedure on PowerQUICC™ III
by Lorraine McLuckie and Colin Cureton

NCSD Platforms, East Kilbride

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

2 Freescale Semiconductor

Introduction

1 Introduction
This document assists engineers in using the serial RapidIO interface on the MPC8548 PowerQUICC III processor.
After summarizing basic aspects of the RapidIO specification, it describes a procedure to bring up simple RapidIO
systems, including setting up the local processor, simplified discovery, booting over RapidIO, and executing simple
memory reads/writes to the remote processors.

The following acronyms and terms are used throughout this application note.

Table 1. Glossary of Terms

Term Description

ATMU Address translation and mapping unit

BAR Base address register

CAR Capability attribute register

CCSR Configuration, control and status registers

CCSRBAR CCSR base address register

CSR Capability status register

DDR SDRAM Double data rate SDRAM

DIDCAR Device identity capability register

DMA Direct memory access

EEPROM Electrically erasable programmable read only memory

HBDIDLCSR Host base device lock ID CSR

I/O Input/Output

JTAG Joint test access group

LAW Local access window

LP-LVDS Link protocol, low voltage differential signaling

MAS MMU assist register

MMU Memory management unit

PowerQUICC III MPC85xx networking and communications processor

R/W Read/Write

RIO RapidIO

RIW RapidIO inbound window

ROW RapidIO outbound window

SBTG Software bring-up technical group

SDRAM Synchronous dynamic random access memory

SPR Special-Purpose Register

SRIO Serial RapidIO

TLB Translation lookaside buffer

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 3

RapidIO Basics

2 RapidIO Basics
The RapidIO interconnect architecture is a high-performance packet-switched interconnect technology. It addresses
the high-performance embedded industry’s need for reliability, increased bandwidth, and faster bus speeds in an
intra-system interconnect. The RapidIO interconnect allows chip-to-chip and board-to-board communications. This
section summarizes information from the RapidIO specification. For details, consult the RapidIO Interconnect
Specification [1].

2.1 RapidIO Layers
The RapidIO specification is written in layers, as follows, to ensure flexibility and modularity so that changes to one
layer do not necessarily affect other layers:

• Logical layer. Defines the overall protocol and packet formats, the types of RapidIO transactions, and
addressing. The logical layer is split into several categories depending on the system model:

— Input/output logical specification that defines the basic system architecture of RapidIO.

— Message passing logical specification that enables distributed I/O processing.

• Transport layer. Describes routing as packets move from one point to another.

• Physical layer. Defines the device-level interface such as packet transport mechanisms, flow control,
electrical characteristics, and low-level error management.

This application note concentrates on the input/output logical specification. The RapidIO block implements the
1x/4x serial RapidIO physical layer.

2.2 Processing Element Models
Several types of devices can be used in a RapidIO based system. Only two device model types are described here:
the integrated processor-memory processing element and the switch processing element.

2.2.1 Integrated Processor-Memory Processing Element
One form of the processor-memory processing element is a fully integrated component that connects to a RapidIO
interconnect system as shown in Figure 1. This type of device integrates a memory system and other support logic
with a processor core on the same piece of silicon, or within the same package, and is one example of a RapidIO
end-point. In this note, the processing element is an MPC8548 device.

Figure 1. Integrated Processor-Memory Processing Element

ProcessorMemory

RapidIO Based

System Interconnect

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

4 Freescale Semiconductor

RapidIO Basics

2.2.2 Switch Processing Element
A switch processing element allows communication with other processing elements through a switch. A switch can
connect a variety of RapidIO-compliant processing elements. Behavior of the switches, and the interconnect fabric
in general, is addressed in the RapidIO Common Transport Specification [1]. In this note the switch processing
element used is the Tundra Tsi568 Serial RapidIO switch [3].

Figure 2. Switch Processing Element Model

2.2.3 CAR/CSR Block
The RapidIO specification defines a block of capability attributes registers (CARs) and command and status
registers (CSRs) on each RapidIO device. These CAR/CSR registers are accessed using maintenance transactions,
and they are used to configure a device across RapidIO. Each register has a maintenance offset used in the
maintenance transaction to select the register to be accessed. Table 2 shows an extract from the list of CAR/CSR
registers and their offsets. For details, consult the RapidIO specifications [1] or the MPC8548E PowerQUICC III™
Integrated Host Processor Family Reference Manual.

2.2.4 RapidIO Transactions
In the logical layer, RapidIO defines a broad range of transaction types, ranging from simple transactions to access
an agent device’s memory space to user-defined and implementation-dependent transactions. Each RapidIO
transaction has a source and destination ID. The RapidIO specification defines two transport modes: large and small.
In a small transport systems, source and destination IDs are 8 bits, and therefore a system can consist of up to 256
devices. In a large transport system, with 16-bit source and destination IDs, up to 65,536 devices can be supported.
In this discussion, there are three different classes of requests and their associated responses. A request is a
transaction issued by a processing element to accomplish an activity on a remote processing element.

Table 2. Extract from the table of CAR/CSRs

Offset Register Name

0x00 Device Identity CAR

0x04 Device Information CAR

0x08 Assembly Identity CAR

0x0C Assembly Information CAR

0x10 Processing Element Features CAR

0x14 Switch Port Information CAR

Switch

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 5

RapidIO Basics

The three transactions types are as follows:

• Maintenance transaction. A special system support request. by a processing element to read or write data
to CARs and CSRs, as defined in the RapidIO specification [1, 4]. Instead of addresses, maintenance
requests use an offset into the CAR/CSR block to specify the register to be read or written. Maintenance
transactions are used for system initialization and discovery and for altering system configuration.

Figure 3. Maintenance Transaction

• NREAD transaction. A processing element uses a read transaction, consisting of the NREAD request and
corresponding RESPONSE, to read data from a specified address. The data is returned in a response packet
and is of the size requested.

Figure 4. NREAD Transaction

• NWRITE/NWRITE_R transaction. A processing element uses a write transaction to write data to a specified
address. The write transaction can take several forms including NWRITE and NWRITE_R. The NWRITE
request allows data writes, with no expected response, as shown in Figure 5.

Figure 5. NWRITE Transaction

NWRITE_R (write with response) transaction. Identical to the NWRITE transaction except that it requires
a response to notify the sender that the write has completed at the destination, as shown in Figure 6. This
transaction is useful for guaranteeing read-after-write and write-after-write ordering through a system that
can reorder transactions.

Figure 6. NWRITE_R Transaction

1. Maintenance Request

DestinationRequestor

2. Maintenance Response

DestinationRequestor

1. NREAD

2. Response, data

DestinationRequestor

1. NWRITE, data

DestinationRequestor

1. NWRITE_R, Data

2. Response

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

6 Freescale Semiconductor

RapidIO Basics

2.3 Serial RapidIO on the MPC8548
This section describes the implementation of RapidIO on MPC8548 devices, including other MPC8548 modules
(for example, the MMU) that must be considered in the use of RapidIO. The MPC8548 1x/4x serial interface
conforms to the RapidIO Interconnect Specification [1]. This RapidIO interface operates at up to 3.125Gbaud
(unidirectional data rate 2.5Gbps, per lane).

The MPC8548 RapidIO controller is partitioned into inbound and outbound blocks, which are further divided into
three implementation layers that loosely correspond to the logical, common transport, and physical layers of the
RapidIO interconnect specification. Users access the RapidIO interface mainly at the logical and transport layers.
The user does not directly control the physical layer.

The MPC8548 RapidIO implementation has a messaging unit that implements Part II of RapidIO Interconnect
Specification.[1]. For details, see Freescale application note AN2923, Using the Serial RapidIO Messaging Unit on
PowerQUICC III5. Other Freescale devices implement the 8-bit parallel RapidIO, and there are separate application
notes on the operation of these devices [6, 7].

2.3.1 Mapping Memory to the RapidIO Interface
Because accesses to the RapidIO interface are memory-mapped, we must consider not only the specifics of the
RapidIO interface but also the way memory accesses are redirected to the RapidIO interface.

2.3.1.1 Memory Management Unit
The MPC8548 supports demand paged virtual memory, as well as other memory management schemes that depend
on precise control of effective-to-physical address translation and flexible memory protection. The memory
management unit (MMU) uses software managed translation lookaside buffers (TLBs) that support variable-size
pages, with per-page properties and permissions.

Although the MMU is not part of the RapidIO interface, it must be notified of any memory area that is translated to
any interface, including RapidIO. Before RapidIO transactions are attempted, there must be a TLB entry to cover
the area of the memory map used for RapidIO transactions. This entry can be initialized by a bootloader or a
debugger. However, if a TLB entry is not initialized to cover the RapidIO region of the memory map, the bring-up
software must do this.The TLB is initialized by the MMU assist (MAS) registers, which are initialized with
information on the TLB entry (for example the required address range, size, and permissions). The tlbwe instruction
is used to write the information into the TLB.

2.3.1.2 Local Memory Map and Local Access Windows
The MPC8548 local memory map refers to the address space from the processor and the internal DMA engines as
they access memory and I/O space. In this map are memory-mapped configuration, control and status registers, and
all memory accessible to the DDR SDRAM, local bus memory controllers, and other interfaces.

All addresses used by the system except configuration space (mapped by CCSRBAR), and the internal SRAM
regions (mapped by L2SRBAR), must be mapped by a local access window (LAW). The local access windows are
not specific to RapidIO, but they must cover the area of memory used to generate RapidIO transactions. The LAW
is initialized by the bootloader, the debugger, or the bring-up software. If a LAW is not used, the bring-up software
must cover the region of the memory map used for RapidIO. A set of 10 local access windows define the local
memory map. Each local window maps a region of memory to a particular target interface, such as the DDR
SDRAM controller or the RapidIO controller. The LAWs do not handle address translation. Each window can be
configured from 4 Kbytes to 32 GBytes.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 7

RapidIO Basics

2.3.2 RapidIO ATMU (Address Translation and Mapping Unit)
The MPC8548 RapidIO controller is partitioned into outbound and inbound blocks. The outbound block uses
RapidIO outbound windows (ROWs) to translate an address from the local address space to that of RapidIO. The
inbound block uses RapidIO inbound windows (RIWs) to translate an address from the external address space of
RapidIO to the local address space for the internal interfaces.

2.3.2.1 RapidIO Outbound ATMU Windows
RapidIO outbound ATMU windows (ROWs) map the 36-bit internal address space to the 34-bit RapidIO address
space. ROWs also attach attributes such as transaction type and priority level. There are nine RapidIO outbound
ATMU windows (0–8). Window 0 is always enabled and is the default window if the address does not match one of
the other eight.

Each window can be divided into 2 or 4 segments of equal size. Each segment assigns attributes and the device ID
for an outbound transaction, but each segment within a window translates to the same translation address. Each
segment can be further sub-divided into 2, 4, or 8 subsegments of equal size. These subsegments allow a single
segment to target a number of numerically adjacent target device IDs, using the same attributes and the same address
translation.

NOTE

Errata in early MPC8548 silicon prevents the use of segmented windows.
Therefore, although the correct operation of the segments is described in this
document, they are not used in the example software.

The default RapidIO outbound window is defined by three registers:

• Translation address register (ROWTARn). Contains the RapidIO base address to which these transactions
are translated. ROWTAR takes one of two formats depending on the type of transaction. For regular
transactions (such as NREAD, NWRITE, and NWRITE_R) it contains the device ID of the target and bits
0–21 of the translated address. For maintenance transactions without an address, ROWTAR contains the
device ID of the target, the hopcount, and the upper bits of the maintenance offset into the CAR/CSR block.

• Attributes register (ROWARn). Contains information on the window (for example, its size) and the types of
transactions that are generated by it (for example, NWRITE, NWRITE_R, or maintenance write).

• Base address register (ROWBARn). Contains the base address of the window in the local memory address
space. There is no ROWBAR for the default window.

In addition, each window has a set of segment registers (ROWSxRn) to define the attributes of each segment. For
details on these registers, and their bit definitions, see Section 3, “Bring-up Procedure.”

In regular transactions, the RapidIO address is created by concatenating the translation address in the ROWTAR
with the transaction offset (that is, the offset of the transaction from the base address of the ROW). With the
maintenance transactions, the maintenance offset is created from a combination of the 12-bit configuration field in
the ROWTAR and the transaction offset. Further information on the operation of the maintenance window can be
found in Appendix A

2.3.2.2 RapidIO Inbound ATMU Windows
RapidIO inbound ATMU windows (RIWs) translate addresses from the 34-bit external RapidIO address space to the
36-bit internal address space. These inbound ATMU windows also attach attributes such as transaction type and
target interface to the transaction. There are five inbound ATMU windows (0–4). Window 0 is always enabled and
is the default window if the address does not match one of the other four windows.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

8 Freescale Semiconductor

Bring-up Procedure

The default RapidIO inbound window is defined by three registers:

• Translation address register (RIWTARn).Contains the local base address to which the transactions are
translated.

• Attributes register (RIWARn). Contains information on the window (size, for example) and what should be
done with the transactions received through it (for example, snoop or not snoop local processor).

• Base address register (RIWBARn). Contains the base address of the window in RapidIO address space.
There is no RIWBAR for the default window.

2.3.2.3 Inbound ATMU Local Configuration Space Window
An additional inbound window can be used by external RapidIO devices to access the local configuration, control
and status registers (CCSR) memory.2 The base address of this 1 Mbyte window is defined in the local configuration
space base address 1 command and status register (LBSBA1CSR). Incoming RapidIO reads and writes that match
this window are redirected, at the same offset, into the CCSR area. This local configuration space window has the
highest priority for incoming translation.

2.4 Example Target Hardware
This section describes the system referenced in the examples presented in Section 3, “Bring-up Procedure.” The
system either runs a bootloader and then the bring-up application is downloaded and run from this bootloader, or the
system is initialized by a debugger and the code is downloaded and run across JTAG. Here, it is assumed that most
system setup and initialization (for example, CCSRBAR, DDR, and Flash) is complete. No assumptions are made
about the initialization of the RapidIO interface.

The fabric-based system in the example has an AMC carrier card featuring a Tundra Tsi568 serial RapidIO switch3
and a number of MPC8548 AMC cards. The Tsi568 is a 16 port (x1) or 8 port (x4) RapidIO switch. In the example
hardware, only three ports are routed to the AMC connectors. Any SRIO-capable AMC cards can be inserted into
the AMC connectors. For simplicity, we assume that only MPC8548 boards are to be inserted. In the flexible
hardware architecture depicted in Figure 7, several MPC8548 devices can connect to a single Tsi568. Only one of
these processors can be configured as a RapidIO host, and this device has a device ID of 0x0. All other processors
in the system are configured as RapidIO agents and have an initial device ID of 0xFF. The agent devices can be
configured to boot from their local Flash memory devices or from RapidIO. The boot image on the Flash memory
device connected to the host processor can be used to boot the host and/or the agent devices. This 4 Mbyte boot
image is at addresses 0xFFC0_0000–0xFFFF_FFFF.

3 Bring-up Procedure
The procedure to bring up basic RapidIO capability on a MPC8548 system may not apply to all systems. An
application using this procedure was created and tested on the hardware system described in Section 2.4, “Example
Target Hardware.” This procedure executed on the host to discover and bring up the other elements in the system.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 9

Bring-up Procedure

Figure 7. Fabric-Based Hardware and Example Configuration

The subsections that follow are organized around five overall steps in the bring-up procedure:

1. Configure the local processor.

Configure and check the local processor before generating any RapidIO traffic. Set up a TLB entry, set up
a local area window, check lane synchronization and alignment, and set up a maintenance window.

2. Discover all other devices in the system.

Using only maintenance transactions, identify adjacent devices, set up a switch, and discover other
endpoints. Assume limited flexibility in the configuration of the system (as described in Section 2.4,
“Example Target Hardware”). This step does not satisfy all requirements of the RapidIO SBTG
documentation [4].

3. Enable access to remote configuration space.

Enable the local processor (host) to access the local configuration space of the remote device (agent). Set
up the incoming window on the agent that redirects RapidIO transactions to the local configuration space,
and set up an outbound window on the host to map outgoing transactions onto that window.

4. Boot over RapidIO.

Configure an agent to boot over RapidIO, that is, to boot from Flash memory attached to host. Set up an
inbound window on the host to capture the incoming boot reads, and configure and release the agent to
execute its boot procedure.

5. Enable memory reads and writes.

Enable host access to agent memory space. Set up the outbound window on the host and the inbound
window on the agent.

Restrictions on software operation that cause the system to halt and report the findings to the user are as follows:

• This software operates on a small transport mode RapidIO system.

• All devices are MPC8548 or Tsi568 only.

MPC8548
Device ID 0x00
RapidIO Host

Flash
memory

MPC8548
Device ID 0xFF
RapidIO Agent

Flash
memory

MPC8548
Device ID 0xFF
RapidIO Agent

Flash
memory

PORT0 PORT2
PORT1 PORT3

PORT4 PORT6
PORT5 PORT7

PORT8 PORT10
PORT9 PORT11

PORT12 PORT14
PORT13 PORT15

Tsi568 AMC carrierMPC8548 AMC

MPC8548 AMC

MPC8548 AMC

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

10 Freescale Semiconductor

Bring-up Procedure

• No more than one Tsi568 can be found.

• The software runs on a host with device ID 0.

• All other processors in the system are agents with an initial device ID of 0xFF.

• The software allocates device ID 1 and 2 to any other processors it discovers.

• The software does not find any more than two agent devices.

Figure 8. Procedure for Bringing Up a Simple RapidIO System

Set up a Local Area Window

Check Lane Sync. and Alignment

Set Up Maintenance Window

Identify Adjacent Device

If Endpoint If Switch

Discover Adjacent Device Configure Switch

Discover Additional Devices

Set Up Host ROW for Access to Remote Configuration

Set Up Inbound LCS Window on Agent

Set Up Host RIW for Incoming Boot Reads

Set Up Agent ROW for Outgoing Boot Reads

Release Agent to Boot over RapidIO

Set Up Host ROW for Memory R/W

Set Up Agent RIW for Memory R/W

Execute Reads/Writes to Agent

Set up a TLB Entry

Configure the
Local Processor

Discover
other Devices
in the System

Enable Access
to Remote

Configuration
Space

Boot over
RapidIO

Enable Memory
Reads and Writes

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 11

Bring-up Procedure

3.1 Configure the Local Processor
Before RapidIO traffic can be generated, several steps must be completed on the local (host) processor.

3.1.1 Set up a TLB Entry
The first step is to set up a TLB entry to cover the area of memory used for RapidIO accesses, which may or may
not be necessary, depending on the configuration set by the bootloader or debugger. This example presents the
minimum configuration for a 256 Mbyte entry covering address range 0x0_C000_0000–0x0_CFFF_FFFF. This area
is used throughout the examples to access RapidIO. Entry 3 of TLB1 is used, but any unused entry in TLB1 can be
used (some entries are used by bootloader/debugger configuration to cover CCSR, Flash, DDR and so on).

The TLB entry is created by initializing the relevant MAS registers with information on the area of memory and then
loading this information into the TLB. MAS registers are special-purpose registers that are initialized using the
mtspr instruction. For example, to load the value required into MAS0 (SPR 0x270), use the following sequence:

asm(“lis 3, 0x1003”);

asm(“ori 3, 3, 0x0000”);

asm(“mtspr 0x270, 3”);

3.1.1.1 Initialize MAS0

Figure 9. MAS0 Setting for RapidIO Mapping

MAS0 contains the MMU Read/Write and replacement control. Table 3 lists the settings for the example.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field —
TLB
SEL

— ESEL

Setting 0x1 0x00 0x3

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field — NV

Setting 0x000 0x0

Table 3. MAS0 Field Descriptions and Settings

Bits Name Description and Setting

35 TLBSEL Selects TLB for access

1 TLB1

44–47 ESEL Entry select. Number of entry in selected array to be used for tlbwe. This field is also updated on
TLB error exceptions (misses), and tlbsx hit and miss cases.

0011 This becomes entry 3.

63 NV Next victim. Next victim bit value to be written to TLB0[NV] on execution of tlbwe. This field is also
updated on TLB error exceptions (misses), tlbsx hit and miss cases and on execution of tlbre.

0 A next victim has not been identified.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

12 Freescale Semiconductor

Bring-up Procedure

3.1.1.2 Initialize MAS1

Figure 10. MAS1 Setting for RapidIO Window

MAS1 contains the descriptor context and configuration control. The settings in the example have the definitions
listed in Table 4.

3.1.1.3 Initialize MAS2
I

Figure 11. MAS2 Setting for RapidIO Window

MAS2 contains the effective page number and page attributes. The settings in this example have the definitions
listed in Table 5.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field V IPROT — TID

Setting 0x8 0x0 0x00

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field — TS TSIZE —

Setting 0x0 0x9 0x00

Table 4. MAS1 Field Descriptions and Settings

Bits Name Description and Setting

32 V TLB valid bit

1 This TLB entry is valid.

33 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations due to the execution of
tlbiva[x] (TLB1 only).

0 Entry is not protected from invalidation

40–47 TID Translation identity. An 8-bit field that defines the process ID for this TLB entry.

All zeros. It is a global entry and can be used by any process.

51 TS Translation space. This bit is compared with the IS or DS fields of the MSR (depending on the type
of access) to determine if this TLB entry may be used for translation.

0 Bit is not set.

52–55 TSIZE Translation size. Defines the TLB entry page size.

1001 This entry has a page size of 256 Mbytes

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field EPN

Setting 0xC000

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field EPN — X0 X1 W I M G E

Setting 0x0 0x008

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 13

Bring-up Procedure

3.1.1.4 Initialize MAS3

Figure 12. MAS3 Setting for RapidIO Window

MAS3 contains the real page number and access control. The settings in the example have the definitions listed in
Table 6.

Table 5. MAS2 Field Descriptions and Settings

Bits Name Description and Setting

32–51 EPN Effective page number. Depending on page size, only the bits associated with a page boundary are
valid. Bits that represent offsets within a page are ignored and should be cleared.

0xC0000 Effective address of this space starts at address 0xC000_0000

57 X0 Implementation-dependent page attribute

0

58 X1 Implementation-dependent page attribute

0

59 W Write-through

0 This page is considered write-back with respect to the caches in the system.

60 I Caching-inhibited

1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches
and are performed directly to main memory.

61 M Memory coherence required

0 Memory coherence is not required.

62 G Guarded

0 Accesses to this page are not guarded and can be performed before it is known if they are
required by the sequential execution model.

63 E Endianness. Determines endianness for the corresponding page.

0 The page is accessed in big-endian byte order.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field RPN

Setting 0xC000

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field RPN — U0-U3 UX SX UW SW UR SR

Setting 0x0 0x03F

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

14 Freescale Semiconductor

Bring-up Procedure

3.1.1.5 Initialize MAS7

Figure 13. MAS7 Setting for RapidIO Window

MAS3 contains the real page number and access control. The settings in the example have the definitions listed in
Table 7.

Table 6. MAS3 Field Descriptions and Settings

Bits Name Description and Setting

32–51 RPN Real page number.

0xC0000 The real address of this space starts at 0x0_C000_0000.

The higher order bits of the 36-bit effective page number are contained in MAS7.

54–57 U0-U3 User attribute bits. Associated with a TLB entry and can be used by system software.

All zeros

58 UX Permission bit.

1 User mode has execute permission.

59 SX Permission bit.

1 Supervisor mode has execute permission.

60 UW Permission bit.

1 User mode has write permission.

61 SW Permission bit.

1 Supervisor mode has write permission.

62 UR Permission bit.

1 User mode has read permission.

63 SR Permission bit.

1 Supervisor mode has read permission.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field -

Setting 0x0000

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field RPN

Setting 0x000 0x0

Table 7. MAS7 Field Descriptions and Settings

Bits Name Description and Setting

60-63 RPN Higher order bits of the Real page number.

0x0 The real address of this space starts at 0x0_C000_0000.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 15

Bring-up Procedure

3.1.1.6 Load Information into the TLB
Finally, execute a sync instruction to ensure that all the MAS registers are written, a tlbwe instruction to load the
information into the TLB, and a final sync to ensure that the TLB entry is created. For example:

asm(“sync”);

asm(“tlbwe”);

asm(“sync”);

3.1.2 Set Up a Local Area Window
We set up a local area window (LAW) to redirect memory accesses within a certain address range to the RapidIO
interface. Whether this step is necessary depends on the configuration set by the bootloader or debugger. In the
example, the LAWBAR and LAWAR registers are configured to ensure that a 256 Mbyte block of memory space
covering address range 0x0_C000_0000–0x0_CFFF_FFFF is redirected to the RapidIO interface. The LAW
registers are memory-mapped within the CCSR area, so they can be read and written using standard memory reads
and writes.

3.1.2.1 Set LAWBAR

Figure 14. LAWBAR Register for RapidIO Window

The local area window base address (LAWBAR) sets the base address of this window. The setting in the example
has the following definition:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BASE_ADDR

Setting 0x00 0x0C

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BASE_ADDR

Setting 0x0000

Table 8. LAWBAR Field Description and Setting

Bits Name Description and Setting

12–31 BASE_ADDR Identifies the 24 most-significant address bits of the 36-bit base address of local access window n.

0x0C0000 The address of this space starts at 0x0_C000_0000.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

16 Freescale Semiconductor

Bring-up Procedure

3.1.2.2 Set LAWAR

Figure 15. LAWAR Record for RapidIO Window

The local area window attributes register (LAWAR) enables this window, sets the interface to which the transactions
are directed, and sets the size of the window. The settings in the example have the definitions presented in Table 9

3.1.3 Check Lane Synchronization and Alignment
Before creating any RapidIO traffic, we must ensure that the RapidIO interface is successfully synchronized with
the adjacent device,4 which is indicated in the error and status command and status register (ESCSR). The
ESCSR[PO] bit indicates that the input and output ports are initialized and are exchanging error free control symbols
with the attached device. This bit must be set before the RapidIO interface is used. To determine whether the
RapidIO port is initialized in 1x or 4x mode, we can check the control command and status register (CCSR). The
CCSR[IPW] field indicates the width of the initialized RapidIO port.

3.1.4 Set Up Maintenance Window
After checking synchronization and initialization, we create a RapidIO outbound window to generate RapidIO
maintenance transactions. In this example, a single maintenance window is created and used to issue maintenance
reads and writes to all the elements of the system. The ROWBAR, ROWTAR, and ROWAR registers are configured
to initialize a 4 Mbyte RapidIO window at the very bottom of the area of the RapidIO space, that is,
0x0_C000_0000–0x0_C040_0000. Reads and writes within this window then generate RapidIO maintenance read
and write transactions.

In maintenance transactions, the lower-order bits of the maintenance offset are taken from the offset into the
maintenance window, but the higher-order bits are taken from the contents of the ROWTAR. Refer to Appendix A
for details on the operation of the maintenance windows and the calculation of the maintenance offsets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TRGT_IF —

Setting 0x80 0xC 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — SIZE

Setting 0x00 0x1B

Table 9. LAWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN 1 Window is enabled.

8–11 TRGT_IF Identifies the target interface ID when a transaction hits in the address range defined by this window.

0xC Target interface is RapidIO.

26–31 SIZE Identifies the size of the window from the starting address.

0x1B Window size is 256 Mbytes.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 17

Bring-up Procedure

3.1.4.1 Set ROWBAR

Figure 16. Maintenance Window ROWBAR Register

The base address register (ROWBAR), defines the start address of the window. The settings in the example are
defined in Table 10.

3.1.4.2 Set ROWAR

Figure 17. Maintenance Window ROWAR Settings

The attributes register defines attributes of the transactions created by this window; including the priority and
transaction types. It also defines the size of the window. The settings in the example are defined in Table 11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXTADD BADD

Setting 0x00 0x0 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x0000

Table 10. ROWBAR Field Description and Setting

Bits Name Description and Setting

8-11 BEXTADD Window base extended address, bits 0–3 of 36-bit base address

0x0 Extended addressing is not used

12–31 BADD Base address of outbound window, bits 4-23 of the 36-bit base address. Source address that is
the starting point for the outbound translation window.

0xC0000 Window starts at address 0x0_C000_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — NSEG NSSEG RDTYP

Setting 0x80 0x0 0x7

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x7 0x0 0x13

Table 11. ROWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable.

1 This RapidIO outbound window is enabled.

4–5 TFLOV Transaction flow level priority of transaction

00 Lowest-priority transaction request flow.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

18 Freescale Semiconductor

Bring-up Procedure

3.1.4.3 Set ROWTAR

Figure 18. Maintenance Window ROWTAR Settings

The RapidIO outbound window translation address register (ROWTAR) defines the starting address in RapidIO
space for hits in this window. The ROWTAR takes different forms for different transaction types. For maintenance
transactions, it is of the form shown here. In the example, the settings are defined as shown in Table 12.

NOTE
This is just an initial value for the ROWTAR. Users must ensure that the ROWTAR
contains the correct destination ID, hopcount, and offset value for their transaction.

For details on the operation of the maintenance window, refer to Appendix A.

6 PCI Follow PCI transaction ordering rules

0 Do not follow PCI transaction ordering rules.

8-9 NSEG Number of segments in this window

0 Single-segment (normal) window.

10-11 NSSEG Number of subsegments per segment

0 No subsegments.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.

0x7 Maintenance read.

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if access is a write

0x7 Maintenance write.

26–31 SIZE Outbound window size.

0x13 One Mbyte.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x3FC 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0x0 0x000

Table 12. ROWTAR Field Descriptions and Settings

Bits Name Description and Setting

2–9 TRGTID 0xFF Target ID for RapidIO Packet

12–19 HOP_COUNT All zeros. Hop count of maintenance transaction

20–31 CFG_OFFSET All zeros. Upper bits of maintenance offset.

Table 11. ROWAR Field Descriptions and Settings (continued)

Bits Name Description and Setting

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 19

Bring-up Procedure

3.2 Discover Other Devices in the System
This application note does not cover all requirements of the discovery process described in the RapidIO
specifications [4]. It provides examples of simplified discovery processes for use with simple systems (that is, with
only one host, and not more than one switch). The target hardware system is described in Section 2.4, “Example
Target Hardware.”

3.2.1 Identify Adjacent Device
The first RapidIO transaction to be executed is a maintenance read to the device identity capability register
(DIDCAR) of the adjacent device. The DIDCAR, at maintenance offset 0x00, contains a device identity field and a
device vendor identity field. The RapidIO consortium maintains a list of the assigned values. Therefore, reading this
register enables the identification of the adjacent device. This maintenance transaction is achieved by executing a
read instruction within the area covered by the maintenance window. The attributes of this read are as follows:

• Destination ID = 0xFF. The RapidIO specifications state that non-boot-code and non-host devices should
initially have a device ID of 0xFF.4

• Hopcount = 0x00. Adjacent device should initially be accessed with hopcount 0.

• Maintenance offset = 0x00.

The returned DIDCAR value should then be compared to the list of DIDCAR values of all devices recognized by
the application. If the adjacent device is a processor (for example, a MPC8548), the application should directly
discover that processor. If the adjacent device is a switch (for example a Tsi568 switch), this switch must be correctly
configured before proceeding with the discovery of the processors beyond it. For the example hardware, the adjacent
device is a Tsi568 serial RapidIO switch.

3.2.2 Initial Configuration of Switch

This section describes the configuration of the Tsi568 RapidIO switch. Steps may need to be added, removed, or
changed for other RapidIO switches.

3.2.2.1 Check Switch Port
We must determine the number of ports on the switch and the port to which the device running the bring-up
application is connected. In the Tsi568 switch example, we read the switch port information CAR(RIO_SW_PORT).
See Figure 19. A read from this register returns the number of ports on the device and the number of the port from
which this register was read. The maintenance read has the following attributes:

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x14 Switch port information CAR is at offset 0x14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Reserved

Setting 0x0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field PORT_TOTAL PORT_NUM

Setting 0x10 Undefined.

Figure 19. Format of Tsi568 RIO_SW_PORT Register

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

20 Freescale Semiconductor

Bring-up Procedure

3.2.2.2 Read Back the Switch HBDIDLCSR
Each RapidIO device has a register (HBDIDLCSR) containing the device ID of the element in the system that
configures it. See Figure 20. This register provides a locking mechanism, and an element should proceed to
configure a device only if it gains the lock. The HBDIDLCSR of the switch can be read using a maintenance read
with the following attributes:

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch

• Maintenance offset = 0x68. HBDIDLCSR is at offset 0x68

If the agent is not locked, the default value of this HBDIDLCSR is 0x0000_FFFF. If a read of HBDIDLCSR yields
any other value, the device is already locked, and the mechanism to deal with this situation is beyond the scope of
this application note.

3.2.2.3 Lock HBDIDLCSR of Switch
To identify the processor running this application as the device that initializes the switch, its device ID is written into
the switch HBDIDLCSR using a maintenance write with the following attributes:

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x68, Offset to HBDIDLCSR

3.2.2.4 Confirm that Switch Has Accepted Lock
The HBDIDLCSR is read to confirm that it is updated with the ID of the host device. If not, the lock was not
accepted, and the host should not proceed to configure the switch. Rejection of the lock suggests that there is another
host in the system, which is beyond the scope of this discussion. Refer to the interoperability specification for the
bring-up requirements for multi-host systems [4]. The HBDIDLCSR can be read using a maintenance read with the
following attributes:

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x68, Offset to HBDIDLCSR

3.2.2.5 Route Responses Back to Host
To ensure that responses issued by the processors beyond the switch are correctly routed to the requesting processor,
we must initialize the routing information of the switch with that information. (Maintenance transactions to the
switch are always routed back to the port from which they were received). The Tsi568 maintains an independent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Setting 0x0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HBDID

Setting 0xFFFF

Figure 20. Format of the HBDIDLCSR

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 21

Bring-up Procedure

look-up table for each port of the switch, so we can create different routing information on a per-port basis. However,
it can also update all routing tables simultaneously using an indirect read/write mechanism. In this example, the
routing tables for all ports are identical, and the indirect read/write mechanism is used. Figure 21 and Figure 22 show
the RIO_ROUTE_CFG_DESTID and the RIO_ROUTE_CFG_PORT registers, which are used to update the
routing tables for the whole device.

Figure 21. RIO_ROUTE_CFG_DESTID

Figure 22. RIO_ROUTE_CFG_PORT

For example, if the host processor was connected to port 2, all packets bound for device ID 0 should be directed to
port 2. The routing tables are updated with this information in 2 maintenance writes. First, write the device ID to be
updated, in this case 0x00, to the RIO_ROUTE_CFG_DESTID using a maintenance write with the following
attributes.

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x70

Then write the number of the port to which packets for this device should be directed (in this case 0x02), to the
RIO_ROUTE_CFG_PORT using a maintenance write with the following attributes.

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x74

3.2.3 Discover the Devices Beyond the Tsi568 Switch
The next step is to identify which devices are connected to the other ports of the RapidIO switch. If any of these
devices is another switch, or another RapidIO host it is beyond the scope of this simple application. Further details
of how to discover systems with multiple hosts, or multiple switches can be found in the interoperability
specification.4 The example scenario is simplified by the assumption that there is only one switch, and all other

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field -

e.g 0x0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field LRG_CFG_DEST_ID CFG_DEST_ID

e.g. 0x00 0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field -

e.g. 0x0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field - PORT

e.g. 0x00 0x02

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

22 Freescale Semiconductor

Bring-up Procedure

processors are configured as RapidIO agents. The following steps should be executed for each of the ports on the
switch (with the exception of the port to which the processor running this application is attached).

3.2.3.1 Check Lane Synchronization and Alignment on Port N
Ensure that the port under investigation (port n) is initialized. If it is not initialized, then the remaining steps are
omitted for this iteration. In the Tsi568 switch example, each of the ports has an error and status CSR
(SPn_ERR_STAT). SPn_ERR_STAT[PORT_OK] can be examined to determine if each port has successfully
completed the RapidIO lane synchronization and alignment procedure with an adjacent device.1 This maintenance
transaction has the following attributes:

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x158 (port0), 0x178 (port1), 0x198 (port2),....0x338 (port15)

3.2.3.2 Route Packets for Device ID 0xFF to Port N
The agents initially have a device ID of 0xFF. The routing table must be updated to ensure that packets with this
destination are directed to the port under investigation using the indirect routing update mechanism described in
Section 3.2.2.5, “Route Responses Back to Host.” A value of 0xFF is written to the RIO_ROUTE_CFG_DESTID
and the port number is written to RIO_ROUTE_CFG_PORT. For example, packets with a destination ID of 0xFF
can be routed to port 4 by two maintenance writes. A maintenance write of 0xFF to RIO_ROUTE_CFG_DESTID
sets the destination ID for which the routing is to be changed:

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x70.

A maintenance write of N to RIO_ROUTE_CFG_PORT updates the port to which these packets will be routed.

• Destination ID = 0xXX, ID is ‘don’t care’ when accessing the first switch in the system.

• Hopcount = 0x00, Transaction applies to first switch.

• Maintenance offset = 0x74.

3.2.3.3 Read Back the DIDCAR of Device on Port N
The routing is now in place to permit access to the device connected to port n of the switch. The initial read should
be to the DIDCAR to identify the device.

Figure 23. ROWTAR Setting for Accessing DIDCAR of Device on Port N

The read of the DIDCAR is a maintenance read with the following attributes:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x3FC 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0xF 0x000

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 23

Bring-up Procedure

• Destination ID = 0xFF, accessing the agent with a destination ID of 0xFF.

• Hopcount=0xFF, transaction bypasses switch.

• Maintenance offset = 0x00, offset to DIDCAR.

3.2.3.4 Read Back the HBDIDLCSR of Device on Port N
Each RapidIO device has a register (HBDIDCSR) which contains the device ID of the element in the system which
is responsible for its configuration. This provides a locking mechanism and a device should only proceed with the
configuration of a device if it gains the lock. The HBDIDLCSR is read using a maintenance read with the following
attributes:

• Destination ID = 0xFF, accessing the agent with a destination ID of 0xFF

• Hopcount = 0xFF, transaction bypasses switch.

• Maintenance offset = 0x68, offset to HBDIDLCSR

If this device has not yet been locked, the default value for the HBDIDLCSR is 0xFFFF.

3.2.3.5 Lock HBDIDLCSR of Device on Port N
To identify the processor running this application as the initializing device, its device ID is written into the
HBDIDLCSR of the device on Port n using a maintenance write with the following attributes:

• Destination ID = 0xFF, accessing the agent with a destination ID of 0xFF

• Hopcount = 0xFF, transaction bypasses switch.

• Maintenance offset = 0x68, offset to HBDIDLCSR

3.2.3.6 Confirm that Device on Port N Has Accepted Lock
The HBDIDLCSR register is read to confirm that it is updated with the host device ID. If not, the lock was not
accepted, and the host should not further configure the device on this port. Rejection of the lock suggests that there
is another host in the system, which is beyond the scope of this example. Refer to the SBTG specification for the
bring-up requirements for multi-host systems.4

The HBDIDLCSR can be read using a maintenance read with the following attributes:

• Destination ID = 0xFF, accessing the agent with a destination ID of 0xFF.

• Hopcount = 0xFF, transaction bypasses switch.

• Maintenance Offset = 0x68, offset to HBDIDLCSR

3.2.3.7 Update the Device ID
All the agents have an initial device ID of 0xFF. After the host discovers them, the host must allocate a permanent
device ID by writing into the base device ID command and status register (BDIDCSR). See Figure 24. In the
example, the host device, connected to Port 0, has a device ID of 0x00. The host allocates device IDs in ascending
order to the agents it discovered. That is, the first agent to be discovered becomes Device ID 1, the next to be
discovered becomes Device ID 2, and so on. In the BDIDCSR, the BDID field contains the device ID required in
small transport systems, and LBDID contains the additional device ID bits required in a large transport system. The
BDIDCSR can be updated by executing a maintenance write with the following attributes:

• Destination ID = 0xFF, accessing the agent with a destination ID of 0xFF.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

24 Freescale Semiconductor

Bring-up Procedure

• Hopcount = 0xFF, transaction bypasses switch.

• Maintenance Offset = 0x60, offset to BDIDCSR

3.2.3.8 Update the Routing Table, All Ports
After the BDIDCSR is updated with the new device ID, the routing table of the switch must be updated to reflect
this information using the indirect write mechanism described in Section 3.2.2.5, “Route Responses Back to Host.”
The device ID allocated in the previous step should be written to the RIO_ROUTE_CFG_DESTID, and the number
of the port to which it connects should be written to RIO_ROUTE_CFG_PORT.

3.2.3.9 Read Back from Updated Device ID
When the device ID is set, we verify that the device can be accessed using that device ID as the destination. That is,
update the ROWTAR with the new device ID and read from the BDIDCSR with the following attributes:

• Destination ID = 0x02, 0x03, and so on. Accessing the agent with updated device ID.

• Hopcount = 0xFF, transaction bypasses switch.

• Maintenance Offset = 0x60, offset to BDIDCSR

Software should confirm that this read returns the expected value.

Figure 25. ROWTAR for Accessing BDIDCSR on Device 3

3.3 Enable Access to Remote Configuration Space
To access the local configuration (CCSR) space on a remote processor, complete the following steps:

1. On the remote processor, set up the LCSBA1CSR to accept RapidIO transactions in a certain address range.

2. On the local processor, set up an outbound window with the correct address translation into the same
range.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BDID

Setting 0x00 0xnn

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field LBDID

Setting 0xnnnn

Figure 24. Format of the BDIDCSR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x00C 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0xF 0x000

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 25

Bring-up Procedure

NOTE

When the remote access to the remote configuration space is enabled, all further
accesses to the agent devices occur by this method rather than by maintenance
transactions.

3.3.1 Set Up Inbound LCS Window on Agent
We set up the LCSBA1CSR of each of the processor to redirect RapidIO arriving at the 1 Mbyte window, starting
at RapidIO address 0x0_0100_0000, to the CCSR area by setting the LCSBA1CSR as described here.

Figure 26. LCSBA1CSR Settings

In the example, LCSBA = 0x0010 and the 1 Mbyte LCS window starts at RapidIO address 0x0_0100_0000.
(LCSBA contains the most significant 14 bits of the 34-bit address). The update of the LCSBA1CSR on the agent
is achieved using a maintenance write with the following attributes:

• Destination ID = 0x02, 0x03, and so on, depending on which agent is accessed.

• Hopcount = 0xFF, transaction bypasses switch.

• Maintenance offset = 0x5C, Offset to LCSBA1CSR.

3.3.2 Set Up Outbound Window on Host
To map outbound transactions into the address space with the appropriate destination device ID, a RapidIO outbound
window is set up on the host for each agent processor. For each device found, a 1 MByte window is set up to map
the outbound transactions to the LCSBAR on the agent. In the example, a 1 MByte window starting at address
0xc110000 is used to map RapidIO transactions to the LCS space of deviceID 1.

NOTE
We can also target multiple devices with the same translation address via a single,
segmented window. However, errata in early MPC8548 silicon prevents the use of
segments and sub-segments for targeting the same address space on multiple
devices.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — LCSBA —

Setting 0x0020

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Setting 0x0000

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

26 Freescale Semiconductor

Bring-up Procedure

3.3.2.1 ROWBAR

Figure 27. ROWBAR Settings for Remote CCSR Access

The base address register (ROWBAR), defines the start address of the window. The settings in the example are
defined in Table 13.

3.3.2.2 ROWAR

Figure 28. Remote CCSR Window ROWAR Settings

The attributes register defines attributes of the transactions created by this window. This includes the priority and
transaction types. It also defines the size of the window. The settings in the example are defined in Table 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXTADD BADD

Setting 0x00 0x0 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x1100

Table 13. ROWBAR Field Description and Setting

Bits Name Description and Setting

8-11 BEXTADD Window base extended address. Contains bits 0-3 of 36-bits address.

0x0 Extended addressing not used.

12–31 BADD Base address of outbound window. Source address that is the starting point for the outbound
translation window.

0xC1100, Window starts at address 0x0_C110_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — NSEG NSSEG RDTYP

Setting 0x80 0x0 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x5 0x0 0x13

Table 14. ROWAR Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable. Note that for ROWAR0 this bit is read-only and hardwired to 1.

1 Address translation enabled.

4–5 TFLOV Transaction flow level priority of transaction.

00 Lowest priority transaction request flow.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 27

Bring-up Procedure

3.3.2.3 ROWTAR

Figure 29. ROWTARn Settings for Remote CCSR Access

The settings in the example are defined in Table 15.

6 PCI Follow PCI transaction ordering rules.

0 Do not follow PCI transaction ordering rules.

8-9 NSEG Number of segments in this window.

00 Single segment.

10-11 NSSEG Number of sub-segments in this window.

00 No sub-segments.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.

0x4 NREAD.

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if access is a write.

0x5 NWRITER.

26–31 SIZE Outbound window size. Outbound window size n, which is the encoded 2n+1-byte window size.
0x13 Window size is 1Mbyte.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field LTGTID TRGTID TREXAD TRAD

Setting 0x004 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x1000

Table 15. ROWTARn Descriptions and Settings

Bits Name Description and Setting

0–1 LTGTID Corresponds to bits 6-7 of device ID in large transport systems.

0x00 This application note assumes small transport system.

2–9 TRGTID Target ID for RapidIO packet.

0x01 Transactions have destination ID of 1.

10–11 TREXAD Translation extended address of outbound window.

00 The 2 extended address bits are both zero.

12–31 TRAD Translation address of outbound window.

0x01000 Outbound transactions start at address 0x0_0100_0000.

Table 14. ROWAR Descriptions and Settings

Bits Name Description and Setting

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

28 Freescale Semiconductor

Bring-up Procedure

3.3.3 Confirm Access to Remote LCS
The software should verify that the local configuration space of the agent can be read in this way. For example, with
the ROW on the host and the LCS window on agent 1 set up as shown in the preceding figures, the accesses should
return the following values:

• Reading host processor address 0x0_C110_0000 returns the CCSRBAR of processor 1.

• Reading host processor address 0x0_C11C_0000 returns the DIDCAR of processor 1.

• Reading host processor address 0x0_C11C_005C returns the LCSBA1CSR of processor 1.

3.4 Boot over RapidIO
In the example hardware, some agents can be configured to boot from their local Flash devices, and others can be
configured to boot over RapidIO. This section describes how to boot over RapidIO. A device that is to boot over
RapidIO must be configured as follows:

• The cfg_rom_loc configuration signal is configured to direct accesses to the boot vector and default boot
ROM region to the RapidIO interface

• The cfg_cpu_boot configuration signal is configured to put the processor in boot hold-off mode so that it
does not attempt to boot until it is configured by an external processor.

With these configurations, the host completes a series of steps to configure the system and initiate booting of the
agent processor.

3.4.1 Prepare the Host Processor for Incoming Boot Reads
The host processor provides an inbound RapidIO window that accepts the boot code reads over RapidIO and
redirects them to the appropriate area of Flash memory. With opportunities to adjust window sizes and translate
addresses on the outgoing window of the agent and the incoming window of the host, many different configurations
permit the agent to boot over RapidIO. This section details only one possibility.

3.4.1.1 RIWBAR

Figure 30. RIWBAR Settings on Host for Incoming Boot Reads

The RapidIO inbound window base address register (RIWBAR) contains the RapidIO base address of the incoming
window. The settings in the example are defined in Table 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXAD BADD

Setting 0x00 0x0 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x0020

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 29

Bring-up Procedure

3.4.1.2 RIWAR

Figure 31. RIWAR Settings on Host for Incoming Boot Reads

The RapidIO inbound window attributes register (RIWAR) defines the window size and other attributes for the
translation. The settings in the example are defined in Table 17.

Table 16. RIWBAR Field Descriptions and Settings

Bits Name Description and Setting

10–11 BEXAD Base extended address of inbound window.

00 Extended bits in the base address are both 0.

12–31 BADD Base address of inbound window. Source address that is the starting point for the inbound
translation window.

0x0_0200 Base address are 0x0_0020_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TGINT RDTYP

Setting 0x8 0x0 0xF 0x5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x0 0x0 0x17

Table 17. RIWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable.
1 Address translation enabled.

8–11 TGINT Target interface.

1111 Incoming transactions are re-directed to the local memory.

12–15 RDTYP Read transaction type. Transaction type to run if access is a read.
0x5 Snoop local processor.

16–19 WRTYP Write transaction type. Transaction type to run if access is a write.
0x0 Reserved (effectively makes this window read only).

26–31 SIZE Inbound window size.

0x17 Window size is 16 Mbytes.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

30 Freescale Semiconductor

Bring-up Procedure

3.4.1.3 RIWTAR
The RapidIO inbound window translation address register (RIWTAR) contains the translation address for the
incoming transactions.

Figure 32. RIWTAR Settings on Host for Incoming Boot Reads

The RIWTAR defines the translation on the address of the access:

3.4.2 Configure the Agent Processor
A single processor is configured and released so that it can boot. The access to the internal memory map of the agent
through the LCSBA1CSR, as described in Section 3.3, “Enable Access to Remote Configuration Space,” must be
enabled because of the need to access registers in the agent processor that are not part of the RapidIO interface and
are therefore not available through maintenance transactions.

3.4.2.1 Configure the RapidIO Outbound Window of the Agent
The boot location configuration signal cfg_rom_loc, directs all accesses to the default boot location to the RapidIO
interface. Before the agent is released to boot, an outbound RapidIO window must be created to direct all accesses
to the host processor at the correct RapidIO address.

3.4.2.2 ROWBAR

Figure 33. Remote CCSR ROWBAR Settings

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TREXAD TRAD

Setting 0x00 0x0 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0xF000

Table 18. RIWTAR Field Description and Setting

Bits Name Description and Setting

8-9 TREXAD Top bits of the 36-bit local address.

12–31 TRAD Translation address of inbound window. System address that represents the starting point of
the inbound translated address.

0xF_F000, translated window starts at 0x0_FF00_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXTADD BADD

Setting 0x00 0x0 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0xF000

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 31

Bring-up Procedure

The base address register (ROWBAR) defines the start address of the window. The settings in the example are
defined in Table 19.

3.4.2.2.1 ROWTAR

Figure 34. ROWTAR on Agent for Boot Reads

The settings in the example are defined in Table 20.

Table 19. ROWBAR Field Description and Setting

Bits Name Description and Setting

8–11 BEXTADD Window base extended address. Contains bits 0–3 of 36-bits address.

0x0 Extended addressing not used.

12–31 BADD Base address of outbound window. Source address that is the starting-point for the outbound
translation window.

0xFF000, Window starts at address 0x0_FF00_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field LTGTID TRGTID TREXAD TRAD

Setting 0x000 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x2000

Table 20. ROWTAR0 Field Descriptions and Settings

Bits Name Description

0–1 LTGTID Bits 6–7 of target ID in large transport systems only.

00 This application assumes small transport system.

2–9 TRGTID Target ID for RapidIO packet.

0x00 Transactions have destination ID of 0 (host).

10–11 TREXAD Translation extended address of outbound window.

00 The 2 extended address bits are both zero.

12–31 TRAD Translation address of outbound window.

0x020000. Translation address 0x0_0200_0000.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

32 Freescale Semiconductor

Bring-up Procedure

3.4.2.2.2 ROWAR

The settings in the example are defined in Table 21.

3.4.2.3 Create LAW on Agent for the Boot Area on RapidIO
Whether it is necessary to create a LAW on the agent depends on the operation of the bootloader program executed
over RapidIO. The mapping of the LAW has priority over the default boot location set up by cfg_rom_loc.
Therefore, if the bootloader program of the agent sets up a LAW that covers the same area as the address range used
for booting, booting over RapidIO fails after the instructions execute to create that LAW.

If the bootloader does not use the highest-priority LAW (LAW0), this LAW should be used to direct the appropriate
area of memory to the RapidIO interface. If the bootloader uses LAW0 for its own memory setup, the bootloader
must be amended to permit booting over RapidIO. If the bootloader does not create a LAW that covers the same area
of the local map as the boot instructions, the LAW does not have to be set up; the cfg_boot_loc is enough to redirect
the boot operation to the correct area. In this example, the local area window is set up to cover addresses
0x0_FF00_0000–0x0_FFFF_FFFF.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — NSEG NSSEG RDTYP

Setting 0x80 0x0 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x5 0x0 0x17

Table 21. ROWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable.
1 This is default window, always enabled, read-only bit.

4–5 TFLOV Transaction flow level priority of transaction.
00 Transactions have low priority.

6 PCI Follow PCI transaction ordering rules.

0 PCI transaction ordering is not followed.

8-9 NSEG Number of segments in this window.

00 Single-segment window.

10-11 NSSEG Number of subsegments.

00 one subsegment (and one device ID) per segment.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.

0x4 Reads within this window generate NREAD transactions.

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if access is a write.

0x5 Writes within this window generate NWRITE_R transactions.

26–31 SIZE Window size.
0x17 Window size is 16 Mbytes.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 33

Bring-up Procedure

3.4.2.3.3 LAWBAR0

Figure 35. Agent LAWBAR0 Setting for RapidIO Window

The local area window base address 0 (LAWBAR0) sets the base address of this window. The settings in the example
are defined in Table 22.

3.4.2.3.4 LAWAR0

Figure 36. Agent LAWAR0 Settings for RapidIO Window

The local area window attributes register 0 (LAWAR0) enables this window, sets the interface to which the
transactions are directed, and sets the size of the window. The settings in the example are defined in Table 23.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BASE_ADDR

Setting 0x00 0x0F

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BASE_ADDR

Setting 0xF000

Table 22. LAWBAR0 Field Descriptions and Settings

Bits Name Description and Setting

12–31 BASE_ADDR Identifies the 24 most-significant address bits of the 36-bit base address of local access
window n.

0x0FF000 The address of this space starts at 0x0_FF00_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TRGT_IF —

Setting 0x80 0xC 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — SIZE

Setting 0x00 0x17

Table 23. LAWAR0 Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable.
1 This window is enabled.

8–11 TRGT_IF Identifies the target interface ID when a transaction hits in the address range defined by this
window.

0xC Target interface is RapidIO.

26–31 SIZE Window size
0x17 Window size is 16 Mbytes.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

34 Freescale Semiconductor

Bring-up Procedure

3.4.2.4 Provide Agent Processor with Access to the RapidIO Bus
The processors configured as RapidIO agents are not enabled to issue RapidIO requests into the system. The host
must set the agent’s GCCSR[M], master bit, before booting is initiated. This bit is accessed through the
memory-mapped LCSBA1CSR described in Section 3.3, “Enable Access to Remote Configuration Space.”

3.4.2.5 Enable the CPU
The processor is configured in boot hold-off mode to prevent the agent CPU from booting. To initiate the booting
process, the host processor must set the agent’s EEBPCR[CPU_EN], CPU port enable bit. This bit is accessed
through the memory-mapped LCSBA1CSR described in Section 3.3, “Enable Access to Remote Configuration
Space.” When this CPU port enable bit is set, the agent boots from the host Flash memory.

3.5 Enable Memory Reads and Writes
After the processors have booted, many simple tests can be run to check functionality and benchmark RapidIO
performance. Before the host can access the agent’s memory, more ATMU windows must be initialized. A RapidIO
outbound window is set up on the host to direct normal reads and writes to the agent processors, and a RapidIO
inbound window is set up on the agent to capture these accesses and direct them to the appropriate area of the agent’s
memory.

For every device found, a 4 MByte outbound window is created on the host, including a window to map transactions
to deviceID 0, which permits loopback testing (through switch). Each device is then programmed with a
corresponding inbound window to accept these transactions and redirect them to the device’s local memory. In this
example, the memory area of each agent starts at address 0x0_0100_0000.

NOTE

Multiple devices with the same translation should also be targetable with a single,
segmented outbound window. However, errata in early MPC8548 silicon prevents
the use of segments and sub-segments for targeting the same address space on
multiple devices.

3.5.1 Host Setup
A RapidIO outbound window is set up on the host to direct local accesses:

• In the range 0x0_C600_0000–0x0_C63F_FFFF to processor 0.

• In the range 0x0_C640_0000–0x0_C67F_FFFF to processor 1.

And so on, all with RapidIO address 0x0_0000_0000–0x0_003F_FFFF.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 35

Bring-up Procedure

3.5.1.1 ROWBAR

Figure 37. Remote Memory ROWBAR Settings

The base address register (ROWBAR) defines the start address of the window. The settings in the example are
defined in Table 24.

3.5.1.2 ROWAR

Figure 38. Remote Memory Window ROWAR Settings

The attributes register defines attributes of the transactions created by this window, including the priority and
transaction types. It also defines the size of the window. The settings in the example are defined in Table 25.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXTADD BADD

Setting 0x00 0 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x6000

Table 24. ROWBAR Field Description and Setting

Bits Name Description and Setting

8-11 BEXTADD Bits 0-3 of the 36-bit address.

0x0 Not set in this example.

12–31 BADD Base address of outbound window. Source address that is the starting point for the outbound
translation window.

0xC6000 Window starts at address 0x0_C600_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — NSEG NNSEG RDTYP

Setting 0x80 0x0 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x5 0x0 0x15

Table 25. ROWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable

1 This RapidIO outbound window is enabled.

4–5 TFLOV Transaction flow level priority of transaction

00 The transactions are low-priority.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

36 Freescale Semiconductor

Bring-up Procedure

3.5.1.3 ROWTAR

Figure 39. Remote Memory ROWTAR Settings

The settings in the example are defined in Table 26.

6 PCI Follow PCI transaction ordering rules.

0 PCI transaction ordering is not followed.

8-9 NSEG Number of segments.

00 Single Segment window.

10-11 NSSEG Number of sub-segments.

00 No sub-segments.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.

0x4 Reads to this window generate RapidIO NREAD transactions.

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if the access is a write.

0x5 Writes to this window generate RapidIO NWRITE_R transactions.

26–31 SIZE Outbound window size.
0x15 Window size is 4 Mbytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field LTGTID TRGTID TREXAD TRAD

Setting 0x004 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x0000

Table 26. ROWTAR Field Descriptions and Settings

Bits Name Description and Setting

0-1 LTGTID Bits 6–7 of targetID for large transport systems only.

00 Small transport system.

2–9 TRGTID Target ID for RapidIO packet

0x01 Target device ID 1.

10–11 TREXAD Translation extended address of outbound window.

00 The two extended address bits are both zero.

12–31 TRAD Translation address of outbound window.

All zeros. Outbound transactions start at address 0x0_0000_0000.

Table 25. ROWAR Field Descriptions and Settings (continued)

Bits Name Description and Setting

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 37

Bring-up Procedure

3.5.2 Agent Setup
A 4 Mbyte RapidIO inbound window is set up on the agent to capture RapidIO transactions with the address range
0x0_0000_0000–0x0_003F_FFFF and redirect them to the agent’s local memory space in the address range
0x0_0100_0000–0x0_013F_FFFF.

3.5.2.1 RIWBAR

Figure 40. RIWBAR Settings on Host for Incoming Boot Reads

The settings in the example are defined in Table 27.

The combined meaning of these two fields is that the base address of the inbound RapidIO window is
0x0_0000_0000.

3.5.2.2 RIWAR

Figure 41. RIWAR Settings on Host for Incoming Boot Reads

The settings in the example are defined in Table 28.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXAD BADD

Setting 0x00 0x0 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x0000

Table 27. RIWBAR Field Descriptions and Settings

Bits Name Description and Setting

10–11 BEXAD Base extended address of inbound window.

00 Extended bits in the base address are both 0.

12–31 BADD Base address of inbound window. Source address that is the starting point for the inbound translation
window.

All zeros

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TGINT RDTYP

Setting 0x8 0x0 0xF 0x5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x5 0x0 0x15

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

38 Freescale Semiconductor

Bring-up Procedure

3.5.2.3 RIWTAR

Figure 42. RIWTAR Settings on Host for Incoming Boot Reads (Point-to-Point)

The RIWTAR defines the translation on the address of the access.

3.5.3 Confirming Operation
After the agent and host are configured, tests can be run to verify the ability to read/write memory between the two
processors. These tests can take various forms. For a simple test that requires transactions to have 32 bits of payload
or less, simple reads and writes to the 4 Mbyte address range 0x0_C680_0000–0x0_C6BF_FFFF on the host result
in RapidIO transactions to processor 2. When processor 2 receives the requests, they are translated to the 4Mbyte
address range 0x0100_0000–0x013F_FFFF. To confirm correct operation, these memory locations can be directly
examined on processor 2 or read back and compared with the value written.

Table 28. RIWAR Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable.
1 Address translation enabled.

8–11 TGINT Target interface.

1111 Incoming transactions are re-directed to the local memory.

12–15 RDTYP Read transaction type. Transaction type to run if access is a read.
0101 Snoop local processor.

16–19 WRTYP Write transaction type. Transaction type to run if access is a write.
0101 Received write. Snoop local processor.

26–31 SIZE Inbound window size.

0x15 Window size is 4 Mbyte.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TREXAD TRAD

Setting 0x00 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x1000

Table 29. RIWTAR Description and Setting

Bits Name Description and Setting

8-11 TREXAD Translation extended address. Bits 0–3 of the 36-bit address.

0x0 extended addressing not used in this example.

12–31 TRAD Translation address of inbound window. System address that represents the starting point of
the inbound translated address.

0x01000 Translated window starts at 0x0_0100_0000.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 39

Output from Example Application

If the test requires larger transactions, the DMA engine can be used. The same address mapping applies, that is, if
the DMA source/destination is set up as 0x0_C680_0000, this generates RapidIO read/writes to processor 2. Using
the DMA can generate RapidIO reads and writes with a payload greater than 32 bits, providing a more efficient way
to pass large amounts of data between devices that is convenient for benchmarking.

4 Output from Example Application
This section contains example text output from an application to bring up basic RapidIO systems, using the
procedure described previously.

Starting application at 0x00040004 ...

Check LAWs before setting up

lawbar0 = 0x00000000, lawar0 = 0x00000000

lawbar1 = 0x00000000, lawar1 = 0x80f0001c

lawbar2 = 0x000f0000, lawar2 = 0x8040001b

lawbar3 = 0x000a0000, lawar3 = 0x8020001c

lawbar4 = 0x000e3000, lawar4 = 0x80200017

lawbar5 = 0x000c0000, lawar5 = 0x80c0001c

lawbar6 = 0x00000000, lawar6 = 0x00000000

lawbar7 = 0x00000000, lawar7 = 0x00000000

Completed the setup of TLBs and lawbars

lawbar5 = 0x000c0000, lawar5 = 0x80c0001b

Checked DIDCAR of local device is MPC8548

This device is configured as a RIO host

This device initially has RIO device ID 0x00000000

This device has been allocated RIO device ID 0x00000000

RapidIO port is trained OK

RapidIO port trained 4x

Set up the outbound rio maintenance window

rowbar1 = 0x000c0000, rowar1 = 0x80077013, rowtar1 = 0x3fc00000

 ---- rio_local_config() completed successfully ----

Identified adjacent device as Tsi568

Executing the fabric version of the discovery code

read back from SW_PORT = 0x00001002

The switch has 16 ports

This host device is attached to port 2

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

40 Freescale Semiconductor

Output from Example Application

Original Tsi568 HBDIDL =0x0000ffff

Updated HBDIDL on Tsi568 =0x00000000

Routed all packets for deviceID 0x00 to port 2

Confirmed route back to host through switch, read bdidcsr

Examine each port on the Tsi568, ’discover’ any devices

Examining port 0 Trained successfully

Trained 4x

All packets for DeviceID = 0xFF, now to port 0

Examine didcar of device attached to port 0

Found another MPC8548

Original HBDIDL =0x0000ffff

Updated HBDIDL =0x00000000

Original deviceID = 0x000000ff

Allocated deviceID = 0x00000001

All packets for DeviceID = 0x01, now to port 0

Confirmed read operation using new device id

Examining port 2 Trained successfully

Trained 4x

This port number == host port number. Discovered myself!

Examining port 4 This port is not trained

Examining port 5 This port is not trained

Examining port 6 Trained successfully

Trained 4x

All packets for DeviceID = 0xFF, now to port 6

Examine didcar of device attached to port 6

Found another MPC8548

Original HBDIDL =0x0000ffff

Updated HBDIDL =0x00000000

Original deviceID = 0x000000ff

Allocated deviceID = 0x00000002

All packets for DeviceID = 0x02, now to port 6

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 41

Output from Example Application

Confirmed read operation using new device id

Examining port 8 This port is not trained

Examining port 9 This port is not trained

Examining port 10 This port is not trained

Examining port 11 This port is not trained

Examining port 12 This port is not trained

Examining port 13 This port is not trained

Examining port 14 This port is not trained

Examining port 15 This port is not trained

Discovered 2 other devices

 ---- rio_discovery() completed successfully ----

Set up ROWs of local processor for access through LCS window

Allow access back to host, through switch

ROW2 is for LCS access back to device 0

rowbar2 = 0x000c1000, rowar2 = 0x80045013, rowtar2 = 0x00001000

write 0x00200000 to LCSBAR of processor 0.

Initialize pointers to the registers, accessed through LCS

srio_device[0].imm = 0xc1000000

srio_device[0].srio = 0xc10c0000

srio_device[0].ecm = 0xc1000000

Confirmed correct operation of LCS by comparing to maintenance read

ROW3 is for LCS access back to device 1

rowbar3 = 0x000c1100, rowar3 = 0x80045013, rowtar3 = 0x00401000

write 0x00200000 to LCSBAR of processor 1.

Initialize pointers to the registers, accessed through LCS

srio_device[1].imm = 0xc1100000

srio_device[1].srio = 0xc11c0000

srio_device[1].ecm = 0xc1100000

Confirmed correct operation of LCS by comparing to maintenance read

ROW4 is for LCS access back to device 2

rowbar4 = 0x000c1200, rowar4 = 0x80045013, rowtar4 = 0x00801000

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

42 Freescale Semiconductor

Output from Example Application

write 0x00200000 to LCSBAR of processor 2.

Initialize pointers to the registers, accessed through LCS

srio_device[2].imm = 0xc1200000

srio_device[2].srio = 0xc12c0000

srio_device[2].ecm = 0xc1200000

Confirmed correct operation of LCS by comparing to maintenance read

 ---- set up remote LCS access to all trained processors ----

ROW5 is for memory access to device 0

rowbar5 = 0x000c6000, rowar5 = 0x80045015, rowtar5 = 0x00000000

ROW6 is for memory access to device 1

rowbar6 = 0x000c6400, rowar6 = 0x80045015, rowtar6 = 0x00400000

ROW7 is for memory access to device 2

rowbar7 = 0x000c6800, rowar7 = 0x80045015, rowtar7 = 0x00800000

Check boot status of device 1

Looks like the device has already been booted

Set up access to device 1’s memory space

Set up IB window on agent to permit host to access its memory

Agent riwbar1=0x00000000, riwtar1=0x00001000, riwar1=0x80f55015

&srio_device[1].srio->riwbar1 = 0xc11d0dc8

&srio_device[1].srio->riwtar1 = 0xc11d0dc0

set up memory access to device 1

Check boot status of device 2

don’t think this has been booted

srio_device[device_id].imm->im_gur.porbmsr = 0x03310000

Host: riwbar2 = 0x00002000, riwar2 = 0x80f50017, riwtar2 = 0x000ff000

agent device rowbar6 = 0x000ff000

agent device rowar6 = 0x80045017

agent device rowtar6 = 0x00002000

Before booting:

didcar= 0x00120002

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 43

Output from Example Application

lcsbacsr = 0x00200000

bdidcsr= 0x00020000

ccsrbar = 0x000ff700

eebpcr = 0x00000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x00000000

agent LAWBAR2 = 0x00000000

agent LAWAR2 = 0x00000000

agent LAWBAR3 = 0x00000000

agent LAWAR3 = 0x00000000

agent LAWBAR4 = 0x00000000

agent LAWAR4 = 0x00000000

agent LAWBAR5 = 0x00000000

agent LAWAR5 = 0x00000000

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Press any key to continue

AFTER BOOT Read back data from device 2 through lcsbacsr

didcar= 0x00120002

lcsbacsr = 0x00200000

bdidcsr= 0x00020000

ccsrbar = 0x000e0000

eebpcr = 0x01000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x80f0001c

agent LAWBAR2 = 0x000f0000

agent LAWAR2 = 0x8020001c

agent LAWBAR3 = 0x000a0000

agent LAWAR3 = 0x8020001c

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

44 Freescale Semiconductor

Output from Example Application

agent LAWBAR4 = 0x000e3000

agent LAWAR4 = 0x80200017

agent LAWBAR5 = 0x000c0000

agent LAWAR5 = 0x80c0001c

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Set up access to device 2’s memory space

Set up IB window on agent to permit host to access its memory

Agent riwbar1=0x00000000, riwtar1=0x00001000, riwar1=0x80f55015

&srio_device[2].srio->riwbar1 = 0xc12d0dc8

&srio_device[2].srio->riwtar1 = 0xc12d0dc0

setup memory access to device 2

Set up inbound window on host to re-direct incoming rio to ’safe’ area

riwbar1 = 0x00000000, riwar1 = 0x80f55015, riwtar1 = 0x00001000

 ---- Provided LCSBASCR and memory access back to local processor ----

Host processor is deviceid 0

Discovered 2 agent processors

With deviceID = 1 2

Options :

h = print this list of options

q = quit this application

s = read back info from tsi568

r = SRIO setup and status

t = run one of the NREAD/NWRITE tests

R. Read RIO information for which device number?

0

Rio port information from device 0

didcar = 0x00120002 bdidcsr = 0x00000000

predr = 0x00000000 pnfedr = 0x00000000

pccsr = 0x50600001 pescsr = 0x00100002

row0 : tar=0x00000000, ar=0x80044023

row1 : bar=0x000c0000, tar=0x008ff000, ar=0x80077013

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 45

Output from Example Application

row2 : bar=0x000c1000, tar=0x00001000, ar=0x80045013

row3 : bar=0x000c1100, tar=0x00401000, ar=0x80045013

row4 : bar=0x000c1200, tar=0x00801000, ar=0x80045013

row5 : bar=0x000c6000, tar=0x00000000, ar=0x80045015

row6 : bar=0x000c6400, tar=0x00400000, ar=0x80045015

row7 : bar=0x000c6800, tar=0x00800000, ar=0x80045015

row8 : bar=0x00000000, tar=0x00000000, ar=0x00044023

riw0 : tar=0x00000000, ar=0x80044021

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55015

riw2 : bar=0x00002000, tar=0x000ff000, ar=0x80f50017

riw3 : bar=0x00000000, tar=0x00000000, ar=0x00044021

riw4 : bar=0x00000000, tar=0x00000000, ar=0x00044021

>R. Read RIO information for which device number ?

1

Rio port information from device 1

didcar = 0x00120002 bdidcsr = 0x00010000

predr = 0x00000000 pnfedr = 0x00000000

pccsr = 0x50600001 pescsr = 0x00000002

row0 : tar=0x00000000, ar=0x80044023

row1 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row2 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row3 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row4 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row5 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row6 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row7 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row8 : bar=0x00000000, tar=0x00000000, ar=0x00044023

riw0 : tar=0x00000000, ar=0x80044021

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55015

riw2 : bar=0x00000000, tar=0x00000000, ar=0x00044021

riw3 : bar=0x00000000, tar=0x00000000, ar=0x00044021

riw4 : bar=0x00000000, tar=0x00000000, ar=0x00044021

>R. Read RIO information for which device number ?

2

Rio port information from device 2

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

46 Freescale Semiconductor

Output from Example Application

didcar = 0x00120002 bdidcsr = 0x00020000

predr = 0x00000000 pnfedr = 0x00000000

pccsr = 0x50600001 pescsr = 0x00000002

row0 : tar=0x00000000, ar=0x80044023

row1 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row2 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row3 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row4 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row5 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row6 : bar=0x000ff000, tar=0x00002000, ar=0x80045017

row7 : bar=0x00000000, tar=0x00000000, ar=0x00044023

row8 : bar=0x00000000, tar=0x00000000, ar=0x00044023

riw0 : tar=0x00000000, ar=0x80044021

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55015

riw2 : bar=0x00000000, tar=0x00000000, ar=0x00044021

riw3 : bar=0x00000000, tar=0x00000000, ar=0x00044021

riw4 : bar=0x00000000, tar=0x00000000, ar=0x00044021

>S. Print Switch info

port err_status ctl

port 0 0x00000002 0x50600001

port 1 0x00000001 0x00600001

port 2 0x00000002 0x50600001

port 3 0x00000001 0x00600001

port 4 0x00000001 0x50600001

port 5 0x00000001 0x00600001

port 6 0x00000002 0x50600001

port 7 0x00000001 0x00600001

port 8 0x00000001 0x50600001

port 9 0x00000001 0x00600001

port 10 0x00000001 0x50600001

port 11 0x00000001 0x00600001

port 12 0x00000001 0x50600001

port 13 0x00000001 0x00600001

port 14 0x00000001 0x50600001

port 15 0x00000001 0x00600001

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 47

Output from Example Application

>T. Which test do you want to run?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

On which device do you want to run test a ?

loopback test to self, through switch

Running test A for deviceid 0

Executing 100 32-bit writes into agent memory

Executing 100 32-bit reads, and comparing

Test completed successfully

>T. Which test do you want to run?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

On which device do you want to run test a ?

Running test A for deviceid 1

Executing 100 32-bit writes into agent memory

Executing 100 32-bit reads, and comparing

Test completed successfully

>T. Which test do you want to run?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

On which device do you want to run test a ?

Running test A for deviceid 2

Executing 100 32-bit writes into agent memory

Executing 100 32-bit reads, and comparing

Test completed successfully

>T. Which test do you want to run?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

On which device do you want to run test b ?

loopback test to self, through switch

Running test B for deviceid 0

About to DMA transfer 65536 bytes to the agent

DMA transfer of 65536 bytes to the agent has completed

DMA transfer back from host has completed

Comparing data sent with data received

Test completed successfully

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

48 Freescale Semiconductor

References

>T. Which test do you want to run?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

On which device do you want to run test b ?

Running test B for deviceid 1

About to DMA transfer 65536 bytes to the agent

DMA transfer of 65536 bytes to the agent has completed

DMA transfer back from host has completed

Comparing data sent with data received

Test completed successfully

>T. Which test do you want to run?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

On which device do you want to run test b ?

Running test B for deviceid 2

About to DMA transfer 65536 bytes to the agent

DMA transfer of 65536 bytes to the agent has completed

DMA transfer back from host has completed

Comparing data sent with data received

Test completed successfully

5 References
1. RapidIO Trade Association, RapidIO Interconnect Specification, Rev. 1.2, 6/2002.

2. MPC8548E PowerQUICC III Integrated Host Processor Family Reference Manual, MPC8548ERM, Rev1,
7/2005.

3. Tsi568 user manual. Tundra document 80B8000_MA001_.

4. RapidIO Interconnect Specification Annex I: Software/System Bring Up Specification, Rev. 1.0, 12/2003.

5. Freescale application note AN2923, Using the Serial RapidIO Messaging Unit on PowerQUICC III.

6. Freescale application note AN2753, RapidIO Bringup Procedure on PowerQUICC III.

7. Freescale application note AN2741, Using the RapidIO Messaging Unit on PowerQUICC III.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 49

References

Appendix A Notes on Maintenance Transactions
In this document, all maintenance transactions are described as a list of maintenance parameters (for example,
destination ID, hopcount, and maintenance offset), but there is no description of how these maintenance transactions
are created. Therefore, this appendix fully describes the operation of the maintenance window and the generation of
maintenance transactions. It also describes the operation of maintenance transactions in a multi-switch environment.

A.1 Terminology
Table 30 lists the terms used to describe different aspects of the maintenance transaction. This table clarifies terms
specific to this appendix. Do not assume that this is commonly known or used terminology.

Table 30. Maintenance Transaction Terminology

Term Description

Maintenance offset The logical offset of a maintenance transaction. The maintenance offset closely resembles the way
the RapidIO specification represents the offsets to the CAR/CSR block. Maintenance offsets are
always 16-bit word aligned.

For example:
The RapidIO specification describes the source operations CAR as offset 0x18, word 0. In this
application note, it is described as maintenance offset 0x18.

The RapidIO specification describes the destination operations CAR as offset 0x18, word 1. In this
application note, it is described as maintenance offset 0x1C.

The maintenance offset is represented by 24-bits (although 2 LSBs are always 0). Therefore, the
maximum maintenance offset is 0x7F_FFFC.

Configuration offset A 21-bit field within the RapidIO maintenance packet. It is a double-word pointer and is equivalent to
the maintenance offset shifted 3 bits to the right.

For Example:
For accesses to the source operations CAR (maintenance offset 0x18), the configuration offset field
in the RapidIO maintenance transaction is 0x03.

For accesses to the destination operations CAR (maintenance offset 0x1C), the configuration offset
field in the RapidIO maintenance transaction is also 0x03.

Word pointer A single bit field in the maintenance packet that defines which word to access within the double word
indicated by the configuration offset.

For Example:
For accesses to the source operations CAR (maintenance offset 0x18), the word pointer in the
RapidIO maintenance transaction is 0x0.

For accesses to the destination operations CAR (maintenance offset 0x1C), the word pointer in the
RapidIO maintenance transaction is 0x1.

CFG_OFFSET A field within the ROWTAR for maintenance transactions. A variable number of bits (depending on the
size of the window) is taken from this field to build the configuration offset.

Transaction offset The offset of the untranslated address from the base address of the window.

For example:
If the base address of the maintenance window is 0xC000_0000, then an access to address
0xC000_001C has a transaction offset of 0x1C.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

50 Freescale Semiconductor

References

A.2 Example 1: 4 Mbyte Maintenance Window
In this example (used in the main document), the maintenance window is set up to 4 Mbytes, which permits a
transaction offset of 0x0–0x3FFFFF.

In a 4 Mbyte maintenance window, the bottom 22 bits of the maintenance offset are determined from the transaction
offset, and only the 2 MSBs of the CFG_OFFSET field are significant.

To allow access to maintenance offsets greater than 0x3F_FFFC, the MSBs of the offset must be masked off from
the calculation of the transaction address and placed correctly within the CFG_OFFSET field.

Maintenance transactions within a 4 Mbyte window use the following macros.

/***

MACRO definitions

***/

#define MAINT_READ_4M(device_id, hopcount, offset , ptrvalue) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 ptrvalue = *((volatile uint32*)(START_OF_RIO_WINDOW + ((offset)& 0x3FFFFF)));\

 asm ("sync");

#define MAINT_WRITE_4M(device_id, hopcount, offset , value) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 *((volatile uint32 *) (START_OF_RIO_WINDOW + ((offset) & 0x3FFFFF))) = value; \

 asm ("sync");

A maintenance read to destination ID 0x02, hopcount 0xFF, and maintenance offset 0x68, can then use the macro
as follows.

uint32 value_read;

MAINT_READ_4M (0x02, 0xFF, 0x68, value_read);

A maintenance write of the value 0xFFF3_210F to destination ID 0xFF, hopcount 0x00, maintenance offset
0x70A00 uses the macro as follows.

MAINT_WRITE_4M (0xFF, 0x00, 0x70A00, 0xFFF3210F);

A.3 Example 2: 4 Kbyte Maintenance Window
A 4 Kbyte maintenance window permits a transaction offset of 0x0–0xFFF. The bottom 12 bits of the maintenance
offset are determined from the transaction offset, and all 12 bits of the CFG_OFFSET field are significant.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 51

References

To allow for access to maintenance offsets greater than 0xFFC, the MSBs of the offset must be masked off from the
calculation of the transaction offset, and placed correctly within the CFG_OFFSET field.

Maintenance transactions within a 4 Kbytes window use the following macros.

/***

MACRO definitions

***/

#define MAINT_READ_4k(device_id, hopcount, offset , ptrvalue) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 ptrvalue = *((volatile uint32 *) (START_OF_RIO_WINDOW + ((offset)& 0xFFF)));\

 asm ("sync");

#define MAINT_WRITE_4k(device_id, hopcount, offset , value) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 *((volatile uint32 *) (START_OF_RIO_WINDOW + ((offset) & 0xFFF))) = value; \

 asm ("sync");

A maintenance read to destination ID 0x02, hopcount 0xFF, maintenance offset 0x68, could then be achieved using
the macro as follows.

uint32 value_read;

MAINT_READ_4k (0x02, 0xFF, 0x68, value_read);

A maintenance write of the value 0xfff3210f to destination ID 0xFF, hopcount 0x00, maintenance offset 0x70a00
can be achieved using the macro as follows.

MAINT_WRITE_4k (0xFF, 0x00, 0x70A00, 0xFFF3210F);

A.4 Maintenance Transactions Within Multi-Switch Systems
In this document, a system consists of no more than one RapidIO switch. For multi-switch systems, the way the
maintenance window can be used to direct accesses to different switches must be considered. This section describes
how the destination ID and hopcount determine which switch is accessed.

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

52 Freescale Semiconductor

References

When the hopcount of a transaction is greater than 0, the switch uses the destination ID to determine the port to
which the request is forwarded, and then it decrements the hopcount by one.

In the example here, the routing tables on all switches are set up to direct transactions to the correct RapidIO
endpoints. Table 31 shows the resulting switch for a given hopcount and destination ID. If larger hopcounts are used,
the switches are bypassed and the maintenance transactions are directed to the endpoints.

Table 31. Maintenance Transactions and Resultant Accessed Switch

Hopcount Destination ID Switch Accessed

0x00 any switch A

0x01 0x3 or 0x4 switch B

0x02 0x4 switch C

0x01 0x5 switch D

P
O

R
T

 8

MPC8548
Device ID 0

RapidIO Host

MPC8548
Device ID 2

RapidIO Agent

PORT 4

PORT 0

P
O

R
T

 2

P
O

R
T

 8

Switch A

1x/4x
Serial

RapidIO

PORT 4

PORT 0

P
O

R
T

 2

P
O

R
T

 8

Switch B

MPC8548
Device ID 3

RapidIO Agent

PORT 4
P

O
R

T
 2

Switch D

MPC8548
Device ID 5

RapidIO Agent

PORT 4

PORT 0

P
O

R
T

2

P
O

R
T

 8

Switch C

MPC8548
Device ID 4

RapidIO Agent

PORT 0

Flash
Memory

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 53

References

NOTES:

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

54 Freescale Semiconductor

References

NOTES:

Serial RapidIO Bring-Up Procedure on PowerQUICC™ III, Rev. 0

Freescale Semiconductor 55

References

NOTES:

Document Order No.: AN2932
Rev. 0
12/2005

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™, the Freescale logo, and PowerQUICC are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their respective
owners.

© Freescale Semiconductor, Inc. 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

	Serial RapidIO Bring-Up Procedure on PowerQUICC™ III
	1 Introduction
	Table 1. Glossary of Terms

	2 RapidIO Basics
	2.1 RapidIO Layers
	2.2 Processing Element Models
	2.2.1 Integrated Processor-Memory Processing Element
	Figure 1. Integrated Processor-Memory Processing Element

	2.2.2 Switch Processing Element
	Figure 2. Switch Processing Element Model

	2.2.3 CAR/CSR Block
	Table 2. Extract from the table of CAR/CSRs

	2.2.4 RapidIO Transactions
	Figure 3. Maintenance Transaction
	Figure 4. NREAD Transaction
	Figure 5. NWRITE Transaction
	Figure 6. NWRITE_R Transaction

	2.3 Serial RapidIO on the MPC8548
	2.3.1 Mapping Memory to the RapidIO Interface
	2.3.1.1 Memory Management Unit
	2.3.1.2 Local Memory Map and Local Access Windows

	2.3.2 RapidIO ATMU (Address Translation and Mapping Unit)
	2.3.2.1 RapidIO Outbound ATMU Windows
	2.3.2.2 RapidIO Inbound ATMU Windows
	2.3.2.3 Inbound ATMU Local Configuration Space Window

	2.4 Example Target Hardware

	3 Bring-up Procedure
	Figure 7. Fabric-Based Hardware and Example Configuration
	Figure 8. Procedure for Bringing Up a Simple RapidIO System
	3.1 Configure the Local Processor
	3.1.1 Set up a TLB Entry
	3.1.1.1 Initialize MAS0
	Figure 9. MAS0 Setting for RapidIO Mapping
	Table 3. MAS0 Field Descriptions and Settings

	3.1.1.2 Initialize MAS1
	Figure 10. MAS1 Setting for RapidIO Window
	Table 4. MAS1 Field Descriptions and Settings

	3.1.1.3 Initialize MAS2
	Figure 11. MAS2 Setting for RapidIO Window
	Table 5. MAS2 Field Descriptions and Settings

	3.1.1.4 Initialize MAS3
	Figure 12. MAS3 Setting for RapidIO Window
	Table 6. MAS3 Field Descriptions and Settings

	3.1.1.5 Initialize MAS7
	Figure 13. MAS7 Setting for RapidIO Window
	Table 7. MAS7 Field Descriptions and Settings

	3.1.1.6 Load Information into the TLB

	3.1.2 Set Up a Local Area Window
	3.1.2.1 Set LAWBAR
	Figure 14. LAWBAR Register for RapidIO Window
	Table 8. LAWBAR Field Description and Setting

	3.1.2.2 Set LAWAR
	Figure 15. LAWAR Record for RapidIO Window
	Table 9. LAWAR Field Descriptions and Settings

	3.1.3 Check Lane Synchronization and Alignment
	3.1.4 Set Up Maintenance Window
	3.1.4.1 Set ROWBAR
	Figure 16. Maintenance Window ROWBAR Register
	Table 10. ROWBAR Field Description and Setting

	3.1.4.2 Set ROWAR
	Figure 17. Maintenance Window ROWAR Settings
	Table 11. ROWAR Field Descriptions and Settings

	3.1.4.3 Set ROWTAR
	Figure 18. Maintenance Window ROWTAR Settings
	Table 12. ROWTAR Field Descriptions and Settings

	3.2 Discover Other Devices in the System
	3.2.1 Identify Adjacent Device
	3.2.2 Initial Configuration of Switch
	3.2.2.1 Check Switch Port
	Figure 19. Format of Tsi568 RIO_SW_PORT Register

	3.2.2.2 Read Back the Switch HBDIDLCSR
	Figure 20. Format of the HBDIDLCSR

	3.2.2.3 Lock HBDIDLCSR of Switch
	3.2.2.4 Confirm that Switch Has Accepted Lock
	3.2.2.5 Route Responses Back to Host
	Figure 21. RIO_ROUTE_CFG_DESTID
	Figure 22. RIO_ROUTE_CFG_PORT

	3.2.3 Discover the Devices Beyond the Tsi568 Switch
	3.2.3.1 Check Lane Synchronization and Alignment on Port N
	3.2.3.2 Route Packets for Device ID 0xFF to Port N
	3.2.3.3 Read Back the DIDCAR of Device on Port N
	Figure 23. ROWTAR Setting for Accessing DIDCAR of Device on Port N

	3.2.3.4 Read Back the HBDIDLCSR of Device on Port N
	3.2.3.5 Lock HBDIDLCSR of Device on Port N
	3.2.3.6 Confirm that Device on Port N Has Accepted Lock
	3.2.3.7 Update the Device ID
	Figure 24. Format of the BDIDCSR

	3.2.3.8 Update the Routing Table, All Ports
	3.2.3.9 Read Back from Updated Device ID
	Figure 25. ROWTAR for Accessing BDIDCSR on Device 3

	3.3 Enable Access to Remote Configuration Space
	3.3.1 Set Up Inbound LCS Window on Agent
	Figure 26. LCSBA1CSR Settings

	3.3.2 Set Up Outbound Window on Host
	3.3.2.1 ROWBAR
	Figure 27. ROWBAR Settings for Remote CCSR Access
	Table 13. ROWBAR Field Description and Setting

	3.3.2.2 ROWAR
	Figure 28. Remote CCSR Window ROWAR Settings
	Table 14. ROWAR Descriptions and Settings

	3.3.2.3 ROWTAR
	Figure 29. ROWTARn Settings for Remote CCSR Access
	Table 15. ROWTARn Descriptions and Settings

	3.3.3 Confirm Access to Remote LCS

	3.4 Boot over RapidIO
	3.4.1 Prepare the Host Processor for Incoming Boot Reads
	3.4.1.1 RIWBAR
	Figure 30. RIWBAR Settings on Host for Incoming Boot Reads
	Table 16. RIWBAR Field Descriptions and Settings

	3.4.1.2 RIWAR
	Figure 31. RIWAR Settings on Host for Incoming Boot Reads
	Table 17. RIWAR Field Descriptions and Settings

	3.4.1.3 RIWTAR
	Figure 32. RIWTAR Settings on Host for Incoming Boot Reads
	Table 18. RIWTAR Field Description and Setting

	3.4.2 Configure the Agent Processor
	3.4.2.1 Configure the RapidIO Outbound Window of the Agent
	3.4.2.2 ROWBAR
	Figure 33. Remote CCSR ROWBAR Settings
	Table 19. ROWBAR Field Description and Setting
	Figure 34. ROWTAR on Agent for Boot Reads
	Table 20. ROWTAR0 Field Descriptions and Settings
	Table 21. ROWAR Field Descriptions and Settings

	3.4.2.3 Create LAW on Agent for the Boot Area on RapidIO
	Figure 35. Agent LAWBAR0 Setting for RapidIO Window
	Table 22. LAWBAR0 Field Descriptions and Settings
	Figure 36. Agent LAWAR0 Settings for RapidIO Window
	Table 23. LAWAR0 Field Descriptions and Settings

	3.4.2.4 Provide Agent Processor with Access to the RapidIO Bus
	3.4.2.5 Enable the CPU

	3.5 Enable Memory Reads and Writes
	3.5.1 Host Setup
	3.5.1.1 ROWBAR
	Figure 37. Remote Memory ROWBAR Settings
	Table 24. ROWBAR Field Description and Setting

	3.5.1.2 ROWAR
	Figure 38. Remote Memory Window ROWAR Settings
	Table 25. ROWAR Field Descriptions and Settings

	3.5.1.3 ROWTAR
	Figure 39. Remote Memory ROWTAR Settings
	Table 26. ROWTAR Field Descriptions and Settings

	3.5.2 Agent Setup
	3.5.2.1 RIWBAR
	Figure 40. RIWBAR Settings on Host for Incoming Boot Reads
	Table 27. RIWBAR Field Descriptions and Settings

	3.5.2.2 RIWAR
	Figure 41. RIWAR Settings on Host for Incoming Boot Reads
	Table 28. RIWAR Descriptions and Settings

	3.5.2.3 RIWTAR
	Figure 42. RIWTAR Settings on Host for Incoming Boot Reads (Point-to-Point)
	Table 29. RIWTAR Description and Setting

	3.5.3 Confirming Operation

	4 Output from Example Application
	5 References
	Table 30. Maintenance Transaction Terminology
	Table 31. Maintenance Transactions and Resultant Accessed Switch

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

